Approximation by Müntz spaces on positive intervals
Rachid Ait-Haddou, Marie-Laurence Mazure

To cite this version:

HAL Id: hal-00983519
https://hal.archives-ouvertes.fr/hal-00983519
Submitted on 25 Apr 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Approximation by Müntz spaces on positive intervals

Rachid Ait-Haddoua, Marie-Laurence Mazureb,
aGeometric Modeling and Scientific Visualization Center, KAUST, Saudia-Arabia
bLaboratoire Jean Kuntzmann Université Joseph Fourier, BP 53, 38041 Grenoble cedex 9, France

Abstract
The so-called Bernstein operators were introduced by S.N. Bernstein in 1912 to give a constructive proof of Weierstrass' theorem. We show how to extend his result to Müntz spaces on positive intervals. To cite this article: R. Ait-Haddou and M.-L. Mazure, C. R. Acad. Sci. Paris, Ser. ???? (200?).

Approximation par espaces de Müntz sur un intervalle positif. Résumé

1. Introduction

The famous Bernstein operator \(B_k \) of degree \(k \) on a given non-trivial interval \([a, b]\) associates with any \(F \in C^0([a, b]) \) the polynomial function

\[
B_k F(x) := \sum_{i=0}^{k} F \left(\frac{i}{k} \right) \left(\frac{x-a}{b-a} \right)^i \left(\frac{b-x}{b-a} \right)^{k-i}, \quad x \in [a, b],
\]

where \((B_0^k, \ldots, B_k^k)\) is the Bernstein basis of degree \(k \) on \([a, b]\), i.e., \(B_i^k(x) := \binom{k}{i} \left(\frac{x-a}{b-a} \right)^i \left(\frac{b-x}{b-a} \right)^{k-i} \). It reproduces any affine function \(U \) on \([a, b]\), in the sense that \(B_k U = U \). In [5], S.N. Bernstein proved that, for all function \(F \in C^0([a, b]) \), \(\lim_{k \to +\infty} \| F - B_k F \|_\infty = 0 \). In Section 3 we show how this result extends to the class of Müntz spaces (i.e., spaces spanned by power functions) on a given positive interval \([a, b]\), see Theorem 3.1. Beforehand, in Section 2 we briefly remind the reader how to define operators of the Bernstein-type in Extended Chebyshev spaces.

2. Extended Chebyshev spaces and Bernstein operators

Throughout this section, \([a, b]\) is a fixed non-trivial real interval. For any \(n \geq 0 \), a given \((n+1)\)-dimensional space \(\mathcal{E} \subset C^n([a, b]) \) is said to be an Extended Chebyshev space (for short, EC-space) on \([a, b]\) when any non-zero element of \(\mathcal{E} \) vanishes at most \(n \) times on \([a, b]\) counting multiplicities up to \((n+1)\).

Email addresses: Rachid.AitHaddou@kaust.edu.sa (Rachid Ait-Haddou), mazure@imag.fr (Marie-Laurence Mazure).

Preprint submitted to Elsevier Science October 21, 2013
Let E be an $(n+1)$-dimensional EC-space on $[a, b]$. Then, E possesses bases (B_0, \ldots, B_n) such that, for $i = 0, \ldots, n$, B_i vanishes exactly i times at a and $(n-i)$ times at b and is positive on $[a, b]$. We say that such a basis is the Bernstein basis relative to (a, b) if it additionally satisfies $\sum_{i=0}^{n} B_i = 1$, where 1 is the constant function $1(x) = 1$, $x \in [a, b]$. Let us recall that E possesses a Bernstein basis relative to (a, b) if and only if, firstly it contains constants, and secondly the n-dimensional space $DE := \{ DF := F' | F \in E \}$ is an EC-space on $[a, b]$. Note that the second property is not an automatic consequence of the first one, see [8] and other references therein.

