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Abstract

This article introduces a full mathematical and numerical framework for treating func-
tional shapes (or fshapes) following the landmarks of shape spaces and shape analysis. Func-
tional shapes can be described as signal functions supported on varying geometrical supports.
Analysing variability of fshapes’ ensembles require the modelling and quantification of joint
variations in geometry and signal, which have been treated separately in previous approaches.
Instead, building on the ideas of shape spaces for purely geometrical objects, we propose the
extended concept of fshape bundles and define Riemannian metrics for fshape metamorphoses
to model geometrico-functional transformations within these bundles. We also generalize pre-
vious works on data attachment terms based on the notion of varifolds and demonstrate the
utility of these distances. Based on these, we propose variational formulations of the atlas es-
timation problem on populations of fshapes and prove existence of solutions for the different
models. The second part of the article examines thoroughly the numerical implementation
of the tangential simplified metamorphosis model by detailing discrete expressions for the
metrics and gradients and proposing an optimization scheme for the atlas estimation prob-
lem. We present a few results of the methodology on a synthetic dataset as well as on a
population of retinal membranes with thickness maps.
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1 Introduction

Shape spaces have emerged as a natural mathematical setting to think about shapes as a struc-
tured space, usually a differential manifold or even more a Riemannian manifold. In that setting,
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group actions of diffeomorphisms [31, 11, 24, 5, 25, 34, 35, 23] that should be rooted to the semi-
nal work of V. Arnold [4] are powerful vehicles to build a full theoretical as well as computational
framework for a comprehensive quantitative analysis of shape variability recently coined as dif-
feomorphometry and successfully applied in computational anatomy [26].

The main purpose of the paper is to develop a framework embedding the situation of geomet-
rical shapes carrying functional information that we call here fshapes for functional shapes. The
idea of functional shape is quite natural since in many scientific settings, a geometrical shape
X (basically a submanifold) has associated with it a scalar field f : X → R attached to every
geometrical point of the support X. What is much more unusual however is to consider a fshape
i.e. the pair (X, f) as a single object that should live in some well defined and well structured
ensemble F of fshapes from which further processing can be derived. We believe this approach
of putting the effort on a well grounded definition of shape spaces that play a similar role to
functional spaces in modern analysis should be pushed forward to the setting of fshapes. This
global point of view leading to the notion of geometry of shape spaces is now well established
with fruitful development in many regards [22] for purely geometrical shapes but as far as we
know the extension of such approach to functional shapes has only started very recently in [8].

A core issue in working with fshapes is their mixed geometrical and functional nature so that
smooth infinitesimal transformations of a given fshape (X, f) should combine a geometrical and
functional component simultaneously. The geometrical part should transport the supporting
manifold X, and the functional one should modify the functional signal f . This notion of
combined geometrical and functional infinitesimal transformation has been introduced previously
in [30] in the setting of images on a fixed supportX (whereX in the unit square or a flat torus). In
that case the infinitesimal signal evolution δf is the combination of two factors: on the one hand,
the variation of the signal due to the geometric transport of pixel values, on the other hand a
purely additive perturbation of the signal. This has been further studied in [32] and conceptualize
as the metamorphosis framework in [33]. The situation we are looking at here is more general
since now the support is a submanifold that can freely evolve during the metamorphosis (as in the
example of Figure 1). A first global outcome is that the associated space of fshapes is not only an
orbit G.X0 under the action of a subgroup of smooth diffeomorphisms G of the ambient space on
a geometrical template X0: the orbit G.X0 is now the base space of a vector bundle and above
each manifold X in the orbit we consider the full vector space L2(X) of square integrable signals
so that we end up with a vector bundle F over the orbit (see Figure 2). The precise construction
of the fshape bundle F is described in Section 2 as well as the associated metamorphosis based
Riemannian metric for which we can prove two key results: the existence of geodesic between any
two fshapes (Theorem 2) and the existence of Karcher means for a population of such fshapes in
F (Theorem 3).

Obviously there is no hope to build a fshape bundle F that can contain any possible pair
(X, f) in particular since any two fshapes within F will have diffeomorphic supports. Every
fshape in F should be understood as an ideal model for truly noisy observed fshapes that gener-
ically do not belong to F . As a consequence, a second core issue is to build proper smooth data
attachment terms or dissimilarity measures that can be defined between any arbitrary pair of
fshapes with possibly non diffeomorphic supports. The powerful setting of mathematical currents
equipped with dual norms for purely geometrical shapes [16] has been successfully extended to
the situation of fshapes in [9]. However, we develop here (Section 4) a different approach en-
coding non oriented tangential space information that is based on the concept of varifold along
the lines of [10] and extended here to the new situation of functional varifolds. We believe that
this new type of dissimilarity measure, which is able to compare fshapes on smooth manifolds
as well as on polyhedral meshes, is well suited in combination with metamorphoses distances to
define a theoretical and computational framework for fshapes. In particular, we establish that
useful functional varifolds metrics can be induced by smooth embeddings of functional varifolds
into Reproducible Kernel Hilbert Spaces (RKHS) associated with computable kernels. We then
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establish that the resulting metric has several key regularity properties with respect to smooth
geometrical and functional variations of fshapes (Theorem 5). Such regularity results open the
way to various smooth and computationally tractable variational problems on fshapes involving
observed fshapes.

Figure 1: Example of metamorphosis transformation of a fshape.

We concentrate on the central problem of template (or atlas in the context of computational
anatomy) estimation which is the extension of the Karcher mean problem to the much broader
situation where the observed fshapes do not belong to any a priori defined fshape bundle F .
A much more studied situation is the case of purely image data that has been pushed forward
on practical ground in the framework of actions of diffeomorphisms in [17]. Here the goal is to
obtain, via a coherent fshape framework, a mean template (X, f) encoding simultaneously the
mean geometrical and functional information from a dataset (Xi, f i) of fshapes as the minimizer
of a well posed variational problem. This variational problem is basically the sum of the square
of the metamorphosis distances between the template (X, f) and the approximating models
(X̃i, f̃ i) of the observations (Xi, f i) within the fshape bundle F (associated to (X, f)) with
the addition of the square of the fvarifold discrepancy measure for the difference between the
models (X̃i, f̃ i) and the true observation (Xi, f i). We prove that introducing a hypertemplate
in the spirit of [20, 21] and restricting the template to belong to the fshape bundle F0 of a
hypertemplate (X0, f0) is sufficient to establish a well posed variational problem (Section 4). The
proof of existence of an optimal template (X, f) as the minimizer within the fshape bundle F0

is established on fairly general assumptions that cover most of the practical situations (Theorem
6). Note that even restricted to the situation of purely geometrical shapes, as far as we know,
there is no available results in the literature providing a rigorous proof of existence of an average
shape from a population of noisy geometrical shapes. Available rigorous results have usually
focused on the situation where the dataset is sampled from a Riemannian manifold (usually finite
dimensional). When the functional part is also involved, the situation is more complex due to the
interactions between function and geometry inside the Riemannian metamorphosis distance but
also the fvarifold metric defining the dissimilarity term. We establish similar existence results in
a slightly simpler situation, called the tangential model for the metamorphosis metric, where the
infinitesimal signal variations along a path are computed with respect of a frozen L2(X) metric
on the geometrical support X of the initial fshape.

Since the paper aims at presenting both a theoretical and a computational framework, we
extensively explore the material needed to bridge the gap between the theoretical framework
and its derivation into a computational and algorithmic one in the latter part of this paper. We
believe that this part will give also more practical insights into what goals can be achieved with
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the fshape framework. Moreover, we provide the details necessary to conform to the minimal
standard of reproducible research. Just as the absence of a well posed theoretical framework
may often produce inconsistent algorithms, we believe that the lack of precise descriptions of
the underlying numerical schemes and hidden “tricks” may also hinder the development of incre-
mentally better solutions and fair comparison by other researchers. We start in Section 6 with
the derivation of a discrete framework based on polyhedral representation of fshapes leading to
particle based approximations of the fvarifold dissimilarity metric and of the Hamiltonian un-
derlying the optimal control formulation of the geodesic trajectories. The actual implemented
framework is based on the tangential model for the metamorphosis metric that leads to a slightly
more straightforward variational problem. The optimization scheme is carefully described in Sec-
tion 7 and numerical illustrations are provided in Section 8 on real and synthetic datasets. A
special attention is given in Section 9 on various numerical issues and pitfalls that may affect
the computation process. In particular we discuss the very important problem of open surfaces
that introduce free boundaries evolutions during the optimisation process. The tuning of free
parameters are also discussed.

As discussed in this introduction, this paper describes on the one hand a new theoretical
shape space framework to work with functional shapes with an emphasis on precise mathematical
statements and proofs. The more technical aspects of the novel framework have been collected
and presented in Appendix to ease the reading of the paper. The reader more interested in
applying the framework could read Section 2 together with the first two Subsections of Section
3, skip Section 4 and 5 and jump over directly to Section 6 to 9 dealing with the numerical part
of the paper.

2 Riemannian metamorphosis framework for fshapes

In the classical Grenander’s setting, shape spaces are modelled as sets of shapes homogeneous
under the action of a group of space transformations. Metrics between shapes are then induced
from right-invariant Riemannian metrics on the group itself. The goal of this section is to propose
a similar but extended framework for the case of functional shapes. We show, in the first place,
that sets of functional shapes can be structured naturally as vector bundles and we then define
a Riemannian setting to model and quantify transformations within those spaces.

2.1 Fshape bundles

Let’s introduce a finite dimensional vector space E that shall be the embedding space of all
shapes. In the large deformations’ model (LDDMM, cf [5]), diffeomorphisms are constructed
as flows of time-varying vector fields. The basic ingredient is a reproducing kernel Hilbert space
(RKHS) of vector fields on E that is denoted V and which is continuously embedded in C1

0 (E,E)
the space of continuously differentiable functions from E to E vanishing at the infinity. Let G =
GV be the associated group of diffeomorphisms obtained by flowing vector fields in L2([0, 1], V )
(see [34, 35, 3]). Let X0 be a homogeneous space generated by a finite volume d-dimensional
rectifiable compact subset X0 (see [27]) i.e. X0 = G.X0 = {φ(X0) | φ ∈ G}.

Now we consider the space

F .
= { (X, f) | X ∈ X0 and f ∈ L2(X) } , (1)

where L2(X) is the space of square integrable functions on X, i.e the set of functions f : X → R

such that ∫

X
f2(x)dHd(x) < +∞

for Hd the d-dimensional Hausdorff (or volume) measure. F can be considered as a vector bundle
with fiber L2(X0) (here we will not try to define any explicit differentiable structure on it so that
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the last statement should be considered as formal). Each element of F is thus given as a couple
of a geometrical shape X and a signal function living on X, that we call a functional shape (see
[9]) or fshape.

2.2 Metamorphosis distance on fshapes bundles

For a purely geometrical deformation φ ∈ GV , a natural transport of a fshape (X, f) would
be given by φ.(X, f) = (φ(X), f ◦ φ−1), which corresponds to deforming the support X and
transporting the values of the signal f onto the deformed shape, which is the exact generalization
of image deformation. Such a model, originally presented in [9], remains insufficient to account
for variations of signals within fibers themselves. This justifies the following efforts to propose a
model of joint geometric and functional transformations.

X
vt.Xt

X

X1 = φv1(X)

L2(X)

f

ht

f + ζh1
L2(X1)

f1 = (f + ζh1 ) ◦ (φv1)−1

Figure 2: Fshape bundle and metamorphosis.

Let’s consider (X, f) ∈ F and instantaneous velocities (v, h) ∈ L2([0, 1], V ×L2(X)). We can
define from (v, h) a path (φv, ζ)t∈[0,1] where φvt is the usual flow of v starting from the identity

and t 7→ ζt =
∫ t
0 hsds is the path in L2(X) with instantaneous speed given by h. From that path,

we get a path t 7→ (Xt, ft) in F defined by

(Xt, ft)
.
= (φvt .X, (f + ζht ) ◦ (φvt )−1) . (2)

where φvt .X
.
= φvt (X) is the natural diffeomorphisms transport action on rectifiable subsets of E.

We denote (φv1, ζ
h
1 ) the end point value of the path. Now we denote for γV , γf > 0

EX(v, h)
.
=
γV
2

∫ 1

0
|vt|2V +

γf
2

∫ 1

0

∫

X
|ht|2(x)|dxφvt ↾TxX

|dHd(x) (3)

where TxX is the tangent space to X at point x (defined Hd-almost everywhere on X if X is
rectifiable, cf [13] 3.2.19) and, for any vector space U , |dxφvt ↾U | denotes the Jacobian of φvt at

x restricted to U , which equals |dxφvt (u1) ∧ ... ∧ dxφvt (ud)| = (det(〈dxφvt (ui), dxφvt (uj)〉)i,j)1/2 if
(u1, ..., ud) is an orthonormal basis of U .

It is clear that EX(v, h) <∞ since by definition
∫ 1
0 |vt|2V dt <∞ and since the usual controls

on φt along finite energy paths give a uniform control in (x, t) of dxφt and the existence of an
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increasing function C : R+ → R+ (independent of X) such that

EX(v, h) ≤ γV
2

∫ 1

0
|vt|2V dt+ C(

∫ 1

0
|vt|2V dt)

γf
2

∫ 1

0
|ht|2L2(X)dt <∞ . (4)

Now for any (X, f) and (X ′, f ′) ∈ F we define

dF ((X, f), (X
′, f ′))

.
= (inf{EX(v, h) | φv1.X = X ′, f ′ = (f + ζh1 ) ◦ (φv1)−1 })1/2 (5)

which is a true distance on F as stated in the following Theorem:

Theorem 1. The function dF given by (5) defines a distance on F ie. is symmetric, satisfies
the triangle inequality and dF ((X, f), (X

′, f ′)) = 0 iff X = X ′ and f = f ′ ∈ L2(X).
Moreover, the distance is finite everywhere on F × F .

Proof. The symmetry comes from a usual process of time reversal.
Let (X, f), (X ′, f ′) ∈ F and (v, h) ∈ L2([0, 1], V × L2(X)) such that

X ′ = φv1.X, f
′ = (f + ζh1 ) ◦ (φv1)−1 . (6)

If we define
ṽt

.
= −v1−t and h̃t

.
= −h1−t ◦ (φv1)−1

for any t ∈ [0, 1], then for Xt
.
= φvt .X (so that X0 = X and X1 = X ′) we have

φvt .X0 = Xt = φṽ1−t.X1

and (ṽ, h̃) ∈ L2([0, 1], V × L2(X ′)) with

EX(v, h) = EX′(ṽ, h̃) . (7)

Since one easily checks that ζ h̃1 = −ζh1 ◦ (φv1)−1 so that if f ′ = (f + ζh1 ) ◦ (φv1)−1 we have

f = (f ′ + ζ h̃1 ) ◦ (φṽ1)−1 with X = φṽ1.X
′ This gives immediately the symmetry.

Concerning the triangle inequality, is comes from a usual process of path concatenation.
Let (X, f), (X, f ′) and (X ′′, f ′′) be three fshapes in F such that dF ((X, f), (X

′, f ′)) > 0 and
dF ((X

′, f ′), (X ′′, f ′′)) > 0. One easily checks that for (v, h) ∈ L2([0, 1], V ×L2(X)) and (v′, h′) ∈
L2([0, 1], V × L2(X ′)) with

(X ′, f ′) = (φv1.X, (f + ζh1 ) ◦ (φv1)−1) and (X ′′, f ′′) = (φv
′

1 .X
′, (f ′ + ζh

′

1 ) ◦ (φv′1 )−1)

then denoting for α, β > 1 such that 1/α+ 1/β = 1 and s ∈ [0, 1]

Catα((v
′, h′), (v, h))s

.
= β(v′β(s−1/α), h

′
β(s−1/α) ◦ φ)1s≥1/α + α(vαs, hαs)10≤s<1/α (8)

with φ = φv1, we have for (ṽ, h̃)
.
= Catα((v

′, h′), (v, h)) that (ṽ, h̃) ∈ L2([0, 1], V × L2(X)) and

(X ′′, f ′′) = (φṽ1.X, (f + ζ h̃1 ) ◦ (φṽ1)−1) (9)

so that
dF ((X, f), (X

′′, f ′′)) ≤ EX(ṽ, h̃)1/2 . (10)

However, for α∗ = (EX(v, h)1/2 + EX′(v′, h′)1/2)/EX(v, h)1/2, we check easily that

EX(ṽ, h̃)1/2 = EX(v, h)1/2 + E(v′, h′)1/2 (11)

and the triangle inequality follows immediately.
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Now, if dF ((X, f), (X
′, f ′)) = 0 then there exists a sequence φn such that φn.X = φn(X) = X ′

and φn → Id on X. In particular, X ′ is dense in X. As X ′ is compact (since X is), X ⊂ X ′. By
symmetry we get X = X ′. Moreover, there exists also a sequence ζn ∈ L2(X) such that ζ → 0
in L2(X) and f ′ = (f + ζn) ◦ φ−1

n with φn(X) = X. We get
∫

X
(f ′ − f)2 ≤ 2

∫

X
(f ◦ φ−1

n − f)2 + 2

∫

X
(ζn ◦ φ−1

n )2 → 0

and the result is proved.
A last point to be verified is that the distance dF is finite between any pair of fshapes. Indeed,

by definition there exists between any X and X ′ ∈ X0 a path t 7→ φvt .X with v ∈ L2([0, 1], V ).
Now, if ht = (f ′ ◦ φv1 − f), we get (v, h) ∈ L2([0, 1], V × L2(X)) and f ′ = (f + ζv1 ) ◦ (φv1)−1 so
that dF ((X, f), (X

′, f ′)) ≤ EX(v, h)1/2 <∞.

As stated in the introduction, the framework extends metamorphosis on images [33] which
corresponds to the case where X0 is E itself or is the unit cube of E (with the extra condition
that φ.X0 = X0 for any φ ∈ G). Here the support can be d-dimensional and is not fixed.

