P vs NP

Frank Vega 1, *
* Corresponding author
Abstract : $UNIQUE \ SAT$ is the problem of deciding whether a given Boolean formula has exactly one satisfying truth assignment. The $UNIQUE \ SAT$ is $coNP-hard$. We prove the $UNIQUE \ SAT$ is in $NP$, and therefore, $NP = coNP$. Furthermore, we prove if $NP = coNP$, then some problem in $coNPC$ is in $P$, and thus, $P = NP$. In this way, the $P$ versus $NP$ problem is solved with a positive answer.
Document type :
Preprints, Working Papers, ...
2014


https://hal.archives-ouvertes.fr/hal-00984866
Contributor : Frank Vega <>
Submitted on : Monday, August 18, 2014 - 6:21:13 PM
Last modification on : Monday, August 18, 2014 - 9:43:18 PM

File

p-vs-np.pdf
fileSource_public_author

Identifiers

  • HAL Id : hal-00984866, version 5

Citation

Frank Vega. P vs NP. 2014. <hal-00984866v5>

Export

Share

Metrics

Consultation de
la notice

367

Téléchargement du document

129