As an instance, given any pairwise distinct $\lambda_0, \ldots, \lambda_k$, the so-called M"untz space $M(\lambda_0, \ldots, \lambda_k)$, spanned over a given positive interval $[a, b]$ (i.e., $a > 0$) by the power functions x^{λ_i}, $0 \leq i \leq k$, is a $(k+1)$-dimensional EC-space on $[a, b]$. If $\lambda_0 = 0$, since $D(M(\lambda_0, \ldots, \lambda_k)) = M(\lambda_1-1, \ldots, \lambda_k-1)$, the space $M(\lambda_0, \ldots, \lambda_k)$ possesses a Bernstein basis relative to (a, b).

For the rest of the section we assume that $E \subset C^n([a, b])$ contains constants and that DE is an $(n$-dimensional) EC-space on $[a, b]$. We denote by (B_0, \ldots, B_n) the Bernstein basis relative to (a, b) in E.

Definition 2.1 A linear operator $B : C^0([a, b]) \to E$ is said to be a Bernstein operator based on E when, firstly it is of the form

$$BF := \sum_{i=0}^{k} F(\zeta_i) B_i, \quad \text{for some } a = \zeta_0 < \zeta_1 < \cdots < \zeta_n = b,$$

and secondly it reproduces a two-dimensional EC-space U on $[a, b]$, in the sense that $BV = V$ for all $V \in U$.

Any Bernstein operator B is positive (i.e., $F \geq 0$ implies $BF \geq 0$) and shape preserving due to the properties of Bernstein bases in EC-spaces, see [8]. Everything concerning Bernstein-type operators in EC-spaces with no Bernstein bases can be deduced from Bernstein operators as defined above [8], [9].

Theorem 2.2 Given $n \geq 2$, let $E \subset C^n([a, b])$ contain constants. Assume that DE is an n-dimensional EC-space on $[a, b]$. For a function $U \in E$, expanded in the Bernstein basis relative to (a, b) as $U := \sum_{i=0}^{n} u_i B_i$, the following properties are equivalent:

(i) u_0, \ldots, u_n form a strictly monotonic sequence;

(ii) there exists a nested sequence $E_1 \subset E_2 \subset \cdots \subset E_{n-1} \subset E_n := E$, where $E_1 := \text{span}(1, U)$ and where, for $i = 1, \ldots, n-1$, E_i is an $(i+1)$-dimensional EC-space on $[a, b]$;

(iii) there exists a Bernstein operator based on E which reproduces U.

In [8] it was proved that there exists a one-to-one correspondence between the set of all Bernstein operator based on E and the set of all two-dimensional EC-spaces U they reproduce. In particular, if (i) holds, then the unique Bernstein operator based on E reproducing U is defined by (2) with

$$\zeta_i := U^{-1}(u_i), \quad 0 \leq i \leq n.$$

Note that this is meaningful since (i) implies the strict monotonicity of U on $[a, b]$. Condition (ii) of Th. 2.2 yields the following corollary.

Corollary 2.3 Given an integer $n \geq 1$, consider a nested sequence

$$E_n \subset E_{n+1} \subset \cdots \subset E_p \subset E_{p+1} \subset \cdots,$$

where E_n contains constants and for any $p \geq n$, DE_p is a p-dimensional EC-space on $[a, b]$. Let $U \in E_n$ be a non-constant function reproduced by a Bernstein operator B_{E_n} based on E_n. Then, U is also reproduced by a Bernstein operator B_{E_p} based on E_p for any $p > n$.

Remark 2.4 In the situation described in Corollary 2.3, a natural question arises: given $F \in C^0([a, b])$, does the sequence $B_k F$, $k \geq n$, converges to F in $C^0([a, b])$ equipped with the infinite norm? Obviously,
for this to be true for any $F \in C^0([a, b])$, it is necessary that $\cup_{k \geq n} E_k$ be dense in $C^0([a, b])$. The example of Müntz spaces proves that this is not always satisfied.