2.3 Existence of geodesics

A natural question is the existence of a minimizing geodesic between fshapes in F . We have the
following Theorem:

Theorem 2. For any (X, f), and (X ′, f ′) in F , there exists (v, h) ∈ L2([0, 1], V × L2(X)) such
that EX(v, h)1/2 = dF ((X, f), (X

′, f ′)).
In particular, if

(Xt, ft)
.
= (φvt .X, (f +

∫ t

0
hsds) ◦ (φvt )−1) (12)

the path t 7→ (Xt, ft) can be considered as a minimizing geodesic between (X, f) and (X ′, f ′).

Proof. The proof extends the results for metamorphosis. It is sufficient to show that (v, h) →
EX(v, h) is lower semi-continuous for the weak convergence of the space L2([0, 1], V × L2(X)).

Indeed, if this is the case, then from any minimizing sequence (vn, hn) such that EX(vn, hn)→
dF ((X, f), (X

′, f ′))2 we deduce that vn is bounded on L2([0, 1], V ) and using the inequality

∫ 1

0

∫

X
|hn,t(x)|2dHd(x)dt ≤

∫ 1

0
(sup
x∈X
|dxφvnt ↾TxX

|−1)

∫

X
|hn,t(x)|2|dxφvnt ↾TxX

|dHd(x)

≤ C(
∫ 1

0
|vn,t|2V dt)EX(vn, hn)

(13)

where C is a increasing function depending only on V , we get that the sequence (hn) is bounded
in L2([0, 1], L2(X)). Hence, by weak compactness of strong balls in L2([0, 1], V × L2(X)), we
can assume that, up to the extraction of a sub-sequence, that (vn, hn) weakly converges to-
wards (v∞, h∞) ∈ L2([0, 1], V × L2(X)) and by lower semi-continuity of EX , we deduce that
EX(v∞, h∞) ≤ dF ((X, f), (X

′, f ′))2. We only need to check that (X ′, f ′) = (φv∞1 .X, (f +
ζh∞

1 ) ◦ (φv∞1 )−1). This last result follows from the fact that, if (vn, hn) weakly converges to
(v∞, h∞), then φvn1 → φv∞1 uniformly on any compact sets (which is a well known result) and
(f + ζhn

1 ) ◦ (φvn1 )−1 weakly converges to (f + ζh∞

1 ) ◦ (φv∞1 )−1. The last weak convergence is
straightforward.

The proof of the lower semi-continuity itself is done now. We know from a classical result on
weak convergence that

∫ 1
0 |v∞,t|2V dt ≤ lim infn→∞

∫ 1
0 |vn,t|2V dt. Moreover, we have

∫ 1

0

∫

X
|h∞,t(x)|2|dxφv∞t ↾TxX

|dHd(x) = lim
n→∞

∫ 1

0

∫

X
hn,t(x)h∞,t(x)|dxφv∞t ↾TxX

|dHd(x) (14)
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by definition of the weak convergence of (hn). Now, since dxφ
vn
t → dxφ

v∞
t uniformly on t ∈ [0, 1]

and x ∈ X, we get

∫ 1

0

∫

X
|h∞,t(x)|2|dxφv∞t ↾TxX

|dHd(x)

= lim
n→∞

∫ 1

0

∫

X
hn,t(x)h∞,t(x)(|dxφvnt ↾TxX

|)1/2|dxφv∞t ↾TxX
|1/2dHd(x)

≤ lim inf
n→∞

(∫ 1

0

∫

X
|hn,t(x)|2|dxφvnt ↾TxX

|dHd(x)

)1/2(∫ 1

0

∫

X
|h∞,t(x)|2|dxφv∞t ↾TxX

|dHd(x)

)1/2

(15)

so that

∫ 1

0

∫

X
|h∞,t(x)|2|dxφv∞t ↾TxX

|dHd(x) ≤ lim inf
n→∞

∫ 1

0

∫

X
|hn,t(x)|2|dxφvnt ↾TxX

|dHd(x) . (16)

2.4 Karcher means on fshape bundles

We consider here the existence problem of Karcher mean on the fshape bundle F . The problem
can be stated as follows: let (Xi, f i)1≤i≤N be a family of fshapes in F . Does there exist (X∗, f∗) ∈
F minimizing the sum of the square distances to each (Xi, f i), i.e. solution of the minimizing
problem:

min
(X,f)∈F

N∑

i=1

dF ((X, f), (X
i, f i))2 . (17)

Note that this problem does not make sense on practical ground since usually there is no reason
for a family of observed fshapes to belong to a pre-defined fshape bundle F . However, on a
theoretical perspective the existence of such Karcher mean is a quite important point in addition
to the existence of geodesic between any two fshapes in F . Such a result shows that F has basic
important properties for further statistical analysis.

Our main result is the following:

Theorem 3. For any family (Xi, f i)1≤i≤N of fshapes in F , there exists at least a Karcher mean
(X∗, f∗) in F i.e. a solution of problem (17).

Proof. The first step of the proof is to reparametrize problem (17) in the Hilbert space

W
.
=

N∏

i=1

L2([0, 1], V × L2(Xi)) .

Indeed, using the symmetry of the problem, we can exchange the role of (X, f) and (Xi, f i)
and look for a family of minimizing paths t 7→ (Xi

t , f
i
t ), starting from every fshape (Xi, f i) and

ending on a common fshape (X, f) ∈ F , each path being parametrized by (vi, hi) ∈ L2([0, 1], V ×
L2(Xi)). Hence, introducing

W0
.
= {α = (vi, hi)1≤i≤N ∈W | (Xi

1, f
i
1) = (X1

1 , f
1
1 ), ∀1 ≤ i ≤ N }

(where (Xi
1, f

i
1) = (φv

i

1 .X
i, (f i + ζh

i

1 ) ◦ (φvi1 )−1) we need to prove that if we define

J(α)
.
=

N∑

i=1

EXi(vi, hi) (18)
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then W0 is closed and J is lower semi continuous (l.s.c.) for the weak topology on W .
Since the fact that J is l.s.c. was established inside the proof of Theorem 2, we just need

to check that W0 is closed for the weak topology. So, let (αn)n≥0 be a sequence in W0 weakly

converging to α∞
.
= (vi∞, h

i
∞)1≤i≤N ∈ W . We get that φ

vin
1 → φ

vi∞
1 and (φ

vin
1 )−1 → (φ

vi∞
1 )−1 for

the uniform C1 topology on compact sets so that in particular, if X∗ = φ
v1∞
1 .X1 then since by

construction φ
vin
1 .X

i = φ
v1n
1 .X

1 we get that dH(φ
vin
1 .X

i, X∗)→ 0 where dH denotes the Hausdorff
distance1 and

φ
vi∞
1 .Xi = X∗ . (19)

Now, for any 1 ≤ i ≤ N , if we denote f̃ i1,n
.
= (f i + ζ

hi
n

1 ) and ψi
n
.
= (φ

vin
1 )−1 ◦ φv

1
n

1 : X1 → Xi, we
have (since αn ∈W0 and αn ⇀ α∞)

f̃ i1,n ◦ ψi
n = f̃11,n and f̃11,n ⇀ f̃11,∞ (20)

where the last statement is straightforward. Let us check that f̃ i1,n ◦ ψi
n ⇀ f̃ i1,∞ ◦ ψi

∞ so that we

will get f̃ i1,∞ ◦ ψi
∞ = f̃11,∞ and since we have (19) we will get α∞ ∈W0 and W0 weakly closed.

For that, let g : X1 → R be a Lipschitz mapping on X1 and denote now 〈f, f ′〉X1

.
=

∫

X1 f(x)f
′(x)dHd(x) the usual dot product on L2(X1). Since X1 is compact and Hd(X1) <∞,

we have that Hd
↾
X1

is a Radon measure on the compact metric space X1 so that such Lipschitz

mapping g are dense in L2(X1) and we just need to check that 〈f̃ i1,n ◦ψi
n − f̃ i1,∞ ◦ψi

∞, g〉X1 → 0
to prove the weak convergence. We have

〈f̃ i1,n ◦ ψi
n − f̃ i1,∞ ◦ ψi

∞, g〉X1 =

〈f̃ i1,n ◦ ψi
n − f̃ i1,n ◦ ψi

∞, g〉X1

︸ ︷︷ ︸

An

+ 〈f̃ i1,n ◦ ψi
∞ − f̃ i1,∞ ◦ ψi

∞, g〉X1

︸ ︷︷ ︸

Bn

. (21)

Concerning the B term, by change of variable and using the fact that the Jacobian d(ψi
∞)−1 is

bounded on X1 we get

Bn = 〈f̃ i1,n − f̃ i1,∞, g ◦ (ψi
∞)−1|d(ψi

∞)−1.ξ|〉Xi → 0 , (22)

where ξ is the unit d-vector representing the tangent space defined Hd
↾
Xi

-a.e. on Xi. Concerning
the A term, we have again by change of variable

An = 〈f̃ i1,n, g ◦ (ψi
n)

−1(|d(ψi
n)

−1.ξ| − |d(ψi
∞)−1.ξ|)〉Xi

+ 〈f̃ i1,n, (g ◦ (ψi
n)

−1 − g ◦ (ψi
∞)−1)|d(ψi

∞)−1.ξ|〉Xi .
(23)

The first term of (23) is bounded by

|f̃ i1,n|L2(Xi)|g|L∞(X1)

∣
∣|d(ψi

n)
−1.ξ| − |d(ψi

∞)−1.ξ|
∣
∣
L∞(Xi)

→ 0 (24)

since the weak convergence of f̃ i1,n implies that |f̃ i1,n|L2(Xi) stays bounded. The second term of
(23) is bounded by

kg|f̃ i1,n|L2(Xi)

∣
∣(ψi

n)
−1 − (ψi

∞)−1
∣
∣
L∞(Xi)

|d(ψi
∞)−1|L∞(Xi) → 0 (25)

where kg is the Lipschitz constant of g on Xi.

1We are using here that for X compact, the mapping v 7→ φv
1 .X is continuous for the weak convergence on

v ∈ L2([0, 1], V ) and the convergence for the Hausdorff metric on the set of all compact subsets of E
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2.5 The tangential model

The previous metamorphosis metrics can be also approximated in a simpler setting, which be-
comes closer to a natural extension of the classical image framework in the context of fshapes.
We shall call it the tangential model. Instead of computing the cost of the functional evolution
t 7→ ζt along a time dependent L2(Xt) metric as

∫ 1

0

∫

X
|ζ̇t(x)|2|dxφvt ↾TxX

|dHd(x)dt =

∫ 1

0

∫

Xt

|ζ̇t ◦ (φvt )−1|2(y)dHd(y)dt (26)

one can freeze the metric to its initial value X0 = X neglecting the change of measure weight:

∫ 1

0

∫

X
|ζ̇t(x)|2|dxφvt ↾TxX

|dHd(x)dt ≈
∫ 1

0

∫

X
|ζ̇t(x)|2dHd(x)dt (27)

which gives after optimization with fixed end points condition ζ1 the usual L2(X) cost

|ζ1|2X
.
=

∫

X
|ζ1(x)|2dHd(x) (28)

which can be interpreted naturally as the log-likelihood of a Gaussian noise in the statistical
framework.

Note as we say in introduction of this section, that this is the usual noise term that appears
in the classical situation of image matching and this can be considered as some kind of tan-
gential metric for the functional part. Concerning the geometrical part, we can keep the usual
L2([0, 1], V ) penalization to define

ẼX(v, ζ)
.
=
γV
2

∫ 1

0
|vt|2V dt+

γf
2
|ζ|2X (29)

and consider

d̃F ((X, f), (X
′, f ′))

.
= (inf{ ẼX(v, ζ) | X ′ = φv1.X, f

′ = (f + ζ) ◦ (φv1)−1 })1/2 . (30)

With that definition, d̃F is no more a distance satisfying the symmetry and triangle inequality
as previously, but the minimization of ẼX can be seen as the minimization of the log-likelihood
of (v, ζ) given (X, f) and (X ′, f ′) for a quite natural statistical model.

In this framework, one can still obviously consider the problem of existence for two given
fshapes (X, f) and (X ′, f ′) in F of an optimal (v∗, ζ∗) such that







(X ′, f ′) = (φv∗1 .X, (f + ζ∗) ◦ (φv∗1 )−1)
and

ẼX(v∗; ζ∗) = min{ẼX(v, ζ) | (v, ζ) ∈ F(X′,f ′)}
where
F(X′,f ′)

.
= {(v, ζ) ∈ L2([0, 1], V )× L2(X) | (X ′, f ′) = (φv1.X, (f + ζ) ◦ (φv1)−1)}

(31)

The proof existence of (v∗, ζ∗) can be done along the very same lines that the proof of existence
of geodesics and is omitted. The proof is even more simpler since the functional metric is frozen
and does not change along the path. We get eventually the following result:

Theorem 4. For (X, f) and (X ′, f ′) in F , there exists an optimal solution of the exact matching
problem between (X, f) and (X ′, f ′) i.e. there exists (v∗, ζ∗) in L2([0, 1], V ) × L2(X) such that
(31) holds.
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3 Dissimilarity measure between fshapes

3.1 Dissimilarity measures : state of the art

The previous framework has been focusing so far on the comparison of fshapes within one given
common bundle F . It is clear that it becomes inoperant in most practical situations where the
elements of a dataset cannot be assumed to belong to the same bundle. The reason is that the
geometrical supports of two subjects need not be obtained from one the other by a deformation
belonging to the group G. In more usual cases of shape spaces such as sets of images, landmarks,
curves or surfaces, the general approach has been to introduce dissimilarity measures between
the subjects, which provides data attachment terms to perform inexact registration and atlas
estimation in practice.

For images and landmarks, L2 distances are natural and have been commonly used to compare
such objects. The case of curves, surfaces and submanifolds is theoretically more involved and
has drawn consistent attention in several fields of mathematics. In computational anatomy, one
possible and very powerful setting was proposed through the adaptation of the concept of currents
[14, 12]. The dissimilarity measures between oriented submanifolds of given dimension defined
in these frameworks derive from Hilbert metrics on spaces of differential forms and combine
the advantages of not relying on parametrizations or point to point matchings, of being easily
computable for discrete shapes and robust to shape sampling. One potential drawback is the
issue of consistent orientation that is required in the currents’ representations. More recently, an
alternative methodology based on varifolds was introduced and implemented in [10], which has
the interest of being close to the idea of currents while overcoming the problem of orientation.

Now, fshapes do pose additional difficulties with respect to the definition of dissimilarity
measures. This problem has been only addressed very recently in [9] where the authors define
the extended notion of functional currents that, similarly to usual currents, embeds fshapes
in some dual of spaces of differential forms. The Hilbert metrics that are defined on functional
currents can be then used again as dissimilarity measures to perform inexact registration between
fshapes, as exposed in the article. Functional currents could be thus very well used in the
generalized problem of atlas estimation that we focus on in this paper. This has been touched
upon, essentially from the numerical point of view, in [8] (chapter 4). Although the results
and algorithms presented in this paper could be transposed quite easily to fshape dissimilarities
provided by functional currents, we shall work instead with the slightly modified approach of
varifolds. As aforementioned, this is a way to get rid of shape orientation which is usually
quite desirable in applied situations. In the following section, we briefly present the functional
varifolds’ mathematical setting, that stands for a natural generalization of varifolds to fshapes.
The more technical and discrete computations shall be detailed in Section 6 dedicated to the
algorithmic part itself.

3.2 Functional varifolds

The mathematical concept of varifold goes back to geometric measure theory and the original
exposition of F. Almgren [2] which was further developed considerably by W. Allard in [1]
subsequently. The link to computational anatomy’s problems is fairly more recent and is in most
part presented in [10] or [8]. We shall frequently refer the reader to these references for additional
mathematical details. What we present in this section is an extension of varifolds to represent
functional shapes, which is much related to the functional current idea of [9].

3.2.1 Representation of fshapes as functional varifolds

As previously, we call E the n-dimensional vector space embedding all geometrical supports of
fshapes. For any integer 1 ≤ d ≤ n, we will write Gd(E) for the Grassmann manifold of all d-
dimensional (non-oriented) subspaces of E. Gd(E) is a compact manifold that can be embedded
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trivially in the space L(E) by identifying any V ∈ Gd(E) with the orthogonal projector pV on V .
The usual space of d-dimensional varifolds is defined intuitively as the space of spatially spread
distributions of Grassmannians or, more rigorously, as finite Borel measures on the product
E ×Gd(E) (cf [10]). Now, to account for the existence of signals at each point, one can simply
augment the varifold representation with a signal component, which we formalize by the following
definition:

Definition 1. We say that µ is a d-dimensional functional varifold (fvarifold in short) if µ is a
Borel finite measure on the space E ×Gd(E)× R or equivalently if µ ∈ C0(E ×Gd(E)× R)′.

Note that we consider only the case of real-valued signals here, but this could be extended
to different situations, as vector or tensor-valued signals (cf [8]). Now, any functional shape
(X, f), with X a d-dimensional rectifiable subset, can be represented by a functional varifold
µ(X,f) defined by:

µ(X,f)(ω) =

∫

X
ω(x, TxX, f(x))dHd(x) (32)

where Hd is the d-dimensional Hausdorff measure on E.
Some particularly simple functional varifolds are the Diracs that, in this context, can be

written in the form δ(x,V,f) with x ∈ E, V ∈ Gd(E) and f ∈ R, and act on any function
ω ∈ C0(E ×Gd(E)× R) by the relation:

δ(x,V,f)(ω) = ω(x, V, f) . (33)

We shall detail, in Section 6, how to approximate polyhedral fshapes by a finite sums of Dirac
in order to perform practical computations.