3. Müntz spaces over positive intervals

Throughout this section we consider a fixed positive interval $[a, b]$, a fixed infinite sequence of real numbers λ_k, $k \geq 0$, assumed to satisfy
\[
0 = \lambda_0 < \lambda_1 < \ldots < \lambda_k < \lambda_{k+1} < \ldots, \quad \lim_{k \to +\infty} \lambda_k = +\infty. \tag{5}
\]
We are interested with the corresponding nested sequence of Müntz spaces
\[
M(\lambda_0) \subset M(\lambda_0, \lambda_1) \subset \cdots \subset M(\lambda_0, \ldots, \lambda_k) \subset M(\lambda_0, \ldots, \lambda_k, \lambda_{k+1}) \subset \cdots \tag{6}
\]
Given any $n \geq 1$, for each $k \geq n$, we can select a Bernstein operator B_k based on $M(\lambda_0, \ldots, \lambda_k)$. Assume the sequence B_k, $k \geq n$, to satisfy
\[
\lim_{k \to +\infty} \|F - B_k F\|_\infty = 0 \quad \text{for any } F \in C^0([a, b]). \tag{7}
\]
Then, the union of all spaces $M(\lambda_0, \ldots, \lambda_k)$, $k \geq 0$, is dense in $C^0([a, b])$ equipped with the infinite norm. As is well-known, this holds if and only if the sequence (5) fulfills the so-called Müntz density condition below [4], [6],
\[
\sum_{k \geq 1} \frac{1}{\lambda_k} = +\infty. \tag{8}
\]
As an instance, the Müntz condition (8) is satisfied when $\lambda_k = \ell + 1$ for all $k \geq 1$. This case was addressed in [8]. Convergence – in the sense of (7) – was proved there under the assumption that each B_k reproduced the function x^{λ_1}. This convergence result includes the classical Bernstein operators [5] obtained with $\ell = 0$. Below we extend it to the general interesting situation of sequences of Müntz Bernstein operators B_k all reproducing the same two-dimensional EC-space (see Remark 2.4).

Theorem 3.1 Given $n \geq 1$, let $E_1 \subset M(\lambda_0, \ldots, \lambda_n)$ be a two-dimensional EC-space reproduced by a Bernstein operator B_k based on $M(\lambda_0, \ldots, \lambda_k)$ for any $k \geq n$. Then, if the Müntz density condition (8) holds, the sequence B_k, $k \geq n$, converges in the sense of (7).

Before starting the proof, let us introduce some notations. For $k \geq 1$, denote by $(B_{k,0}, \ldots, B_{k,k})$ the Bernstein basis relative to (a, b) in the Müntz space $M(\lambda_0, \ldots, \lambda_k)$. We consider the functions
\[
U_*(x) = x^{\lambda_1}, \quad V_p(x) := x^{\lambda_p}, \quad p \geq 2, \quad x \in [a, b],
\]
expanded in the successive Bernstein bases as
\[
U_* = \sum_{k=0}^{\infty} u_{k,i}^* B_{k,i} \quad \text{for all } k \geq 1, \quad V_p = \sum_{i=0}^{p} v_{p,k,i} B_{k,i} \quad \text{for all } k \geq p. \tag{9}
\]
With these notations, the key-point to prove Theorem 3.1 is the following lemma, for the proof of which we refer to [2], see also [1].