Now, an important point is to express the way that geometrico-functional transformations act
on functional varifolds, in such a way that this action is consistent with the transport of fshapes
that we have been considering in section 2.2. In a very similar fashion as with regular varifolds
(cf [10]), one can express it by usual pull-back and push-forward operations. Let φ ∈ Diff(E)
and ζ a measurable function on E, this is given by the following set of equations:







∀ω ∈ C0(E ×Gd(E)× R), ((φ, ζ)∗µ) (ω) = µ ((φ, ζ)∗ω)
where
((φ, ζ)∗ω) (x, V, f) = |dxφ↾V |ω(φ(x), dxφ(V ), f + ζ)

(34)

where for V ∈ Gd(E), |dxφ↾V | denotes as previously the Jacobian of φ along subspace V (i.e.
the volume change along V at point x) and dxφ(V ) is the image of V by the invertible linear
application dxφ. It is then a simple verification that one has the following consistency property:

Proposition 1. Let (X, f) be a fshape where X is a d-dimensional rectifiable subset and f a L2

function on X. If φ ∈ Diff(E) and ζ ∈ L2(X) then:

(φ, ζ)∗µ(X,f) = µ(φ(X),(f+ζ)◦φ−1) .

The proof does not involve any additional difficulty than in the case of usual varifolds, for
which we refer the reader to [10].

Thus, functional varifolds enable all possible fshapes of given dimension to be embedded into
a common space of distributions. The next step then is to equip such a space with a metric that
shall induce a dissimilarity measure on the set of fshapes. This can be efficiently addressed by
introducing reproducing kernels on the product E × Gd(E) × R, as we explain in the following
text.
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3.2.2 RKHS of functional varifolds

The use of reproducing kernel in the context of currents and varifold spaces has been argued and
implemented many times, for instance in [14, 12, 8]. The general scheme is to consider Hilbert
spaces embedded in C0(E ×Gd(E)×R) which are built as the reproducing kernel Hilbert space
(RKHS) associated to a certain positive kernel on E × Gd(E) × R. A natural and convenient
(but not exhaustive) way to define kernels on product spaces is to consider tensor products of
kernels, the classical result from kernel theory being that:

Lemma 1. Let A and B be two sets and kA, kB positive kernels respectively on A and B. Then
kA ⊗ kB defined for all a1, a2 ∈ A and b1, b2 ∈ B by:

kA ⊗ kB((a1, b1), (a2, b2)) .= kA(a1, a2)kB(b1, b2)

is a positive kernel on A×B.

Now going back to the case of functional varifolds itself, one has the following property:

Proposition 2. Let ke be a positive kernel on the space E such that ke is continuous, bounded
and for all x ∈ E, the function ke(x, .) vanishes at infinity, kt a kernel on the manifold Gd(E)
that is also continuous, and kf a kernel on R continuous, bounded and such that kf (f, .) vanishes
at infinity for all f ∈ R. Then W , the RKHS associated to the positive kernel k

.
= ke ⊗ kt ⊗ kf ,

is continuously embedded into the space C0(E ×Gd(E)× R).

Proof. The proof is very similar to the one of [10] in the case of varifolds. By lemma 1, k is
indeed a positive kernel on E ×Gd(E)× R and by definition:

k
(

(x, V, f), (x̃, Ṽ , f̃)
)

= ke(x, x̃) kt(V, Ṽ ) kf (f, f̃) (35)

and so, thanks to the assumptions on the kernels, k((x, V, f), .) is continuous on E ×Gd(E)×R

and belongs to C0(E × Gd(E) × R). The vector space W0 generated by these functions is thus
included in C0(E × Gd(E) × R). Moreover, if ω ∈ W0, by the reproducing kernel property, we
have that:

ω(x, V, f) = δ(x,V,f)(ω) = 〈k((x, V, f), .), ω〉W .

With Cauchy-Schwarz inequality: |ω(x, V, f)| ≤ ‖k((x, V, f), .)‖W .‖ω‖W . In addition,

‖k((x, V, f), .)‖W =
√

k((x, V, f), (x, V, f))

and all three kernels ke, kt and kf are bounded so that k is also bounded. We conclude that
|ω|∞ ≤

√

|k|∞.‖ω‖W . Thus Cauchy sequences in W0 for the W -norm are also Cauchy sequences
for the infinite norm. It results that all their limits belong to C0(E ×Gd(E)×R) and therefore
W is included in C0(E ×Gd(E)× R). The previous inequality then holds for all ω ∈ W , which
shows that the inclusion embedding ı : W →֒ C0(E ×Gd(E)) is indeed continuous.

Consequently, there exists a continuous mapping i∗ of the space of fvarifolds C0(E×Gd(E)×
R)′ into the dual of W . This induces a pseudo-distance on fvarifolds resulting from the Hilbert
structure of the RKHS. If we introduce the isometry KW : W ′ → W defined by 〈KWµ, ω〉W =
µ(ω) for all µ ∈W ′ and ω ∈W , by the reproducing kernel property, we know that KW δ(x,V,f) =
k((x, V, f), .). Then for all x1, x2 ∈ E, V1, V2 ∈ Gd(E) and f1, f2 ∈ R,

〈δ(x1,V1,f1), δ(x2,V2,f2)〉W ′ = 〈KW δ(x1,V1,f1),KW δ(x2,V2,f2)〉W
= KW δ(x2,V2,f2)(x1, V1, f1)

and thus we have the following expression for the inner product between two Diracs:

〈δ(x1,V1,f1), δ(x2,V2,f2)〉W ′ = ke(x1, x2) kt(V1, V2) kf (f1, f2) . (36)
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Now, if (X, f) and (Y, g) are two fshapes (of dimension d) and µ(X,f) and µ(Y,g) the associated
fvarifolds (as defined previously), one can prove easily the following formula:

〈µ(X,f), µ(Y,g)〉W ′ =

∫

X

∫

Y
ke(x, y) kt(TxX,TyY ) kf (f(x), g(y))dHd(x)dHd(y) . (37)

One can thus propose a dissimilarity measure between any two fshapes that is simply the norm
of the difference in the space of fvarifolds i.e. ‖µ(X,f)−µ(Y,g)‖2W ′ , which can be computed easily
using (37). We shall detail more specifically the discrete expressions in Section 6.

Yet, as we mentioned earlier, this does not necessarily result from a real distance on the
space of varifolds because the dual application ı∗ does not need to be an embedding. This is
actually the case if and only if the RKHS W is dense in C0(E ×Gd(E)× R), in which case the
kernel k is said to be C0-universal. In our previous construction, this holds in particular if all
kernels ke, kt and kf are themselves C0-universal. In [7], authors study thoroughly construction
of C0-universal kernels on vector spaces. Notably, it is proven that all Gaussian kernels satisfy
this property. Thus, such kernels are easy to provide in the case of kernels ke and kf defined
on the spaces E and R. As for kernel kt on the Grassmann manifold, kernels can be defined by
using the embedding of Gd(E) in L(E) (we refer to [10] for more details), and therefore one can
obtain a similar notion of Gaussian kernels that can be also shown to verify the C0-universality
property.

To conclude this section, let us mention a generalization of proposition 2 to higher-order
regularities that shall be useful in the rest of the paper.

Proposition 3. Let k be a positive kernel on the product space E × Gd(E) × R such that k is
continuously differentiable of order 2p and such that all the derivatives of k up to the order p are
bounded. Assume in addition that for any (x, V, f) ∈ E ×Gd(E)×R, the function k((x, V, f), .)
and all its derivatives up to order p vanish at infinity. Then, the RKHS associated to k is
continuously embedded into Cp

0 (E ×Gd(E)× R).

The proof follows the same pattern as the one of proposition 2 and can be also adapted from
the one given in [14] (chapter 2).

3.3 Properties of the metrics

3.3.1 Control results

We now show a few control results on fvarifolds norm that shall be useful for the following. As
a measure on E × Gd(E) × R, we will call the total variation norm of a given fvarifold µ the
quantity µ(E ×Gd(E)×R). In particular, one can easily check that the total variation norm of
a rectifiable fvarifold µ(X,f) equals Hd(X). We have the following control of W ′-norms:

Proposition 4. For a RKHS W continuously embedded into C0(E ×Gd(E)×R), there exists a
constant cW > 0 such that for all µ ∈ C0(E ×Gd(E)× R)′:

‖µ‖W ′ ≤ cW .µ(E ×Gd(E)× R)

Proof. From the continuous embedding property, we have the existence of cW > 0 such that for
all ω ∈W ′, |ω|∞ ≤ cW ‖ω‖W . Now, by definition of the kernel metric ‖µ‖2W ′ = µ(KWµ) for KW

the Riesz isometry between W ′and W and thus:

‖µ‖2W ′ = µ(KWµ) =

∫

KWµ(x, V, f)dµ(x, V, F ) ≤ |KWµ|∞µ(E ×Gd(E)× R)

≤ cW ‖KWµ‖Wµ(E ×Gd(E)× R)

≤ cW ‖µ‖W ′µ(E ×Gd(E)× R)

so that dividing on both sides by ‖µ‖W ′ , we obtain the result.
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A direct corollary is that the RKHS norm of a rectifiable fvarifold is controlled by the d-volume
of its geometrical support.

A second important property to establish is the continuity of RKHS norms with respect to
deformations of geometrical supports. We first consider general C1-diffeomorphisms of E such
that φ and dφ tends to Id at infinity and we will denote ‖φ− Id‖1,∞ = |φ− Id|∞ + |dφ− Id|∞.
The result we show is the following:

Proposition 5. Let X be a d-dimensional rectifiable subset of E of finite volume and f ∈
L2(X). Assume that W is constructed as in proposition 2 and is continuously embedded into
C1
0 (E ×Gd(E)× R). Then:

‖µ(X,f) − µ(φ(X),f◦φ−1)‖W ′ → 0

as ‖φ− Id‖1,∞ → 0.

Proof. We start by writing:

µ(X,f) =

∫

X
δ(x,TxX,f(x))dHd(x)

and, in the same way,

µ(φ(X),f◦φ−1) =

∫

φ(X)
δ(y,Tyφ(X),f◦φ−1(y))dHd(x) .

Now, applying the area formula (corollary 3.2.20 in [13]), we have:

µ(φ(X),f◦φ−1) =

∫

X
δ(φ(x),dxφ(TxX),f(x))|dxφ↾TxX

|dHd(x) .

where |dxφ↾TxX
| is the local volume change at x along TxX. We obtain therefore:

‖µ(X,f) − µ(φ(X),f◦φ−1)‖W ′ ≤
∫

X

∥
∥
∥|dxφ↾TxX

|.δ(φ(x),dxφ(TxX),f(x)) − δ(x,TxX,f(x))

∥
∥
∥
W ′

dHd(x) . (38)

Now, we assumed that the kernel k of W is built as a tensor product k = ke ⊗ kt ⊗ kf . We can
then write W =Wg ⊗Wf where Wg is the RKHS of kernel ke⊗ kt and Wf the one of kernel kf .
It is then straightforward to check that:

∥
∥
∥|dxφ↾TxX

|.δ(φ(x),dxφ(TxX),f(x)) − δ(x,TxX,f(x))

∥
∥
∥
W ′

= ‖δf(x)‖W ′

f
.‖|dxφ↾TxX

|.δ(φ(x),dxφ(TxX)) − δ(x,TxX)‖W ′
g

Since ‖δf(x)‖W ′

f
=
√
kf (f(x), f(x)) and kf is bounded, we have ‖δf(x)‖W ′

f
≤ Cte. Moreover:

‖|dxφ↾TxX
|.δ(φ(x),dxφ(TxX)) − δ(x,TxX)‖W ′

g

≤
∣
∣
∣|dxφ↾TxX

| − 1
∣
∣
∣ .‖δ(φ(x),dxφ(TxX))‖W ′

g
+ ‖δ(φ(x),dxφ(TxX)) − δ(x,TxX)‖W ′

g
. (39)

Focusing on the first term, we have again, since ke and kt are bounded, that ‖δ(φ(x),dxφ(TxX))‖W ′
g

is uniformly bounded on X. In addition, the volume variation |dxφ↾TxX
| − 1 converges to 0

uniformly on X whenever ‖φ − Id‖1,∞ → 0. As for the second term in the sum of (39), we
know that ‖δ(φ(x),dxφ(TxX)) − δ(x,TxX)‖W ′

g
= sup‖ω‖Wg=1

∣
∣(δ(φ(x),dxφ(TxX)) − δ(x,TxX))(ω)

∣
∣ and for

any ω ∈Wg, we have:

∣
∣(δ(φ(x),dxφ(TxX)) − δ(x,TxX))(ω)

∣
∣ = |ω(φ(x), dxφ(TxX))− ω(x, TxX)|
≤ |dω|∞.dE×Gd(E) ((φ(x), dxφ(TxX)), (x, TxX))
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and dE×Gd(E) ((φ(x), dxφ(TxX)), (x, TxX)) is obviously uniformly upper bounded for x ∈ X by
Cte.‖φ − Id‖1,∞. In addition, with the assumptions on the kernels, we also have that |dω|∞ ≤
Cte‖ω‖Wg . It results eventually that ‖δ(φ(x),dxφ(TxX))−δ(x,TxX)‖W ′

g
is bounded above by Cte.‖φ−

Id‖1,∞. Now, since both terms in (39) converge to 0 uniformly for x ∈ X, it results the same
behavior for the integral of (38), which completes the proof.

Now, going back to the previous model of deformations, we consider diffeomorphisms φ = φv1
obtained as the flow at time 1 of a time varying vector fields v ∈ L2([0, 1], V ), where V is a given
Hilbert space of vector fields on E. The result of proposition 5 implies the following important
corollary:

Corollary 1. If V is continuously embedded into C2
0 (E,E) then, for any fixed and bounded

rectifiable set X of finite volume and L2 signal f on X, the application v 7→ µ(φv
1
(X),f◦(φv

1
)−1) is

weakly continuous from L2([0, 1], V ) to W ′.

Proof. This essentially relies on classical results on differential equations and flows that can
be found in [14, 35]. It is shown in particular that, since V →֒ C2

0 (E,E), diffeomorphisms
φv1 and their differentials tend to Id at infinity. In addition, if vn is a sequence that weakly
converges to v in L2([0, 1], V ), then φvn1 and dφvn1 converge respectively to φv1 and dφv1 uniformly
on every compact subset of E. Then, thanks to proposition 5, we are allowed to conclude that

µ(φvn
1

(X),f◦(φvn
1

)−1)
W ′

−−→ µ(φv
1
(X),f◦(φv

1
)−1), which proves the weak continuity.

3.3.2 Variation formula for fvarifold metrics

We now extend the variation formula shown in [10] to the present setting of functional varifolds.
The aim is to have a theoretical description of the variations of fvarifold metrics with respect to
variations of a functional shape in both its geometrical support and signal. As we shall see, the
behaviour is qualitatively similar, except for the orientation, to the setting of fcurrents that was
examined in [8]. Fixing a functional shape (X, f) with X a compact submanifold and f : X → R

a C1 signal on X, we wish to compute variations of terms like 〈µ(X,f), µ〉W ′ for any µ ∈W ′. Using
the previous isometry KW , we know that 〈µ(X,f), µ〉W ′ = 〈KWµ(X,f),KWµ〉W = µ(X,f)(ω) with
ω = KWµ thanks to the reproducing kernel property and thus one is led to consider variation
of terms µ(X,f)(ω) for ω ∈ W . Rigorously, such variations can be expressed with respect to
the action of infinitesimal deformations in the geometrico-functional domain. One can define
such infinitesimal geometrico-functional deformations by considering, exactly as in the previous
tangential model, a C1 compactly supported vector field v on E and a L2 function h on X. Now
we shall denote by φt the flow of v at time t and by ψt the application defined on X × R by
ψt(x,m) = (φt(x),m + th(x)). In addition, ψ can be extended straightforwardly to the whole
space E × R by setting ψt(x,m) = (φt(x),m+ th̃(x)) where h̃↾X = h and h̃ = 0 elsewhere. The
function h̃ is then measurable on E and the push-forward action ψ∗

t ω is well-defined by equation
(34). The variation we wish to compute can be expressed by:

d

dt ↾t=0

µ(φt(X),(f+th)◦φ−1)(ω) =
d

dt ↾t=0

∫

X
ψ∗
t ω(x, TxX, f(x))dHd(x)

=

∫

X

d

dt ↾t=0

ψ∗
t ω(x, TxX, f(x))dHd(x)

=

∫

X
(£(v,h)ω)(x, TxX, f(x))dHd(x)

where £(v,h)ω
.
=

d

dt ↾t=0

ψ∗
t ω is a notation for the derivative of function ω in the direction of (v, h).

In the following, we shall adopt the shortcut notation
∫

X g to denote the integral
∫

X g(x)dHd(x).
Now, the result is the following:
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Theorem 5. Let X be a compact submanifold and f a C1 function on X. Let v be any C1 vector
field with compact support defined on E and h a L2 function on X. We denote by ψt(x,m)

.
=

(φt(x),m+th(x)). Then, we have for any C1 function (x, V,m) 7→ ω(x, V,m) on E×Gd(E)×R:

∫

X
(£(v,h)ω)(x, TxX, f(x))dHd(x) =

∫

X

(
∂ω

∂x
− divX

(
∂ω

∂V

)

− ωHX |v⊥
)

+
∂ω

∂m
.(h− 〈∇f, v⊤〉)

+

∫

∂X

〈

ν, ωv⊤ +

(
∂ω

∂V
|v⊥
)〉

(40)

where v⊤ and v⊥ denote the tangential and normal part of v along X, ν is the unit outward
normal along ∂X, and HX the mean curvature vector to X.

The proof is given in appendix A. This formula is interesting at several levels because it gives
qualitative information on the gradients of the kernel metrics with respect to points and signal
values of the fshape (X, f). In particular, as already pointed out in [10], for a constant signal f ,
we see that, for points in the interior of X, the variation with respect to the geometrical support
only involves the orthogonal component of v which means that the gradient of the metric is
orthogonal to the shape. This is somehow quite natural since tangential components of v do not
change the shape itself in that situation. However, we see that for non-constant signals, a term
involving the tangential component v⊤ appears in the variation and is concentrated on regions of
important gradient of the signal f . The second important consequence to mention is the presence
of special terms on the boundary of X. On points located on ∂X, the gradient is orthogonal
to the boundary (but not necessarily to X). The presence of these boundary singularities have
important consequences on the numerical behaviour of the gradients that we shall address with
more details in section 9.

4 Mathematical formulation of atlas estimation

To go beyond Karcher means within a single bundle (as exposed in Section 2.4) and address the
problem of atlas computation, we have to consider now a family of (possibly noisy) observed
fshapes (Xi, f i)1≤i≤N . The main point here is the optimization of a template (X, f) given the
observations. We propose, in this section, a way to formalize the atlas estimation as a variational
problem. The existence of solutions to such problems will be examined in the next section.

4.1 Template space

Ideally, the template should be optimized among all the possible templates to avoid any bias effect
towards a particular configuration but this looks as a quite badly posed optimization problem.
We follow here a more simple and secure route by introducing a priori a large but restricted
space of possible templates as another vector bundle F0 generated by a hypertemplate (X0, f0).
As presented previously, F0 is defined from the (X0, f0) as the set of every fshape defined from
the mapping (φ, ζ) 7→ (φ.X0, (f0+ ζ)◦φ−1) for (φ, ζ) ∈ G0×L2(X0) with G0

.
= GV0

is the group
of diffeomorphisms generated by an additional RKHS space V0 of vector fields on E:

F0
.
= { (X, f) | (X, f) = (φ.X0, (f0 + ζ) ◦ φ−1), (φ, ζ) ∈ G0 × L2(X0)} . (41)

One could take V0 = V but we may want less regularity on V0 than on V to generate a larger
space and get closer to the ideal case.

Now, given any (X, f) ∈ F0, we should consider the associated fshape bundle FX

FX
.
= { (X ′, f ′) | (X ′, f ′) = (φ.X, (f + ζ) ◦ φ−1), (φ, ζ) ∈ G× L2(X)} (42)

corresponding to the previously introduced space F .
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4.2 Variational formulation (metamorphosis riemannian setting)

In the Riemannian setting, the problem of atlas estimation can be addressed as the minimization
of

Jriem
1 ((X, f), (Xi, f i)i)

.
=

dF0
((X0, f0); (X, f))

2 +
N∑

i=1

(

dFX
((X, f); (X̃i, f̃ i))2 + g(X̃i, f̃ i;Xi, f i)

) (43)

on
(X, f) ∈ F0 and (X̃i, f̃ i)1≤i≤N ∈ FN

X (44)

where g is the “out-of-orbit” or previous data attachment term, which, in that case, can be
defined, as we explained in section 3.2 by fvarifold Hilbertian metrics.

The problem can be then reformulated equivalently as a minimization problem on







(v0, h0) ∈ L2([0, 1], V0 × L2(X0))
(vi, hi) ∈ L2([0, 1], V × L2(X))
with

X = φv
0

1 .X0

(45)

of

Jriem
2 ((v0, h0), (vi, hi)i)

.
=
γV0

2

∫ 1

0
|v0t |2V0

dt+
γ0f
2

∫ 1

0

∫

X0

|h0t |2|dxφv
0

t ↾TxX
|dHd(x)

+
N∑

i=1

(
γV
2

∫ 1

0
|vit|2V dt+

γf
2

∫ 1

0

∫

X
|hit|2|dxφv

i

t ↾TxX
|dHd(x) +

γW
2
g((X̃i, f̃ i), (Xi, f i))

) (46)

where 





f̃ i = (f + ζh
i

1 ) ◦ (φvi1 )−1

and

f = (f0 + ζh
0

1 ) ◦ (φv01 )−1 .

(47)

4.3 Variational formulation (tangential setting)

The atlas estimation problem can also be formulated using the tangential metric and with a
statistical flavor. It seems quite natural to choose the template as the pivotal point for the
linearization towards the hypertemplate (X0, f0) and the observations (Xi, f i) that is to freeze
the functional metric on the L2(X) space.

The derivation is then quite straightforward and we jump directly to the associated mini-
mization problem which is the minimization of the functional

J tan((v0, ζ0), (vi, ζi)i)
.
=
γV0

2

∫ 1

0
|v0t |2V0

dt+
γ0f
2
|ζ0|2X

+

N∑

i=1

(
γV
2

∫ 1

0
|vit|2V dt+

γf
2
|ζi|2X +

γW
2
g((X̃i, f̃ i), (Xi, f i))

) (48)

in the variables 





(v0, ζ0) ∈ L2([0, 1], V0)× L2(X)
(vi, ζi) ∈ L2([0, 1], V )× L2(X)
with

X = φv
0

1 .X0

(49)
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where we have 





f̃ i = (f + ζi) ◦ (φvi1 )−1

and

f = f0 ◦ (φv
0

1 )−1 + ζ0 .

(50)

The signals (ζi)i=1,..,N will be named the residual functions of the atlas. From this general
setting, we can consider an even simpler situation when f0 ≡ 0. This new setting is equivalent
to the minimization of

J tan
0 ((v0, f), (vi, ζi)i)

.
=
γV0

2

∫ 1

0
|v0t |2V0

dt+
γ0f
2
|f |2X

+
N∑

i=1

(
γV
2

∫ 1

0
|vit|2V dt+

γf
2
|ζi|2X +

γW
2
g((X̃i, f̃ i), (Xi, f i))

) (51)

in the variables 





(v0, f) ∈ L2([0, 1], V0)× L2(X)
(vi, ζi) ∈ L2([0, 1], V )× L2(X)
with

X = φv
0

1 .X0

(52)

where we have
f̃ i = (f + ζi) ◦ (φvi1 )−1 . (53)

5 Existence results for fshape atlases

5.1 Introduction

The existence of an atlas for a population of fshapes with fcurrents or fvarifold based data term
does not follow from the same arguments than in the more well-known pure geometrical case.
The optimization of a signal f on the geometrical template and for the more sophisticated model
of additional residuals ζi to match each observations (Xi, f i) introduces new difficulties.

The main one is that the fvarifold data term ‖µ(X,f i)−µ(X,f)‖2W is not lower semi-continuous

for the weak convergence in L2(X) as a function of f for X fixed. This comes from the non-
linearities appearing in the various kernels defining the RKHS norm on W . Yet, interestingly, it
remains continuous for the weak convergence on the space of measures. We prove that minimizing
measure sequences are tight and that existence results can be established under quite general
assumption for the extended functional.

However, the existence of strong solution (i.e. a true fshape template (X, f)) does not seem to
be guaranteed in full generality but is true as soon as the regularization on the L2 penalization on
f (and on the residuals ζi when introduced) is strong enough. This condition, although imposed
theoretically for the existence of a fshape solution, is not clearly required for practical fshape
atlases that we have computed so far. We show also that the computed template function and
residuals are smooth proving a regularization effect of fvarifold attachment terms. The result
holds in both the tangential and metamorphosis setting for fshapes, which is summed up by
Theorem 6 (tangential model) and Theorem 7 (metamorphosis model), whose proofs are the
core issues of this section.

The most technical part of the proof is the existence of the fshape template (X, f) on which
we will focus in the first place. The proof we present follows basically the so-called direct method
of geometric measure theory where we first show the existence of a minimizer in a larger space
of varifolds and then show that this solution does indeed result from a true fshape.
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5.2 Existence of the template fshape

We shall focus first on the tangential setting of 4.3. In this part, we will also consider the simpler
situation where all variables vi and ζi in equation (48) are frozen and show that a minimum of
the functional exists in the variables X and f . We will start by assuming that, in addition, X is
also a fixed bounded and finite volume d-dimensional rectifiable subset of E.

5.2.1 Existence with X fixed

This subsection is dedicated to the proof of the following proposition:

Proposition 6. Assume that W is continuously embedded in C2
0 (E ×Gd(E) × R), that X and

(Xi)1≤i≤N are finite volume bounded d-dimensional rectifiable subsets and that f i ∈ L2(Xi) for
1 ≤ i ≤ N . Assume that γf/γW is large enough with γf , γW ≥ 0. Then

JX(f)
.
=
γf
2

∫

X
|f(x)|2dHd(x) +

1

2

N∑

i=1

γW ‖µ(Xi,f i) − µ(X,f)‖2W ′

achieves its minimum on L2(X) and any minimizer f∗ is such that f∗ ∈ L∞(X). Moreover, if X
is also a Cp submanifold and W →֒ Cm

0 (E×Gd(E)×R) with m ≥ max{p, 2}, then f∗ ∈ Cp−1(X).

The proof proceeds in two steps.
The first one is to show the existence of a minimizer in the larger space of fvarifolds: namely,

for X fixed as previously, we consider the setMX of all Borel finite measures ν on E×Gd(E)×R
such that: ∫

h(x, V )dν(x, V, f) =

∫

X
h(x, TxX)dHd(x) . (54)

for all continuous and bounded applications h on E × Gd(E). These are fvarifolds that have
a particular marginal on E × Gd(E). Note that any varifold µ(X,f) for f a L2 function on X

belongs toMX . In addition,MX is a closed subset for the usual weak convergence of measures
defined by νn ⇀ ν∞ if for any ω ∈ Cb(E ×Gd(E)× R)

νn(ω)→ ν∞(ω) . (55)

Then, we consider the extended functional J̃ defined on measures ν ∈MX by

J̃(ν)
.
=
γf
2
ν(|f |2) + γW

2

N∑

i=1

‖ν − µ(Xi,f i)‖2W ′ (56)

where ν(|f |2) is the notation we shall use for
∫
|f |2dν. Then,

Lemma 2. There exists ν∗ ∈MX that minimizes the functional J̃ .

The second step consists in proving that ν∗ can be actually expressed as a fvarifold associated
to a true fshape (X, f∗) with f∗ ∈ L∞(X). We have detailed the full proofs of Lemma 2 and
Proposition 6 in Appendix B.

5.2.2 Existence with non-fixed X

We now consider the existence of a template when X is no more fixed and is estimated as well.
In this case, as we mentioned earlier, it is enough to introduce a RKHS Hilbert space V0 contin-
uously embedded in C2

0 (E,E), an initial hypertemplate X0 and consider also an optimization of
the template X in the orbit of X0 under the action of φ0 ∈ G0, the group of diffeomorphisms
associated with V0 i.e. X = φ0.X0. To prove existence result, we will need to introduce a penal-
ization depending on the distance between X0 and X i.e. on dG0

(Id, φ0). A typical functional
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would be, if X0 is the orbit of X0 under G0 and dX0
(X,X ′)

.
= infφ∈G0,φ.X=X′ dG0

(Id, φ) is the
induced distance between two templates in the orbit,

J1(X, f) =
γV0

2
dX0

(X0, X)2

+
γf
2

∫

X
|f(x)|2dHd(x) +

γW
2

N∑

i=1

‖µ(Xi,f i) − µ(X,f)‖2W ′

(57)

Since a diffeomorphism φ0 ∈ G0 is obtained as the flow of a time-varying vector field v0 ∈
L2([0, 1], V0), we consider the minimization of the following functional:

J2(v
0, f) =

γV0

2
‖v0‖2L2([0,1],V0)

+
γf
2

∫

X
|f(x)|2dHd(x) +

γW
2

N∑

i=1

‖µ(Xi,f i) − µ(X,f)‖2W ′

for v0 ∈ L2([0, 1], V0), f ∈ L2(X) with X = φ0.X0. However, it is more convenient for X = φ0.X0

to consider the change of variable f 7→ f0 = f ◦φ0 from L2(X)→ L2(X0) so that we keep working
in a fixed space L2(X0). Hence we end up with functional

J3(v
0, f0) =

γV0

2
‖v0‖2L2([0,1],V0)

︸ ︷︷ ︸

penalization on X

+
γf
2

∫

X0

|f0(x)|2|dxφ0↾TxX
|dHd(x)

︸ ︷︷ ︸

=
∫
X

|f(x)|2dHd(x) for f=f0◦(φ0)−1∈L2(X)

+
γW
2

N∑

i=1

‖µ(Xi,f i) − φ0.µ(X0,f0)‖2W ′

(58)

with f0 ∈ L2(X0) and φ.µ ∈ W ′ denoting for a fvarifold µ its diffeormorphic transport by a C1

diffeormorphism φ defined by (φ.µ)(ω)
.
=
∫
|dxφ↾V |ω(φ(x), dxφ(V ), f)dµ(x, V, f) for ω ∈W . The

existence of a minimizer (v0∗, f0,∗) for J3 gives immediately the existence of a minimizer (X∗, f∗)

for J1 with X∗
.
= φ

v0∗
1 .X0, f∗

.
= f0,∗ ◦ (φv

0
∗

1 )−1 ∈ L2(X∗).
The existence result then becomes:

Proposition 7. Assume that W is continuously embedded in C2
0 (E ×Gd(E)×R), that X0 and

(Xi)1≤i≤N are finite volume and bounded d-dimensional rectifiable subsets and that f i ∈ L2(Xi)
for 1 ≤ i ≤ N . Assume γV0

> 0 and γf/γW is large enough with γf , γW ≥ 0. Then

• J1 given by equation (57) achieves its minimum on {(X, f) | X ∈ X0, f ∈ L2(X)};

• any minimizer (X∗, f∗) is such that f∗ ∈ L∞(X∗);

• if X0 is also a Cp submanifold and W →֒ Cm
0 (E × Gd(E) × R) with m ≥ max{p, 2},

f∗ ∈ Cp−1(X∗).

The proof of Proposition 6 can in fact be easily adapted to this new situation. We can
consider the formulation of equation (58) with J3 a functional on the vector field v0 and the
function f ∈ L2(X0). With respect to v0, thanks to the penalization in (58), we can restrict the
search of a minimum on a closed ball B0 of given radius b in L2([0, 1], V0), which guarantees at
the same time that the Jacobians |dxφ0↾TxX

| are uniformly lower bounded. This closed ball is

also compact for the weak topology in L2([0, 1], V0). In addition, it follows from Corollary 1 that
v0 7→

∑N
i=1 ‖µ(Xi,f i)−φ0∗µ(X0,f0)‖2W ′ is weakly continuous on L2([0, 1], V0) and it is also classical

that v0 7→ ‖v0‖L2([0,1],V0) is lower semicontinuous for the weak convergence topology. Therefore,
for all fixed f0 ∈ L2(X0), v

0 7→ J3(v
0, f0) is weakly lower semicontinuous on L2([0, 1], V0). It

results that we obtain existence of a minimizing vector field v0 and, reasoning as in the previous
subsection and Appendix B, one deduces easily the claim of Proposition 7.
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5.3 Existence of full fshape atlases (tangential setting)

We now generalize the previous results to the existence of complete atlases of fshapes’ datasets.
In addition to the template (X, f), one wants to simultaneously estimate transformations from
the template to each subject. In the tangential model of Section 4.3, these consist in deformations
(φi)i=1,..,N obtained as flows of time varying vector fields (vi) and residual signals (ζi) that are
L2 functions on X. In that situation, following Section 4.3, the optimization functional for atlas
estimation writes:

J(X, f, (ζi), (vi))
.
=
γV0

2
dX0

(X0, X)2 +
γf
2

∫

X
|f(x)|2dHd(x)

+
1

2

N∑

i=1

(

γV ‖vi‖2L2([0,1],V ) + γζ

∫

X
|ζi(x)|2dHd(x) + γW ‖µ(Xi,f i) − µ(φvi

1
(X),(f+ζi)◦(φvi

1
)−1)
‖2W ′

)

(59)

The main existence result is the following:

Theorem 6. Assume that W is continuously embedded in C2
0 (E × Gd(E) × R), that X0 and

(Xi)1≤i≤N are finite volume bounded d-dimensional rectifiable subsets and that f i ∈ L2(Xi) for
1 ≤ i ≤ N . Assume γV0

, γV > 0 and γf/γW and γζ/γW are large enough with γf , γW , γζ ≥ 0.
Then

• J given by equation (59) achieves its minimum on {(X, f, ζi, (vi)) | X ∈ X0, f ∈ L2(X), ζ =
(ζi) ∈ L2(X)N , (vi) ∈ L2([0, 1], V )N};

• any minimizer (X∗, f∗, (ζ
i
∗), (v

i
∗)) is such that f∗ and ζi∗ for 1 ≤ i ≤ N are in L∞(X∗);

• if X0 is also a Cp submanifold and W →֒ Cm
0 (E × Gd(E) × R) with m ≥ max{p, 2}, f∗

and the ζi∗’s are in Cp−1(X∗).

The proof leans essentially on the same arguments as detailed in the previous subsections:
we refer the reader to Appendix C. This result is of fundamental importance for the rest of the
paper since it ensures that the atlas estimation problems that we shall study numerically in the
next sections do have at least a solution, and we see that this holds with only L2 regularity
assumptions on the signals.

5.4 Existence in the metamorphosis framework

Interestingly, the previous existence of solutions in the simplified tangential setting can be also
used to show existence of solutions to the corresponding variational problem in the metamor-
phosis framework given by (43). In that model, the subjects are obtained approximately as
metamorphoses of the template (X, f), which is itself a metamorphosis of an hypertemplate
(X0, f0) where X0 is a bounded finite-volume rectifiable subset of E and f0 ∈ L2(X0). The
important lemma that bridges both approaches is the following:

Lemma 3. For v fixed and ζ1 ∈ L2(X) fixed, the infimum over h ∈ L2([0, 1], L2(X)) of

γf
2

∫ 1

0

∫

X
|ht(x)|2|dxφvt ↾TxX

|dHd(x)

under the constraint that
∫ 1
0 htdt = ζ1 is reached on a unique point h∗ ∈ L2([0, 1], L2(X)) given

by

h∗t (x)
.
= C(x)

ζ1(x)

|dxφvt ↾TxX
| (60)

where C(x)
.
= (
∫ 1
0

1
|dxφv

s ↾TxX
|ds)

−1.
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Proof. The proof could be deduced from general optimization results but for sake of complete-
ness we give here a short proof. Let us first notice that over (x, t) ∈ X × [0, 1] we have
0 < inf |dxφvt ↾TxX

| ≤ sup |dxφvt ↾TxX
| < +∞.

Now, if we denote αt(x)
.
= |dxφvt ↾TxX

|−1/2 and consider the change of variable gt(x) =

ht(x)/αt(x), the problem is equivalent (after the use of Fubini-Tonelli Theorem) to the mini-
mization on g ∈ L2([0, 1], L2(X)) of

γf
2

∫

X

(∫ 1

0
|gt(x)|2dt

)

dHd(x)

under the constraint
∫ 1
0 αs(x)gs(x)ds = ζ1(x) for a.e. x ∈ X.