Lemma 3.2 Assume that the Müntz density condition (8) holds. Then, we have
\[
\lim_{k \to +\infty} \max_{0 \leq i \leq k} \left| \frac{u_{k,i}^*}{\lambda_p} - v_{p,k,i} \right| = 0 \quad \text{for all } p \geq 2. \tag{10}
\]

Proof of Theorem 3.1: Let us start with the simplest example $n = 1$. Then, $E_1 = \text{span}(1, U_*)$. For each $k \geq 1$, the unique operator B_k^* which reproduces E_1 is given by
\[
B_k^* F := \sum_{i=0}^{k} F(\zeta_{k,i}^*) B_{k,i}, \quad \text{with, for } i = 0, \ldots, k, \quad \zeta_{k,i}^* := (u_{k,i}^*)^{1/\lambda_k} \tag{11}
\]
According to Korovkin’s theorem for positive linear operators \[7\], we just have to select a function \(F\) so that \(\mathbf{1}, U^*, F\) span a three-dimensional EC-space on \([a, b]\) and prove that \(\lim_{k \to +\infty} \|F - B^*_k F\|_\infty = 0\) for this specific \(F\). We can thus choose for instance \(F := V_2\). Actually we will more generally prove the result with \(F = V_p\), for any \(p \geq 2\). Using (9) and (11), we obtain, for any \(k \geq p\),

\[
\|\mathbb{B}^*_k V_p - V_p\|_\infty = \left\| \sum_{i=0}^{k} (V_p(\zeta^*_i) - v_{p,k,i}) B_{k,i} \right\|_\infty \leq \max_{0 \leq i \leq k} |V_p(\zeta^*_i) - v_{p,k,i}|. \tag{12}
\]

On account of (11), Lemma 3.2 yields the expected result

\[
\lim_{k \to +\infty} \|\mathbb{B}^*_k V_p - V_p\|_\infty = 0 \quad \text{for each } p \geq 2.
\]

- We now assume that \(n > 1\). Select a strictly increasing function \(U \in \mathcal{E}_1\). Condition (ii) of Theorem 2.2 enables us to select a function \(V \in M(\lambda_0, \ldots, \lambda_n)\) so that the functions \(\mathbf{1}, U, V\) span a three-dimensional EC-space on \([a, b]\). For any \(k \geq n\), expand \(U, V\) as

\[
U = \sum_{i=0}^{k} u_{k,i} B_{k,i}, \quad V = \sum_{i=0}^{k} v_{k,i} B_{k,i}.
\]

We know that, for each \(k \geq n\), the sequence \((u_{k,0}, \ldots, u_{k,k})\) is strictly increasing, and that the Bernstein operator \(\mathbb{B}_k\) is defined by formula (2) with \(\zeta_{k,i} := U^{-1}(u_{k,i})\) for \(i = 0, \ldots, k\). Via expansions of \(U\) and \(V\) in the basis \((\mathbf{1}, U^*, V_2, \ldots, V_n)\) of the Müntz space \(M(\lambda_0, \ldots, \lambda_n)\), Lemma 3.2 readily proves that

\[
\lim_{k \to +\infty} \max_{0 \leq i \leq k} |U(\zeta^*_i) - u_{k,i}| = 0 = \lim_{k \to +\infty} \max_{0 \leq i \leq k} |V(\zeta^*_i) - v_{k,i}| \tag{13}
\]

The left part in (13) can be written as \(\lim_{k \to +\infty} \max_{0 \leq i \leq k} |U(\zeta^*_i) - U(\zeta_{k,i})| = 0\). On this account, the uniform continuity of the function \(V \circ U^{-1}\) and the right part in (13) prove that \(\lim_{k \to +\infty} \max_{0 \leq i \leq k} |V(\zeta^*_i) - v_{k,i}| = 0\), thus implying that \(\lim_{k \to +\infty} \|\mathbb{B}_k V - V\|_\infty = 0\). By Korovkin’s theorem, (7) is satisfied. \(\square\)

Remark 3.3 Given \(n \geq 2\), one can apply Theorem 3.1 with \(\mathcal{E}_1 := \operatorname{span}(\mathbf{1}, V_n) = M(\lambda_0, \lambda_n)\), due to the nested sequence of Müntz spaces \(M(\lambda_0, \lambda_1, \ldots, \lambda_{n-1}, \lambda_n)\) for \(1 \leq i \leq n\). Note that Theorem 3.1 contains in particular the Bernstein-type result expected in [3].

References