However, this is a separable problem and for any fixed x ∈ X we have to consider on
H

.
= L2([0, 1]) the very simple quadratic minimization problem: inf |u|2H under the constraint

〈α.(x), u〉H = ζ1(x) that has the unique solution u = λ(x)α.(x) with λ(x) = ζ1(x)/|α.(x)|2H .

Hence, denoting h∗t (x) = ζ1(x)
|αt(x)|2

|α.(x)|2H
, we get the result.

Now, introducing, as in 2.2, the Riemannian energies

EX0
(v0, h0)

.
=
γV0

2

∫ 1

0
|vt|2V0

dt+
γf0
2

∫ 1

0

∫

X
|h0t |2(x)|dxφv

0

t ↾TxX
|dHd(x)

and

EX(v, h)
.
=
γV
2

∫ 1

0
|vt|2V dt+

γf
2

∫ 1

0

∫

X
|ht|2(x)|dxφvt ↾TxX

|dHd(x)

the atlas estimation functional becomes:

J((v0, h0), (vi, hi))
.
= EX0

(v0, h0)

+

N∑

i=1

(

EX(vi, hi) +
γW
2
‖µ(Xi,f i) − µ(φvi

1
(X),(f+ζh

i

1
)◦(φvi

1
)−1)
‖2W ′

) (61)

where (X, f) = (φv
0

1 (X0), (f0 + ζh
0

1 ) ◦ (φv01 )−1).

Theorem 7. Let W be continuously embedded in C2
0 (E ×Gd(E)×R), X0 and (Xi)1≤i≤N finite

volume bounded d-dimensional rectifiable subsets and f i ∈ L2(Xi) for 1 ≤ i ≤ N . Assume that
γV0

, γV > 0 and that γf/γW and γζ/γW are large enough with γf , γW , γζ ≥ 0. Under these
assumptions,

• J defined by equation (61) achieves its minimum on v0 ∈ L2([0, 1], V0), h
0 ∈ L2([0, 1], L2(X0)),

(vi) ∈ L2([0, 1], V )N and (hi) ∈ L2([0, 1], L2(X))N ;

• any minimizer (X∗, f∗, (ζ
i
∗), (v

i
∗)) with f∗ = (f0 + ζ

h0
∗

1 ) ◦ (φv
0
∗

1 )−1 and ζi∗ = ζ
hi
∗

1 ◦ (φ
vi∗
1 )−1 is

such that f∗ and ζi∗ for 1 ≤ i ≤ N are in L2(X∗);

• if X0 is also a Cp submanifold, f0 a Cp−1 function on X and W →֒ Cm
0 (E ×Gd(E)× R)

with m ≥ max{p, 2}, then f∗ and the ζi∗’s are in Cp−1(X∗).

The proof can be found in appendix D.

6 A discrete framework for fshape

The previous sections mainly dealt with the setting of a well posed theoretical framework to work
with fshapes. Here we would like to tackle the problem of the actual processing of fshapes. We
believe that the description of an explicit numerical scheme is of the utmost importance for the
fshape setting to be of practical utility. Our main motivations come from medical imaging where
acquisition is done in digital forms. It means that data are discrete and in very high dimensions
(tens of thousands points). Our goal is to demonstrate that the fshape framework may be used
to handle real data and not just low dimensional examples.
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6.1 Fvarifold norm of polyhedral meshes

We assume hereafter that data at hand are finite functional polyhedral meshes composed by T
cells of dimension d immersed in E = R

n. Most common examples are piecewise linear planar
fcurves corresponding to the case n = 2 and d = 1, piecewise linear curves in space corresponding
to n = 3 and d = 1, and piecewise triangular surfaces in the space corresponding to n = 3 and
d = 2. A finite polyhedral fshape (X, f) is fully described by three matrices: a first P ×n matrix
x contains the coordinates of the P vertices xk in E (i.e. x = (xk)1≤k≤P ), a second P × 1
column vector f contains the P values fk

.
= f(xk) ∈ R of the signal (i.e. f = (fk)1≤k≤P ) and a

third T × (d+1) matrix contains the list of edges for each cell so that each row contains (d+1)
integers corresponding to the indices of the vertices of the cell.

In the sequel, it will be convenient to introduce the corresponding geometrical diffeomorphic
action in the discrete setting: for a diffeomorphism φ ∈ G and a discretized fshape (x,f) =
(xk, fk)1≤k≤P we denote

φ.(x,f)
.
= (φ.x,f) where φ.x

.
= (φ(xk))1≤k≤P (62)

Note that the discrete action is more straightforward than its continuous version φ.(X, f) =
(φ.X, f ◦φ−1) since along a flowing particle xk we have f ◦φ−1(φ(xk)) = f(xk) = fk (Lagrangian
point of view). Note also that the connectivity matrix (i.e. list of edges) remains unchanged
through the deformation process.

There is a rather natural way to approximately represent polyhedral meshes in the fvarifold
space. The method is very similar to the one described in [10] in the case of fcurrents space.
Using formula (33), each cell is coded by a Dirac δ(x̂,V,f̂) so that a discrete polyhedral fshape
is viewed as a distribution of Dirac spread in the space R

n. Therefore, the measure µ(X,f) of
equation (32) which is associated to (X, f) is approximated by the following finite sum of Dirac

µ(X,f) ≈ µ(x,f)
.
=

T∑

ℓ=1

rℓδ(x̂ℓ,Vℓ,f̂ℓ)
(63)

where x̂ℓ ∈ R
n is the center of the ℓ-th polyhedral cell, Vℓ ∈ Gd(R

n) gives the direction of the
cell, f̂ℓ ∈ R is the average value of the signal on this cell and finally rℓ ∈ R is equal to the
d-volume of the cell. Note that for the case of surfaces (resp. curves), Vℓ will be simply a unit
normal vector (resp. unit tangent) and the orientation will be removed directly “by the kernel”:
the formula of the kernel kt used to compute the scalar product in the fvarifold space will be
invariant with respect to changes in the orientation as in equation (65).

As an illustration, let us precisely describe how to get the representation of the ℓ-th triangle
Tℓ belonging to a polyhedral functional surface (X, f). If we assume that the vertices of Tℓ (read
in the connectivity matrix) are (xk1 , xk2 , xk3) ∈ (R3)3 for some k1, k2, k3 = 1, · · · , P , we have







x̂ℓ = (xk1
+xk2

+xk3
)/3,

Vℓ = (xk2
−xk1

)∧(xk3
−xk1

)/‖(xk2
−xk1

)∧(xk3
−xk1

)‖,
f̂ℓ = (fk1+fk2+fk3 )/3,

rℓ = ‖(xk2 − xk1) ∧ (xk3 − xk1)‖ .

(64)

where ‖.‖ is the standard Euclidean norm in R
3 and ∧ correspond to the cross product. To

compute the fvarifold norm of a functional surface we use in our numerical experiments Gaussian
kernels satisfying assumptions of Proposition 2. Let us define:







ke(x̂1, x̂2) = exp
(
− ‖x̂1−x̂2‖2/σ2

e

)
,

kt(V1, V2) = exp
(
− 2

σ2
t

(1− 〈V1, V2〉2)
)
,

kf (f̂1, f̂2) = exp
(
− |f̂1−f̂2|2/σ2

f

)
.

(65)
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where σe, σt, σf > 0 are scale parameters fixed by the practitioner. Thence the scalar product of
two fvarifolds µ(X,f) and µ(Y,g) associated to two polyhedral triangular functional surfaces (X, f)

and (Y, g), and approximated respectively by
∑Tx

ℓ=1 rℓδx̂ℓ,Vℓ,f̂ℓ
and

∑Ty

ℓ′=1 sℓ′δŷℓ′ ,Wℓ′ ,ĝℓ′
, may be

written:

〈
µ(X,f), µ(Y,g)

〉

W ′
≈
〈
µ(x,f), µ(y,g)

〉

W ′
=

Tx∑

ℓ=1

Ty∑

ℓ′=1

rℓsℓ′ke(x̂ℓ, ŷℓ′)kt(Vℓ,Wℓ′)kf (f̂ℓ, ĝℓ′). (66)

We discuss in Section 9.2 some numerical aspects of the fvarifolds.

6.2 Discrete approximations of continuous fshapes.

A continuous fshape (Xc, fc) can be approximated by a finite polyhedral fshape in the fvarifold
space as follows. First, extract P points and their corresponding signal from (Xc, fc). Then,
compute a mesh with the extracted points to define a polyhedral fshape (X, f). Finally, use (63)
to approximate µ(X,f) by a finite sum µ(x,f) of Diracs.

Although this method of approximation seems reasonable in many practical cases, we do not
provide explicit conditions to ensure the convergence of µ(x,f) toward µ(Xc,fc) when the number
P of extracted vertices tends to infinity. To the best of our knowledge, this is still an open
problem and a famous illustration of pathological cases is the Schwarz polyhedron. Nevertheless,
there exists various theoretical results concerning the polyhedral approximation of continuous
surfaces for the currents norms and the varifold norms, see e.g. [28]. Moreover, in [29], the
author studies sufficient conditions to ensure the convergence of the area of triangular meshes
toward the area of the continuous surface. A general result extending the aforementioned works
to our geometrico-functional framework involves some materials beyond the scope of this paper.

6.3 Shooting equations for the metamorphosis Riemannian framework

In the large deformation setting for usual shapes, it was shown (see for instance [25]) that the
dynamic of optimal vector fields giving geodesics in groups of diffeomorphisms can be described
through Hamiltonian systems of equations, called the forward equations. In the discrete
situation of a finite set of points, these actually reduce to a coupled evolution of the position of
the particles and extra variables called the momenta attached to every particle. In addition, the
Hamiltonian structure implies that all geodesic trajectories are eventually parametrized only by
the initial positions and momenta, which is the principle underlying geodesic shooting algorithms
for shape matching (see [3] for an extensive presentation of the Hamiltonian setting for shape
deformation analysis).

We now describe how to obtain similar shooting frameworks in our more general situation
of fshapes, first for the fshape metamorphosis model. As discussed above, any element (X, f)
in F will be discretized as a family (x,f) = (xk, fk)1≤k≤P of points x with signal value f . In
that setting, for a proper weighting matrix (the precise definition of this matrix depends on
actual choices for the approximation of the L2 norm), we can discretize the L2(X) dot product
as (D(x)h|h) for any h = (hk) ∈ R

P . The continuous problem (3) is then approximated by a
simple discrete control problem

min
γV
2

∫ 1

0
|vt|2V dt+

γf
2

∫ 1

0
(D(xt)ht|ht)dt (67)

for fixed end point conditions (xt,f t)↾t=0
and (xt,f t)↾t=1

and controlled dynamic in V × R
P

given by
{

ẋt = vt.xt

ḟ t = ht
, (68)

where v.x = (v(xk))1≤k≤P .
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Remark 1. An important point is to note that the discrete evolution is based on a Lagrangian
particle based representation and to understand where the equations (68) are coming from. In
the discrete setting, t 7→ xt = (xt,k)1≤k≤P is the evolution the vertices of a polyhedral mesh
i.e. xt,k = φvt (xk) where φvt is the flow of the time dependent vector field t 7→ vt and x = (xk)
are the vertices on the initial mesh X so that ẋt,k = vt(φ

v
t (xk)) = vt(xt,k) which gives the

first equation of (68). Moreover, f t = (ft,k)1≤k≤P are the signal values attached to Xt at the
vertices positions xt = (xt,k)1≤k≤P so that ft,k is the discretization of the continuous signal
ft : Xt → R in Lagrangian coordinates i.e. ft,k = ft(φ

v
t (xk)) = ft(xt,k). In particular, one have

ḟt,k =
dft(φv

t (xk))
dt =

d
∫ t

0
hs(xk)ds

dt = ht(xk) = ht,k where ht = (ht,k) = (ht(xk)) is the discretization
of ht : X → R on the vertices (xk) which gives the second equation of (68).

In that situation, introducing co-states or momenta (p,pf ) = (pk, p
f
k)1≤k≤P we get the

associated Hamiltonian

H((x,f), (p,pf ), (v,h)) = (p|v.x) + (pf |h)− γV
2
|v|2V −

γf
2
(D(x)h|h)

so that we deduce from the Pontryagin’s Maximum Principle that the optimal controls satisfy

v(·) = 1

γV

P∑

k=1

KV (·, xk)pk and h =
1

γf
D−1(x)pf (69)

where KV is the kernel associated with the RKHS space V . Then, plugging the optimal control
into the Hamiltonian H we get the reduced Hamiltonian given as

Hr((x,f), (p,p
f )) =

1

2γV
(Kx,xp|p) +

1

2γf
(D−1(x)pf |pf ) (70)

with Kx,x
.
= (KV (xk, xk′))1≤k,k′≤P . Note that the weighting matrix D(x) may be chosen to be

diagonal (“mass lumping”) so that the computation of D−1(x) is straightforward. From Hr, we
can derive the forward equation given by the Hamiltonian dynamic:

{
ẋ = ∂pHr(x,p)
ṗ = −∂xHr(x,p) .

(71)

As usual, since the Hamiltonian is not depending on time, it is a conserved quantity during the
geodesic evolution so that we get from (69) and (70) that

γV
2

∫ 1

0
|vt|2V dt+

γf
2

∫ 1

0
(D(xt)ht|ht)dt = Hr((x,f), (p,p

f ))↾t=0
. (72)

We see also that the reduced Hamiltonian is a perturbation of the more familiar Hamiltonian
for the pure geometrical case mentioned earlier, Hgeo

r (x,p) = 1
2γV

(Kx,xp|p) = γV
2 |v|2V with a

geometrico-functional term

Hgeo−fun
r (x,f ,pf )

.
=

1

2γf
(D−1(x)pf |pf ) . (73)

Hence the shooting equations contains a new source term which is ∂xH
geo−fun
r in the dynamic

of the momenta p:
ṗ = −∂xHgeo

r (x,p)− ∂xHgeo−fun
r (x,f ,pf )

︸ ︷︷ ︸

new source term

(74)

and since the Hgeo−fun
r does not depend on f , we have

ṗf = −∂fHgeo−fun
r (x,f ,pf ) = 0 . (75)

In particular, the functional speed ḟk is only modulated by the evolution of the local weight
D(x)k,k which depends in the continuous limit both on the divergence of the “tangential” part
of v to the manifold spanned by the xk’s and on its normal part when the mean curvature is non
vanishing.
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6.4 Shooting equations for the tangential setting

In the tangential model of section 2.5, equations are simplified once again. Indeed, the L2 metric
being frozen to the initial position of X, the second term in (67) becomes

γf
2

∫ 1
0 (D(x0)ht|ht)dt

where D(x0) is now a constant weighting matrix and the optimal functions ht for fixed time 1 end
point condition f1 are simply given by ht ≡ ζ = f1−f , i.e. f t = f + tζ = tf1+(1− t)f where
ζ = (ζ(xk))1≤k≤P and ζ is the residual introduced in Section 4.3. In that situation, the new
source term disappears in (74) and the dynamic of (x,p) is described by the usual Hamiltonian
equations in the purely geometrical case, which gives:







ẋ = ∂pH
geo
r (x,p)

ṗ = −∂xHgeo
r (x,p)

f t = f + tζ
(76)

These are the forward equations in the tangential model. Compared to metamorphoses, the
dynamic on the signal part can be expressed in closed form while the evolution in spatial position
is described by the usual Hamiltonian system without extra term. This makes it particularly
simple for implementation, which shall be exploited in Section 7. Optimizing over trajectories
can be reduced to optimization with respect to initial momentum p0 and signal f1 (or the residual
ζ) since again v(·) = 1

γV

∑P
k=1KV (·, xk)pk, h = ζ and

γV
2

∫ 1

0
|vt|2V dt+

γf
2

∫ 1

0
(D(x0)ht|ht)dt = Hgeo

r ((x,p))↾t=0
+
γf
2
(D(x0)ζ|ζ) . (77)

Variation of functionals with respect to p0 can be obtained by the usual backward integration
of the adjoint Hamiltonian system (c.f. [8] Chapter 1 or [3] Section 4).

7 Algorithms to compute mean template of fshapes

We present two different algorithms to compute a mean template from a sample of N discrete
fshapes. Both methods consist in solving a variational problem via an adaptive gradient descent
algorithm presented in Section 7.3. As the optimization method is the same in both cases,
we just need to describe how to compute the functional and its gradient. These methods are
implemented in Matlab, Cuda and C and some numerical experiments are shown Section 8 and
9.

7.1 Hypertemplate and tangential setting

Algorithms 1, 2 and 5 give a way to implement the atlas estimation in the tangential setting
described in Section 4.3 when f0 = 0. The principle of the method is illustrated by Figure 3. The
method consists in computing a reduced version based on geodesic shooting and initial momenta
of the functional J tan

0 of equation (51) with Algorithm 1 and its gradient with Algorithm 2 and
then plugging this in the optimization box given by Algorithm 5.
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(x0, 0)

(x̄, f̄)

(x1,f1)

(x2,f2)

(x̃2, f̃
2

)

(x3,f3)

(x4,f4)p
0

p2

Figure 3: The hypertemplate method: the estimated mean template (x̄, f̄) = (φv
p0

1 (x0), f̄) is a
deformed version of the hypertemplate (x0, 0).

More precisely, the inputs are N observations (xi,f i), a hypertemplate (x0,f0) with f0 = 0,
the momenta p0 and p1, · · · ,pN and the functionals f and ζ1, · · · , ζN . All the fshapes should
be provided with their corresponding connectivity matrix. The optimization is conducted on the
reduced version of J tan

0 defined as

J tan
0 (p0,f , (p

i,f i)1≤i≤N )
.
=
γV0

2
|vp0 |2V0

+
γ0f
2
|f |2x

+

N∑

i=1

(γV
2
|vpi |2V +

γf
2
|ζi|2x +

γW
2
g((x̃i, f̃

i
), (xi,f i))

) (78)

in the variables 





(p0,f) ∈ EP × R
P

(pi, ζi) ∈ EP × R
P

with

x = φv
p0

1 .x0, x̃
i = φv

p
i

1 .x, f̃
i
k = f + ζi

(79)

where |l|2x = (D(x)l|l) is the discretization of the L2(X) norm for l = (lk) ∈ R
P defined on the

vertices x ∈ EP as introduced in Section 6.3.
The hypertemplate may be difficult to define and the choice of this initial guess may ob-

viously affect the quality of the atlas estimation. Nevertheless, the outputs of the algorithms
are found to be stable even for the non-trivial experiments shown in Figure 8. We recommend
generating a simple and smooth fshape with a meshing program. This hypertemplate should be
topologically equivalent to the observations as much as possible. Using one of the observations
as the hypertemplate could be tempting but it may induce some bias in the estimated atlas as
the final mean template may contain the same specific features as the chosen observation (recall
that the template is a diffeomorphic deformation of the hypertemplate).

At the end of the minimization procedure, the outputs are: an estimation of the mean
template (x̄, f̄) = (φv

p0

1 .x0, f̄), the momenta (pi)1≤i≤N and the functional residuals (ζi)1≤i≤N

so that (x̃i, f̃
i
) = (φv

p
i

1 .x̄, f̄ + ζi) is close to (xi,f i) for any i = 1, · · · , N .
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Algorithm 1 Computation of the energy J tan
0 with formula (78)

1: Require: A hypertemplate (x0,f0 = 0) and N fshapes (xi,f i).
2: Inputs: A momentum p0, a template signal f and N momenta pi and functional residuals

ζi.
3: Begin

4: Deformation: compute x by forward integration of (x0,p0).
5: for i = 1 to N do

6: Deformation: compute x̃i by forward integration of (x,pi); compute the signal f̃
i ←

f + ζi.
7: Fvarifold norm: compute the fvarifold representation µ

(x̃i,f̃
i
)

and µ(xi,f i); compute

gi ← ‖µ(x̃i,f̃
i
)
− µ(xi,f i)‖2W ′ .

8: Penalty terms: compute |vpi |2V and |ζi|2x.
9: end for

10: Penalty terms: compute |vp0 |2V0
and |f |2x.

11: End

12: Outputs:
γV0
2 |vp0 |2V0

+
γ0

f

2 |f |2x +
∑

i

γf
2 |ζ

i|2x + γV
2 |vp

i |2V + γW
2 gi.

Algorithm 2 Computation of the gradient ∇J tan
0

1: Require: A hypertemplate (x0f0) and N fshapes (xi,f i).
2: Inputs: A momentum p0, a template signal f and N momenta pi and functional residuals

ζi.
3: Begin

4: Deformation: compute x0 by forward integration of (x0,p0).
5: for i = 1 to N do

6: Deformation: compute x by forward integration of (x,pi); compute the signal f̃
i ←

f + ζi.
7: Gradient of gi wrt f , ζi,pi and x: compute directly ∇fgi and ∇ζigi; compute

(∇xgi,∇pigi) by backward integration of (∇x̃igi, 0).

8: Gradient of penalty terms: compute directly ∇x|vp
i |2V , ∇pi |vpi |2V , ∇x|ζi|2x and

∇ζi |ζi|2x.
9: end for

10: Gradient of J tan
0 wrt p0: compute directly ∇p0

|vp0 |2V0
; compute ∇p0

∑

i
(
γf
2 |ζ

i|2x +

γV
2 |vp

i |2V + γW
2 gi) by backward integration of

(
∑

i
∇x(

γf
2 |ζ

i|2x + γV
2 |vp

i |2V ) + γW
2 gi, 0

)

.

11: Gradient of penalty term: compute ∇f |f |2x.
12: End

13: Outputs: ∇p0
J tan

0 =
γV0
2 ∇p0

|vp0 |2V0
+ ∇p0

∑

i
(
γf
2 |ζ

i|2x + γV
2 |vp

i |2V + γW
2 gi); ∇fJ

tan
0 =

γ0

f

2 ∇f |f |2x + γW
2 ∇f

∑

i
gi; ∇piJ tan

0 = γV
2 ∇pi |vpi |2V + γW

2 ∇pigi for i = 1, ..N ; ∇ζiJ tan
0 =

γf
2 ∇ζi |ζi|2x + γW

2 ∇ζigi for i = 1, ..N .

7.2 “Free” mean fshape and tangential model

Algorithms 3, 4 and 5 use a more direct approach to compute a mean fshape compared to the
hypertemplate method of Section 7.1. The general framework is similar but the mean template
is no longer defined as a deformed version of an hypertemplate. The coordinates of the points
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composing the mean template will be directly updated along the gradient descent. Notice that
there is no extra cost as, in Algorithm 2, we compute the gradient ∇xgi in the backward inte-
gration step (see also Section 9.2). The aim of this method is simply to use this gradient directly
to update the mean fshape thereby making the evolution “free” along the optimization process.
Figure 4 gives an illustration of the method.

(xinit,f init)

(x̄, f̄)

(x1,f1)

(x2,f2)

(x̃2, f̃
2

)

(x3,f3)

(x4,f4)

(xt,f t)

p2

Figure 4: The “free” mean template method: the estimated mean template (x̄, f̄) is a gradient-
descent-based update of an initial fshape (xinit,f init). The notation (xt,f t) symbolizes the state
of the mean template at iteration t.

The free mean fshape method is a gradient descent on the following functional:

J tan
free((x,f), (p

i,f i)1≤i≤N )
.
=
γ0f
2
|f |2x +

N∑

i=1

(γV
2
|vpi |2V +

γf
2
|ζi|2x +

γW
2
g((x̃i, f̃

i
), (xi,f i))

)

(80)
in the variables 





(x,f) ∈ EP × R
P ,

(pi, ζi) ∈ EP × R
P

with

x̃i = φv
p
i

1 .x, f̃
i
= f + ζi

(81)

This algorithm does not have yet the same theoretical warranties as those given by Theorem 6 for
the hypertemplate version. We are not able to show, with the same arguments, that there exists
proper minimizers of the continuous counterpart of (80) as the fshape (X, f) is not constrained
to belong to a single fshape bundle. However, we use in practice a regularized gradient descent
to keep the evolution of the template smooth along the minimization. Therefore, if the size of
the updates are small enough, the output of the free mean fshape algorithm may be considered
as a discretization of a smooth deformation of (Xinit, finit) as Property 4.2.1 of [8] shows. This
trick also prevents odd behaviours of the algorithm as discussed in Section 9.2. Compared to the
hypertemplate algorithm of previous section, this numerical scheme still reduces the constraint
imposed on the template evolution which is likely to provide less dependency in the choice of
initialization.

The inputs areN observations (xi,f i), an initial fshape (xinit,f init), the momenta p1, · · · ,pN

and the functionals ζ1, · · · , ζN . All the fshapes should be provided with their respective connec-
tivity matrix. The momenta p1, · · · ,pN are usually initialized to 0 and ζ1, · · · , ζN are usually
initialized to a constant.

At the end of the minimization procedure, the outputs are: an estimation of the mean

template (x̄, f̄), the momenta (pi)1≤i≤N and the functional residuals (ζi)1≤i≤N so that (x̃i, f̃
i
) =

(φv
p
i

1 .x̄, f̄ + ζi) is close to (xi,f i) for any i = 1, · · · , N .
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Algorithm 3 Computation of the energy J tan
free of formula (80)

1: Require: N fshapes (xi,f i).
2: Inputs: A template fshape (x,f), N momenta pi and functional residuals ζi.
3: Begin

4: for i = 1 to N do

5: Deformation: compute x̃i by forward integration of (x,pi); compute the signal f̃
i ←

f + ζi.
6: Fvarifold norm: compute the fvarifold representation µ

(x̃i,f̃
i
)

and µ(xi,f i); compute

gi ← ‖µ(x̃i,f̃
i
)
− µ(xi,f i)‖2W ′ .

7: Penalty terms: compute |vpi |2V and |ζi|2x.
8: end for

9: Penalty term: compute |f |2x.
10: End

11: Outputs:
γ0

f

2 |f |2x +
∑

i

γV
2 |vp

i |2V +
γf
2 |ζ

i|2x + γW
2 gi.

Algorithm 4 Computation of the gradient ∇J tan
free

1: Require: N fshapes (xi,f i).
2: Inputs: A template (x,f), N momenta pi and functional residuals ζi.
3: Begin

4: for i = 1 to N do

5: Deformation: compute xi by forward integration of (x,pi); compute the signal f̃
i ←

f + ζi

6: Gradient of gi wrt f , ζi,pi and x: Compute directly ∇fgi and ∇ζigi; compute
(∇xgi,∇pigi) by backward integration of (∇x̃igi, 0).

7: Gradient of penalty terms: compute directly ∇x|vp
i |2V , ∇pi |vpi |2V , ∇x|ζi|2x and

∇ζi |ζi|2x.
8: end for

9: Gradient of penalty term: compute directly ∇f |f |2x and ∇x|f |2x.
10: End

11: Outputs: ∇xJ
tan
free =

γ0

f

2 ∇x|f |2x+
∑

i
∇x(

γf
2 |ζ

i|2x+ γV
2 |vp

i |2V + γW
2 gi); ∇fJ

tan
free =

γ0

f

2 ∇f |f |2x+
γW
2 ∇f

∑

i
gi; ∇piJ tan

free =
γV
2 ∇pi |vpi |2V + γW

2 ∇pigi for i = 1, · · · , N ; ∇ζiJ tan
free =

γf
2 ∇ζi |ζi|2x+

γW
2 ∇ζigi for i = 1, · · · , N .

7.3 Optimization

An atlas estimation is a smooth, non-convex and high dimensional global optimization problem.
We use an adaptive gradient descent algorithm to solve it numerically. This method is popular
in geometric atlas estimation as it is quite robust and performs relatively well on various real
examples, see [15, 12]. In our geometrico-functional framework, one main issue comes from the
fact that the functionals to minimize depend on various types of variables living in different
spaces: momenta, functional values or points coordinates. Adding the functional part in the
optimization process makes it harder, compared to a pure geometrical approach, as some non
desirable phenomenon may hold. For a thorough discussion, please see Section 9.1.

Let us assume hereafter that we want to minimize a functional J(u1, · · · ,uK) depending on
K ≥ 1 types of variables. For instance, in an atlas estimation of fshapes with a hypertemplate
(see Section 7.1), we have J = J tan

0 and K = 4 (namely the variables f ,p,f i and pi)).
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If the K types of variables are non homogeneous, we note that in practice, the different types
of variables should not be updated at the same speed along the optimization process. It means
that the gradient is not the proper descent direction to follow in order to reach a reasonable
solution. As Algorithm 5 shows, we use K different steps sizes denoted (δi)1≤i≤K and we adapt
them separately. The quality of the final result will depend on a fine balance between the δi’s.

Algorithm 5 Adaptive gradient descent

1: Require: Coefficients used to adapt the step sizes 0 < s− < 1 < s+.
2: Inputs: A functional J and its gradient ∇J = (∇ui

J)Ki=1. Points (uinit
1 , · · · ,uinit

K ) and step
sizes (δinit1 , · · · , δinitK ).

3: Begin

4: Initialize : (u1, · · · ,uK)← (uinit
1 , · · · ,uinit

K ) and (δ1, · · · , δK)← (δinit1 , · · · , δinitK ).
5: repeat

6: Compute Jcur ← J(u1, · · · ,uK) and ∇ui
Jcur ← ∇ui

J (u1, · · · ,uK).
7: Update all the variables simultaneously : compute Jnew ← J (unew

1 , · · · ,unew
K ) where

unew
i ← ui + δi∇ui

Jcur for i = 1, · · · ,K.
8: Adapt steps : if Jnew < Jcur then s← s+ else s← s− end if

9: Declare a boolean to break the following loop: breakLoop ← False.
10: repeat

11: Update each variable separately: for each i = 1, . . . ,K compute Ĵnew
i ←

J(unew
1 , · · · , ûnew

i , · · · ,unew
K ) where ûnew

i ← ui + sδi∇ui
Jcur.

12: Update every variable at the same time: Ĵnew ← J(ûnew
1 , · · · , ûnew

K ).
13: Keep the best configuration: let (u∗

1, · · · ,u∗
K) and (δ∗1 , · · · , δ∗K) be so that

(u∗
1, · · · ,u∗

K) = (u1 + δ∗1∇u1
Jcur, · · · ,uK + δ∗K∇uK

Jcur) satisfies J(u∗
1, · · · ,u∗

K) =

min{Jnew, Ĵnew
1 , · · · , Ĵnew

K , Ĵnew}.
14: if J(u∗

1, · · · ,u∗
K) < Jcur then

15: Update points and steps sizes: (u1, · · · ,uK) ← (u∗
1, · · · ,u∗

K) and
(δ1, · · · , δK)← (δ∗1 , · · · , δ∗K).

16: breakLoop ← True.
17: else

18: Decrease all steps sizes: (δ1, · · · , δK)← (sδ1, · · · , sδK).
19: end if

20: until “breakLoop = True” or “steps sizes are too small”.
21: until “Maximum iteration is reached” or “descent is to small” or “steps sizes are too small”.
22: End

23: Output: Points (u1, · · · ,uK).

Some tricks may be also used to improve the optimization strategy. For instance, it may be
convenient to regularize some part of the gradient as discussed in Section 9. Another efficient
method is to change the fvarifold kernel widths σe, σf , σt along the optimization process. In
that case, the optimization involves several runs: a first gradient descent is performed at coarse
scale by choosing large σe, σf , σt and then a second gradient descent is performed with smaller
σe, σf , σt (with starting point equals to the end point of the first run) and so on.

8 Numerical experiments

8.1 Synthetic dataset

We now present a first set of results of the previous atlas estimation algorithms on a synthetic
dataset of six textured statues constructed using Sculptris software. The set of subjects is
shown on the last row of Figure 7. The atlas is estimated using the free mean fshape tangential
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evolution algorithm of Section 7.2 after the dataset is preregistered with respect to translations.
The template is initialized with a prototype fshape with zero-valued signal everywhere in order
to avoid as much as possible bias toward one particular individual. Figure 5 shows the current
template at several intermediate steps of the estimation. We use all Gaussians for the kernels ke,
kt and kf defining the data attachment terms as in equation (65). The template is obtained by
refining twice the scales σe and σf throughout the process in order to have a coarse estimation
of the atlas in the first place before being able to retrieve finer details from the dataset. The
resulting template captures the average shape and signal behavior of the set of subjects: in
particular, the algorithm tends to recover the signal patterns that are the most shared among the
population, as the uniform coloring of the head for instance.

Figure 5: Template evolution along the gradient descent steps of the algorithm. On the left is
the prototype fshape which serves as the initialization for the template. We use a multiscale
approach that decreases, after a certain number of iterations, the characteristic sizes of the
kernels on geometry and signal.

In addition to the template, we obtain, at convergence, a set of residual signals as well as
deformation momenta that map the template on the different subjects both in terms of shape
and texture. The kernel for the space V of deformation fields is taken as a sum of two Gaussian
kernels, following the approach of [6] which allows to introduce multiscale deformations. We
show two of such mappings in Figure 6. The whole set of shape and texture matchings compared
to the original subjects is finally summed up in Figure 7. In terms of numerics, the subjects of
the dataset are unequally sampled between 2800 and 6500 points while the template of Figure 5
has 7000 points. Using our GPU implementation for kernel computations, each iteration of the
algorithm takes approximately 38 secs for a total atlas estimation time of 3 hours (300 iterations)
on a server equipped with a Nvidia GTX 555.

The dependency in the initialization of the template is also an important issue. Section 9.3
explains how to make the previous procedures independent of rescaling or sampling changes of
the fshapes. But obviously, in both the hypertemplate and ’free’ template evolution algorithm,
the shape of the template is still constrained to live in the diffeomorphic orbit of the initial one.
It results that one cannot expect to remove completely the bias resulting from the initialization’s
choice. In Figure 8, we show the template obtained after convergence for different initializations.
Although these results do demonstrate some variations for the estimated template, they still
show a quite remarkable stability in most of the important geometric and functional features of
the dataset.

34



Template t=1/3 t=2/3 t=1

Figure 6: Mapping of the template on subjects 2 and 5. From left to right, we display the
template and several intermediate time steps of the geometrico-functional transformations, i.e.
(φit(x̄), f̄ + ζit) where ζit = tζi as in formula (76).

Figure 7: Estimated template and the geometrico-functional matchings to each subject.
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Initialization

Estimated template

Figure 8: Variations of the final estimated template with respect to the initialization, respectively
(from left to right) with the same prototype shape as in figure 5 but with constant 0.5 signal,
with the shape of subject 4 and with subject 2.

8.2 OCT dataset

We now present a template estimation performed on a real dataset. The dataset contains surfaces
segmented from volumetric images of the retina acquired by optical coherence tomography (OCT)
as described in [18, 19]. The aim of these measurements is to detect early glaucoma by analysing
changes of conformations of the inner layers of the retina around the optic disc (where the optic
nerve slots into the retina). Data are fshapes: the surfaces represent the lower boundary of the
nerves fiber layer (NFL) and the signals represent the thickness of the NFL. A loss of thickness
may be an indicator of glaucoma. We depict below two typical observations in two different
views: Data 1 is a normal subject in Figures 10b-10c and Data 2 is a glaucoma subject in Figure
11b-11c. The “view 1” has the same scale for the 3 axis and “view 2” is a flipped version of “view
1” where the depth axis has been scaled (×4) to better represent fine reliefs. The typical size of
square boundary ranges from 5 to 7mm and the signal ranges from 0 to 0.3mm. The color scale
for the signal is the same for all the pictures of this Section. The overall geometry of the NFL
boundary does not seem to be challenging but these surfaces contains many boundaries making
the problem hard to handle in practice. We discuss in Section 9.2 how we manage problems arising
from boundary effects. Moreover, the difficulty is increased by the fact that some observations
are not centered and the opening may be closed to the boundary of the acquisition area as in
Figure 11.

We ran our code, using the hypertemplate method described Section 7.1 on a dataset con-
taining 51 observations (19 normal, 25 glaucomatous and 7 suspects). The observations were
preregistered by hand with respect to translations so that the center of the opening is at the ori-
gin. We use downsampled data (raw data contains more than 130000 points and 270000 triangles
each) and each observation contains about 5000 points and 9850 triangles. The hypertemplate
is the flat rectangle with a hole and with a null signal depicted Figure 9a. It contains 5700
points and 11100 triangles. Computations of the mean template (x̄, f̄) (Figure 9b and 9c) and
the deformations took 7 hours (120 iterations) using a server equipped with a Nvidia GTX 555
graphical processor unit.
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(a) Relative positions of the
hypertemplate and Data 1
and 2 (Figures 10 and 11)
(view 1)

(b) Mean template (x̄, f̄)
(view 1)

(c) Mean template (x̄, f̄) (view
2)

Figure 9: The hypertemplate and the estimated mean (computed with the full dataset containing
51 observations).

The estimated template is depicted Figures 9b and 9c. The average shape is a bended version
of the flat hypertemplate which is a reasonable guess. The baseline signal f captures a light but
typical “C”-shaped signal. This blurred signal is due to the rather high variability of signals
across the dataset. The results of the deformations and functional residuals estimations for Data
1 and 2 are given by Figures 10 and 11 respectively. The functional part of all the 51 observations
is well reconstructed and we are now able to compare these signals as they are all defined on the
mean template, see Figure 10d and 11d. The deformations are also satisfying although most of
the energy of the deformations is spent to match the (non informative) outer boundaries as data
are misaligned, compare Figures 10a and 11a.

(a) Relative position of data 1
and the mean template (view
1)

(b) Data 1 (view 1) (c) Data 1 (view 2)

(d) Mean template and the
residuals (x̄, f̄ + ζ1) (view 1)

(e) Deformed mean template

and residuals φv
p
1

.(x̄, f̄+ζ1)
(view 1)

(f) Deformed mean template

and residuals φv
p
1

.(x̄, f̄+ζ1)
(view 2)

Figure 10: Results for Data 1 (control dataset). Figure 10e and 10f should be compared with
Figure 10b and 10c respectively.
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(a) Relative position of data 2
and the mean template (view
1)

(b) Data 2 (view 1) (c) Data 2 (view 2)

(d) Mean template and the
residuals (x̄, f̄ + ζ2) (view 1)

(e) Deformed mean template

and residuals φv
p
2

.(x̄, f̄+ζ2)
(view 1)

(f) Deformed mean template

and residuals φv
p
2

.(x̄, f̄+ζ2)
(view 2)

Figure 11: Results for Data 2 (glaucoma dataset). Figure 11e and 11f should be compared with
Figure 11b and 11c respectively.

9 Numerical pitfalls

In this section, we discuss some issues affecting the quality of the mean template estimation. We
illustrate these problems by numerical experiments and propose some solutions to fix them.

9.1 Mass cancellation

The varifold norm was first introduced in the pure geometrical setting to avoid mass cancellation
appearing with the classical current norms. As orientation matters in the currents’ setting, a
surface with positive area sufficiently crumpled may have an arbitrarily small current norm. This
phenomenon is common in practical applications and particularly during an atlas estimation.
This is described in detail in the introduction of [10] or in the Chapter 3 of [8]. In the (pure
geometrical) varifold setting, the norm of a surface cannot decrease too much when two pieces of
surface are folded: Theorem 3.4.1 in [8] is in some sense a reciprocal inequality to Proposition 4.
Unfortunately, there is no such a control for the fvarifold norm as one can exhibit a functional
surface of positive area and non-zero signal with small fvarifold norm.

We follow here the notations introduced in Section 6. Recall that, in formula (66), the inner
product of two fvarifolds was approximated by a double sum of inner products of Diracs. We
assume hereafter that the kernel fvarifold inner product satisfies the assumptions of Proposition
2. Therefore, by formula (36) we have, for any Diracs δ(x1,V1,f1) and δ(x2,V2,f2):

∣
∣〈δ(x1,V1,f1), δ(x2,V2,f2)〉W ′

∣
∣ ≤ |ke(·, ·)|∞|kt(·, ·)|∞kf (f1, f2) . (82)
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The right hand side of (82) may be arbitrarily small when |f1−f2| is large as kf (f1, ·) is continuous
and vanishes at infinity. It means, in particular, that sufficiently high variations in the signal
make any two Diracs orthogonal with respect to the fvarifold inner product. Now, let (x,f) be a
finite polygonal mesh approximated by a finite sum of Diracs

∑T
ℓ=1 rℓδ(x̂ℓ,Vℓ,f̂ℓ)

. Equations (37)

and (82) yield

‖µ(x,f)‖2W ′ ≤ |ke(·, ·)|∞|kt(·, ·)|∞
( T∑

ℓ=1

r2ℓkf (f̂ℓ, f̂ℓ) +

T∑

ℓ,ℓ′=1,ℓ 6=ℓ′

rℓrℓ′kf (f̂ℓ, f̂ℓ′)
)

. (83)

From here on, we consider the case where ke, kt and kf are the Gaussian kernels of equation (65).

Let 0 < ε < 1 and assume that f̂ℓ = Kσf ℓ for any ℓ = 1, . . . , T and K =
√
− ln ε. Inequality

(83) becomes, in that case :

‖µ(x,f)‖2W ′ ≤
T∑

ℓ=1

r2ℓ +

T∑

ℓ,ℓ′=1,ℓ6=ℓ′

rℓrℓ′ exp(−K2|ℓ− ℓ′|2)

≤ C1(T ) + εC2(T ),

where C1(T ) =
∑T

ℓ=1 r
2
ℓ and C2(T ) =

∑T
ℓ,ℓ′=1,ℓ 6=ℓ′ rℓrℓ′ . Thence, if T remains fixed and K →∞

the fvarifold norm of (x,f) is less of equal to C1(T ). Assuming that the fshape (x,f) is regularly
discretized with P points, we may consider that rℓ ≈ P−1 and C1(T ) ≈ P−1. When the
discretization of a fshape becomes finer, the number T of triangles increases and the fvarifold
norm of (x,f) may be arbitrarily small.

To illustrate this, we consider the discrete version of the variational problem of Proposition
6 in the simple case where N = 1 and γW = 2. It gives:







min
f∈RPx

Jfun(f)

where

Jfun(f) =
γf
2 |f |2x + ‖µ(x,f) − µ(y,g)‖2W ′

(84)

where the source fshape (x,f) ∈ EPx × R
Px and the target fshape (y, g) ∈ EPy × R

Py are two
flat overlapping squares belonging to the same plane, see Figure 12. The source (x,f) contains
Px = 6400 vertices and the target (y, g) contains Py = 400 vertices distinct from the vertices of
x. The meaning of (84) is the following: we are trying to register (x,f) onto the fixed target
(y, g) by tuning the signal f ∈ R

Px of the source only. This is not obvious to figure out what
a good solution of this problem should be. Note that Proposition 6 ensures the existence of a
proper solution of the continuous version of (84) if γf is large enough.

(a) The source (x,f) (b) The target (y, g) (c) (x,f) and (y, g)

Figure 12: The source and target fshapes are respectively a big and a small flat square both
lying in the yz-plane. The initial source signal is 0 and the target signal is 1. Figure 12c simply
depicts the two fshapes together.
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In Figure 13, we show three outputs of an adaptive gradient descent on Jfun with various
choices of penalty parameter γf . We denote f∗ ∈ R

Px the solution found after 800 iterations.
Figure 13a shows the result with no penalty term, i.e γf = 0. The signal f∗ is almost equals
to 1 on the overlapping square whereas f∗ oscillates dramatically on the complementary part
to decrease the fvarifold norm of the remaining part of x. Figure 13b shows that with a small
penalty, we are able to recover a signal close to 1 on the central square but oscillations are still
present though weaker compared to Figure 13a. Finally, Figure 13c shows the solution f∗ found
with a larger γf . The oscillations have almost disappeared and the signal remains small in the
non-overlapping part (in blue). The price to pay is a lower intensity in the central square (around
0.25).

 

 −15

1

15

(a) γf = 0

 

 

−4

1

4

(b) γf = 4

 

 

0

0.4

(c) γf = 20

Figure 13: The fshape (x,f∗) where f∗ is the output of a gradient descent on Jfun of equation
(84) with various value of γf .

Note that this example is an extreme case but such a problem arises in real datasets. In
medical imaging, it is common to get functional data acquired on a subpart of a surface only.
Even with a rigid registration during the preprocessing, subparts with a well defined signal may
be highly non-overlapping on two different subjects. This may yield to oscillating solutions if the
gradient descent is used naively. We note that in practice, regularizing the gradient with respect
to f may fix this issue in some cases. The method is similar to the one described at the end of
Section 9.2 for the geometric part of the gradient.

9.2 Boundary problems

In this section, we discuss some problems arising when the “free” mean template method of Section
7.2 is used with fshapes containing boundaries. An issue concerns the gradient (with respect to x)
of the data attachment terms gi (see Algorithm 3) - note that the following discussion is relevant
both for the purely geometric and functional varifolds or currents framework. The values of the
signal has no influence here and we assume without loss of generality that the signals are 0.
Typical examples of data with boundaries (inspired by the dataset presented in Section 8.2) are
depicted in Figure 14.
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(a) Initialization (xinit, 0) (b) Target (y, 0)

Figure 14: The initial fshape (xinit, 0) is a flat square with a centered opening. The target fshape
(y, 0) is a (non smooth) bended version of (xinit, 0). All the signals are zero.

To illustrate the problem that one can face, let E = R
3 and (y, 0) ∈ EPy × R

Py be a fixed
discrete target fshape as in Figure 14b. We consider the following minimization problem,







min
x∈EP

Jgeo(x)

where

Jgeo(x) = ‖µ(x,0) − µ(y,0)‖2W ′ ,

(85)

Our goal is to study the behaviour of a gradient descent in the variable x = (xk)
P
k=1 ∈ EP on

Jgeo starting from an initial discrete fshape (xinit, 0). In numerical experiments, the gradient
descent on Jgeo does not perform well if the fshape (xinit, 0) contains boundaries as in Figure
14a. The boundary of a discrete fshape is the set of vertices that are an end of an edge belonging
to a single triangle (see Figure 15).

(a) Interior point (b) Boundary point

Figure 15: An example of a typical Delaunay triangulation and the characterization of a boundary
point

The main issue on the gradient of Jgeo is the following. The norm of ∂
∂xk

Jgeo has different
orders of magnitude depending on the location of the points xk in the fshape: gradient of
boundary points may be much larger than gradient of interior points, see Figure 16a. These
unbalanced values between interior points and boundary points in the gradient induce undesirable
effects such as self-crossings or changes in topology during the gradient descent as in Figure 16b.
Note also that the situation becomes worse when the number P of points in x increases.
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10

(a) The arrows represent the initial gra-
dient ∇xJgeo(xinit) on (xinit, 0). The
color represent the norm of this gradi-
ent (logarithmic scale).

(b) Output of the gradient de-
scent after few steps (has to be
compared with 14b).

Figure 16: Gradient descent on Jgeo of equation (85) starting from (xinit, 0) of Figure 14a.

In order to explain the singularities of ∇xJgeo at the boundary points, notice first that
this is sufficient to focus on the gradient of the fvarifold inner product as we have ∇x‖µ(x,f) −
µ(y,g)‖2W ′ = ∇x

〈
µ(x,f), µ(x,f)

〉

W ′
− 2∇x

〈
µ(x,f), µ(y,g)

〉

W ′
. Nevertheless, it is hard to clearly

understand this phenomenon by looking at the discrete formulas directly. It is then convenient to
use the results of Section 3.3.2 whose aim is to analyse the variations of the fvarifold inner product
in the continuous setting. Thence, we may consider that (x, 0) (resp. (y, 0)) is sampled from
a continuous fshape (X, 0) (resp. (Y, 0)) and that

〈
µ(x,0), µ(y,0

〉

W ′
approximates its continuous

counterpart
〈
µ(X,0), µ(Y,0)

〉

W ′
. We further assume that (x, 0) is regularly discretized, so that the

typical size of the interior volume elements rℓ is of order P−1 and the typical size of the boundary

volume elements is of order P− d−1

d .
Formula (40) gives an expression of the variations of

〈
µ(X,0), µ(Y,0)

〉

W ′
when (X, 0) moves.

The right hand side of (40) is composed by two separated integral terms whose domains of inte-
gration are X and its boundary ∂X respectively. This formula then makes clear the differences
between interior points and boundary points. A discrete approximation of the integral over the
interior of X should then involve terms of order P−1 (i.e. the volume of the surface element),
whereas a discrete approximation of the integral over the boundary ∂X should involve terms of

order P− d−1

d (corresponding to the size of the volume element of the boundary). This heuristic
explains why there exists a multiplicative factor between the size of the gradient at interior points
and boundary points. We also know that this factor is of order P

1

d meaning that the difference
increases when the resolution of the discrete fshape (x, 0) increases.

Thus the gradient ∇xJgeo computed thanks to the Euclidean metric involves singular terms
on the boundary. A convenient way to address this problem is to compute a gradient via a more
regular metric. Let us introduce a (conveniently normalized) Gaussian kernel Kreg : Rn×Rn → R

of scale σreg. Let Kreg
x,x

.
=
(
Kreg(xk, xk)

)

1≤k,k′≤P
∈ R

P×P and define

∇̃xJgeo(x)
.
= Kreg

x,x∇xJgeo(x)

This new gradient is, in some sense, a convolution of the singular gradient with a Gaussian
kernel, see Figure 17a. As the kernel Kreg is positive definite, −∇̃Jgeo still defines a descent
direction for Jgeo. Figure 17b shows the output of a regularized gradient descent. This new
gradient can be seen as the discretization of a dense vector field belonging to the RKHS Vreg of
kernel Kreg. The displacement of the template from its initial position in the regularized gradient
descent can be then considered as the integration of a sequence of vector fields living in Vreg. It is
shown in [8] (Property 4.2.1) that the regularized gradient flow is well defined. Thence, provided
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(a) The arrows represent the initial
regularized gradient ∇̃xJgeo(xinit) on
(xinit, 0). The color represent the norm
of the gradient.

(b) Output of the regularized
gradient descent after few steps
(has to be compared with 14b).

Figure 17: Regularized gradient descent on Jgeo of equation (85) starting from (xinit, 0) of Figure
14a.

that the steps along the gradient descent are sufficiently small, the evolution of the points of x
may be considered as a diffeomorphic evolution (belonging to the orbit GVreg .(xinit, 0)). Note
that, in general, σreg can be chosen to be different from the scale σV of the deformations. This
allows more flexibility in the template evolution during the gradient descent and justifies the
methodology used in the algorithm described in Section 7.2.

9.3 Tuning the parameters

The procedure of atlas estimation for fshapes contains numbers of parameters which have to be
tuned by the user. Although there exists some heuristics to choose the values of these parameters,
it may be hard to find a good range of settings for a particular dataset. One of our goals is to
provide an algorithm behaving in a similar way whatever the scale and the resolution of the data
are. In particular, the user should be allowed to tune the parameters at coarse resolution (when
computation times are low) and perform a matching or an atlas estimation at high resolution
with only few updates for the parameters values. Even if these refinements are not fundamental
in theory, it makes the algorithm usable in practice and it has the great advantage of normalizing
the choice of the balance parameters γ0, γ

0
f , γV , γf , γW between the various penalization terms

and the data attachment term, as well as the initial step sizes in Algorithm 5 (these quantities
may vary considerably otherwise).

In this section, J denotes either the functional J tan
0 of equation (78) (Algorithms 1 and 2)

or J tan
free of equation (80) (Algorithms 3 and 4).

9.3.1 Scale invariance

We first describe how we normalize the functional J and its gradient in order to provide an
algorithm with outputs that are invariant if a scaling is applied to the geometry or to the signal
of the fshapes. To do so, we carefully examine the effect of a scaling (in the geometrical or in the
signal space) on each term composing J . Without this normalization step, the balance between
the different terms of J would be modified by scale which is not desirable in practice.

Let us examine the behaviour of the functional when we apply a scaling on the geometrical
space x 7→ x′ = λex ∈ EP and on the signal f 7→ f ′ = λff ∈ R

P for some λe, λf > 0. We
assume that the scale parameters σe and σf of the Gaussian kernels ke and kf are also rescaled
as they measure the size at which the fshapes are compared. These new kernels are denoted k′e
and k′t and they verify k′e(x

′,y′) = ke(x,y) and k′t(f
′, g′) = kt(f , g). The scaled local volume
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elements r′ℓ now satisfy r′ℓ = λderℓ and the scaled momenta p′ = λep so that the displacement
generated by p′ is also scaled. All the terms composing J are normalized in the same way and
we just detail the case of the fvarifold data attachment term gi. By formula (66), we easily see
that the scaled data attachment term is proportional to λ2de and does not depend on the scale of
the signal, namely

g′i((x
′,f ′), (xi′,f i′)) = λ2de gi((x,f), (x

i,f i)).

Therefore, we may compute a normalized version (Re)
−2dgi of gi withRe

.
= maxi

(√

trace(Var(xi))
)

where Var(xi) is the covariance matrix of the points cloud xi. From there on Jn denotes the
functional containing the normalized terms of J (i.e. each term being multiplied by an appro-

priate power of Re and an appropriate power of Rf
.
= maxi

√

Var(f i)). By construction we

(formally) have
Jn(x,p,f) = J ′

n(x
′,p′,f ′)

where J ′
n is computed for σ′e = λeσe and σ′f = λfσf .

We now examine the gradient’s behaviour under scaling. The goal is to keep a similar
dynamic during the gradient descent whatever the (geometric or functional) scales of the fshapes
are. As an illustration, consider the gradient with respect to x: we need Jn(x− δ∇xJn,p,f) =
J ′

n(x
′ − δ∇x′J ′

n,p
′,f ′) which yields to

∇x′J ′
n = λe∇xJn.

As ∇x′g′i = λ−1
e ∇xgi we use the normalized version (Re)

2−2d∇xgi of the gradient ∇xgi. Each
term composing the gradient ∇Jn is then normalized with an appropriate power of Re and Rf

and we denote ∇nJn the normalized version ∇Jn.
In our implementation of algorithm 1 and 3 (resp. 2 and 4), we compute Jn (resp. ∇nJn)

rather than J (resp. ∇J). These normalizations then guarantee that using similar but rescaled
(or translated and rotated) data will provide comparable energies and energy decreases during
gradient descent.

9.3.2 Consistency with respect to P

We now focus on the behaviour of the template estimation algorithm when the sampling of the
discretized template changes. The methodology and notations will be similar to Section 9.3.1.
Assume that we are working with surfaces: we wish to understand qualitatively the asymptotic
behaviour of the expressions of the functional J and its gradient when the mesh on the template
is refined (i.e. when P and T increase). The idea is once again to keep a similar behaviour in the
optimization process at coarse and fine resolutions. We illustrate the invariance with respect to
the number of points by a numerical experiment presented in Figure 18 and 19 where the same
geometrico-functional matching is performed at various resolutions.

Let (xP ,fP )P be a sequence of regularly discrete fshapes sampled from a continuous fshape
(X, f) and containing respectively P points. Let also (pP )P be a sequence of discretized momenta
(sampled from a continuous vector field p) attached to the points of (xP ,fP ). If the discretization
is sufficiently uniform, we may consider that the typical size of a local volume element rℓ is of
order P−1. When the number P of points is large, we then have

|fP |2xP

.
=
∑

ℓ

f̂2ℓ rℓ ≈
∫

X
f2(x)dHd(x)

where f̂ is defined by formula (64). Notice that other discretization methods may be used to
approximate the L2 norm on X as discussed in Section 6.3. If we now assume that ‖µ(xP ,fP ) −
µ(X,f )‖W ′ → 0, then formula (66) implies that

‖µ(xP ,fP )‖2W ′ ≈ ‖µ(X,f)‖2W ′
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when P is large. Finally, if ‖vpP − vp‖V → 0 then the initial velocity fields satisfies

vp
P

(·) =
∑

k=1

K(·, xk)pPk ≈
∫

X
K(·, x)p(x)dHd(x) = vp(·) (86)

when P is large. This means that the magnitude of the momenta should be proportional to the
inverse of the density of points to generate comparable displacements at various resolution. In
particular, the update of the momentums pP should be of order P−1 as equation (86) suggests
and ∇pPJ is multiplied, in our code, by P−1 to be at the right scale. In the same spirit, it can be
shown that the gradients ∇xPJ and ∇fPJ are of order P−1. We then multiply these terms by
P to ensure the homogeneity of the update and keep a similar dynamics along the optimization
procedure even if the resolution of the meshes changes. We provide an example in Figure 18b
where the values of the functional along the gradient descent at various resolutions are plotted.

(a) The source (x,f ) and the target
(x1,f1). Signal f = 0.5 is constant and
f1 is equals to 1 on the head and on the
tail and 0 elsewhere.
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(b) Value of J tan
0

(y-axis) as a function of the step
number (x-axis) at three different resolutions.

Figure 18: Geometrico-functional registrations of an ellipsoid onto a functional version of the
Stanford’s Bunny. The fshapes are depicted in 18a at medium resolution (around 15000 points).
The experiment consists in minimizing the functional J tan

0 of equation (78) in p1 and ζ1 only
(here N = 1). The results are presented Figure 19.
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(a) Geometrico-functional registration (at time t = 0, t = 0.5
and t = 1)

(b) Target

(c) Geometrico-functional registration (at time t = 0, t = 0.5
and t = 1)

(d) Target

Figure 19: Results of registration presented Figure 18. First row: coarse resolution (around
1200 points) computations takes 30 seconds. Second row: high resolution (around 80000 points)
computations take 2.5 hours.

10 Conclusion

In this article, we have proposed a well-formalized and efficient extension of the ideas of shape
spaces for the treatment of functional shapes. To do so, we have introduced the structure
of fshapes’ vector bundle and the metamorphosis setting to model and quantify geometrico-
functional transformations within these bundles. In addition, the concepts of geometric measure
theory (varifolds in particular) were generalized to provide dissimilarity metrics between such
objects. The combination of these settings enabled us to express atlas estimation on populations
of fshapes as a variational problem, for which we were able to prove existence of solutions.

In the second part of the paper, we addressed the issue of providing practical numerical
schemes to efficiently perform the functionals’ optimization. In particular, we detailed the dis-
crete expressions corresponding to the fvarifolds’ data attachment terms, proposed a gradient
descent algorithm for the estimation of all variables in the atlas and carefully examined some
of the important numerical issues related to these algorithms. The resulting codes includes at-
las estimation on populations of classical curves and surfaces and extends it to fshapes. They
shall be made publicly available shortly. This was implemented under the simplified ’tangential
model’ : the full metamorphosis setting derived in the theoretical part of the paper is likely to
be implemented as well in the near future.

Extensions of the present framework are possible in several directions worth exploring as
future work. One of them is to consider fshape bundles modeled on more regular spaces than
L2 and hopefully recover existence of solutions in a more direct way than the proof presented in
this paper, at the price of more involved numerical computations. Another track is to generalize
such a framework to more general spaces of signals (e.g vector fields or tensor fields) and more
general group actions, which has been considered only partially in [8]. Finally, one important
follow-up problem to atlas estimation is the one of statistical analysis and classification based on
these fshape atlases : we have deliberately postponed such questions to an upcoming paper.
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A Variation formula for fvarifolds: proof of Theorem 5

The proof follows the same steps as the corresponding result for usual varifolds (cf [10]). Given
a C1 vector field v on E with compact support, we can consider the 1-parameter group of
diffeomorphisms φt with φ0 = Id and ∂t↾t=0

φt = v. Then, it follows that:

(£(v,h)ω)(x, TxX, f(x)) =
d

dt ↾t=0

(ψ∗
t ω)(x, TxX, f(x))

=
d

dt ↾t=0

|dxφt↾TxX
|.ω(φt(x), dxφt(TxX), f(x) + th(x)) . (87)

As we see, the previous leads to several terms in the derivative: differentiate the volume change
term Jt

.
= |dxφt↾TxX

|, the function ω with respect to the position variable, with respect to the
tangent space direction and to the signal part. The derivative with respect to point positions and

signal values are easy to obtain and equals respectively, since ω is assumed to be C1,

(
∂ω

∂x
|v
)

and
∂ω

∂m
h. The two other terms require more attention.

Derivative of the volume change: For any vector field u defined on X, we shall denote
by u⊤ and u⊥ the tangential and normal components of u with respect to the tangent space of
X at each point. We also introduce the connection ∇·· on the ambient space and an orthonor-
mal frame of tangent vector fields (ei)i=1,..,d on X. Now Jt =

√
det([〈dxφt(ei), dxφt(ej)]i,j) so a

simple calculation shows that:

d

dt ↾t=0

Jt =
d∑

i=1

〈ei,∇eiv〉

Writing v = v⊤ + v⊥ provides a first term
∑d

i=1〈ei,∇eiv
⊤〉 which is the tangential divergence

of the vector field v⊤ denoted usually divX(v⊤). The second term becomes
∑d

i=1〈ei,∇eiv
⊥〉.

For all i = 1, .., d, we have 〈ei, v⊥〉 = 0 so that after differentiation we find that 〈ei,∇eiv
⊥〉 =

−〈∇eiei, v
⊥〉. Therefore:

d∑

i=1

〈ei,∇eiv
⊥〉 = −

d∑

i=1

〈∇eiei, v
⊥〉

= −
〈(

d∑

i=1

∇eiei

)⊥

, v⊥

〉

.

In this last expression, we recognize the mean curvature vector to the submanifold X, which
is the trace of the Weingarten map and is denoted HX . As a result, we find that:

∫

X
ω
d

dt ↾t=0

Jt =

∫

X
ω divX(v⊤)−

∫

X
ω〈HX , v

⊥〉 .

Now, the first term can be rewritten as a boundary integral by applying the Divergence Theorem.
Indeed, if we denote by ω̃ the function defined on X by ω̃(x) = ω(x, TxX, f(x)) which is C1, we
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have divX(ω̃v⊤) = ω̃ divX(v⊤)+ 〈∇ω̃|v⊤〉. Applying the Divergence Theorem (cf [28] Section 7)
on the submanifold X gives:

∫

X
ω divX(v⊤) = −

∫

X
〈∇ω̃|v⊤〉+

∫

∂X
ω〈ν, v⊤〉

where ν is the unit outward normal to the boundary.

Derivative with respect to tangent spaces: We now come to the derivative term on the
tangent space part in equation (87). To explicitly compute variations with respect to variables
in the Grassmann varifold, the most convenient way is to use the embedding of Gd(E) into L(E)
that identifies any subspace V with the orthogonal projector pV on V . With this identification,
one can represent the tangent space at V of Gd(E) as L(V, V ⊥). Then, as explained with more
details in [10], if we set Vt = dxφt(TxX), one can show that:

d

dt ↾t=0

Vt = pTxX⊥ ◦ ∇v↾TxX
∈ L(TxX, (TxX)⊥) .

We can now introduce
∂ω

∂V
as an element of L(TxX,TxX⊥)∗ ≈ (TxX

⊥)∗⊗TxX and which we can

write:
∂ω

∂V
=
∑n

j=d+1 η
∗
j ⊗ αj for (ηd+1, .., ηn) an orthonormal frame of TxX

⊥ and (αj) vectors

of TxX (as usual η∗ denotes the linear form 〈η, .〉). Then the variation we wish to compute is:

(
∂ω

∂V
|∇v

)

=
n∑

j=d+1

〈ηj ,∇αj
v〉 .

If we introduce

(
∂ω

∂V
|v
)

=
∑n

j=d+1 η
∗
j (v)αj =

∑n
j=d+1〈ηj , v〉αj which is a tangent vector field

on X, we have:

divX

(
∂ω

∂V
|v
)

=

d∑

i=1

n∑

j=d+1

(〈ei,∇eiαj〉〈ηj , v〉+ 〈ei, 〈∇eiηj , v〉αj〉+ 〈ei, 〈ηj ,∇eiv〉αj〉)

The last term in the sum is also
∑n

j=d+1〈ηj ,∇αj
v〉, which is nothing else than

(
∂ω

∂V
|∇v

)

. As

for the two other terms in the sum, it is easy to see that it equals:




d∑

i=1

〈ei,∇ei

n∑

j=d+1

η∗j ⊗ αj〉|v



 = (divX

(
∂ω

∂V

)

|v)

Hence, it follows that:
(
∂ω

∂V
|∇v

)

= divX

(
∂ω

∂V
|v
)

− (divX

(
∂ω

∂V

)

|v) (88)

Integrating equation (88) over the submanifold X and using the Divergence Theorem as before,
we find that: ∫

X

(
∂ω

∂V
|∇v

)

=

∫

∂X
〈ν,
(
∂ω

∂V
|v
)

〉 −
∫

X
(divX

(
∂ω

∂V

)

|v) (89)

Synthesis: Summing all the different terms from eq.(87), we eventually obtain:
∫

X
(£(v,h)ω) =

∫

X

(
∂ω

∂x
− divX

(
∂ω

∂V

)

|v
)

−
∫

X
〈∇ω̃|v⊤〉+ ω〈HX |v⊥〉

+

∫

X

∂ω

∂m
.h+

∫

∂X
〈ν,
(
∂ω

∂V
|v
)

+ ωv⊤〉 .
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Now, we remind that ω̃(x) = ω(x, TxX, f(x)) so

(∇ω̃|v⊤) =
(
∂ω

∂x
|v⊤
)

+

(
∂ω

∂V
|∇v⊤

)

+
∂ω

∂m
〈∇f, v⊤〉

and applying the result of equation (88) to v⊤:

(
∂ω

∂V
|∇v⊤

)

= divX

(
∂ω

∂V
|v⊤
)

− (divX

(
∂ω

∂V

)

|v⊤)

We notice that

(
∂ω

∂V
|v⊤
)

= 0 by the expression of
∂ω

∂V
and using the equality v = v⊤ + v⊥ we

find eventually that:

∫

X
£(v,h)ω =

∫

X

(
∂ω

∂x
− divX

(
∂ω

∂V

)

− ωHX |v⊥
)

+
∂ω

∂m
.(h−〈∇f, v⊤〉)+

∫

∂X
〈ν,
(
∂ω

∂V
|v
)

+ωv⊤〉

which proves the result of Theorem 5.

B Proof of Proposition 6

B.1 Perturbation

We introduce now a perturbation process on any measure ν on E × Gd(E) × R that shall be
useful for the following. Let a > 0 to be fixed later and consider for any t ∈ R the function
ρt : R→ R such that

ρt(z) = z + t(sgn(z)a− z)1|z|>a (90)

where sgn(z) is the sign of z. We have ρ0 = IdR and ρ1 is a symmetric threshold at level a. Now
for any t ∈ R, we denote νt the new measure defined for any ω ∈ Cb(E ×Gd(E)× R) as:

νt(ω) =

∫

ω(x, V, ρt(f))dν(x, V, f) . (91)

Obviously ν0 = ν and ν1 is such that ν1(|f | > a) = 0 so that t 7→ νt is an homotopy from ν to a
measure under which the signal is a.e. bounded by a.

B.2 Proof of Lemma 2

We show the existence of a fvarifold minimizer in MX (cf (54)) for the extended functional J̃ .
For any ν ∈MX and t ∈ R, we denote Jt

.
= J̃(νt) where νt is the previously defined perturbation

of ν (cf B.1) and we assume that J0 < ∞ (which is equivalent to say that ν(|f |2) < ∞). We
recall that ‖µ(Xi,f i) − νt‖2W ′ = (µ(Xi,f i) − νt)(ωi) where ωi = KW (µ(Xi,f i) − νt) ∈ W . Then
one easily checks that Jt < ∞ and, since we assume that W is continuously embedded into
C2
0 (E ×Gd(E)× R), with existing derivative J ′

t at any location t given by

J ′
t = ν

(

d

dt
(ρt(f))

(

γfρt(f) + γW

N∑

i=1

∂ωi

∂f
(x, V, ρt(f))

))

(92)

Using again the continuous embedding of W into C2
0 (E×Gd(E)×R) we get for a constant C > 0

that
∣
∣
∣
∣

∂ωi

∂f
(x, V, ρt(f))

∣
∣
∣
∣
≤ C‖ωi‖W

≤ C
(
‖µ(Xi,f i)‖W ′ + ‖νt‖W ′

)
. (93)
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Moreover, as we mentioned after Proposition 4, ‖µ(Xi,f i)‖W ′ ≤ cte.Hd(Xi). Similarly, ‖νt‖W ′ ≤
cte.νt(E×Gd(E)×R) and, since νt ∈MX , we have νt(E×Gd(E)×R) = Hd(X) and consequently
‖νt‖W ′ ≤ cte.Hd(X). Thus, there exists a constant K > 0 such that:

∣
∣
∣
∣

N∑

i=1

∂ωi

∂f
(x, V, ρt(f))

∣
∣
∣
∣
≤ K

N∑

i=1

(

Hd(Xi) +Hd(X)
)

(94)

Noticing now that d
dt (ρt(f)) ρt(f) ≤ 0, that | ddt (ρt(f)) | = 0 for |f | ≤ a and that |ρt(f)| ≥ a

for |f | ≥ a and t ∈ [0, 1], we get for t ∈ [0, 1]

J ′
t ≤ ν

(

−
∣
∣
∣
∣

d

dt
(ρt(f))

∣
∣
∣
∣
1|f |>a

(

γfa− γWK
N∑

i=1

(

Hd(Xi) +Hd(X)
)
))

(95)

so that

J̃(ν1) ≤ J̃(ν0) if a ≥ KγW
γf

N∑

i=1

(

Hd(Xi) +Hd(X)
)

. (96)

An important consequence of (96) is that one can restrict the search of a minimum for J̃ on
fvarifolds ν such that

ν(1|f |>a) = 0 (97)

with a = K γW
γf

∑N
i=1

(
Hd(Xi) +Hd(X)

)
. In particular, since ν ∈MX , we will have

x ∈ X and |f | ≤ a ν a.e. (98)

Since X is bounded and Gd(E) compact, we can restrict the search of a minimum on a measure
supported on a compact subset C ⊂ E ×Gd(E)× R so that we introduce:

MX,C .
= { ν ∈MX | (x, V, f) ∈ C ν a.e. } . (99)

An easy check shows that J̃ is lower semi-continuous on the set MX,C for the weak conver-
gence topology. In addition,MX,C is sequentially compact. Indeed, if νn is a sequence inMX,C

then all νn are supported by the compact C and in particular (νn) is tight. Also, as already
noted, there exists a constant cte independent of n such that νn(E×Gd(E)×R) ≤ cteHd(X) and
thus the sequence is uniformly bounded for the total variation norm. It results, thanks to the
Prokhorov Theorem, that there exists a subsequence of (νn) converging for the weak topology.
These compactness and lower semicontinuity properties guarantee the existence of a minimizer
ν∗ of J̃ with ν∗ ∈MX,C and

J̃(ν∗) ≤ inf
f∈L2(X)

JX(f) . (100)

B.3 Proof of proposition

At this point, we do not yet have a minimizer of JX . The problem is that if the marginal on
E×Gd(E) of ν∗ is the transport ofHd

|X under the application x 7→ (x, TxX), we cannot guarantee

that ν∗ does not weight multiple signal values in the fiber above a location (x, TxX). We will
now show that for large enough γf/γW , there exists f∗ ∈ L2(X) such that ν∗ = νX,f∗ so that we
will deduce

JX(f∗) = J̃(ν∗) ≤ inf
f∈L2(X)

JX(f) (101)

and the existence of a minimizer on L2(X).
Let δf ∈ Cb(E × Gd(E) × R) and for any t ∈ R consider the perturbation νt ∈ MX of any

ν ∈MX,C such that for any g ∈ Cb(E ×Gd(E)× R) we have:

νt(g)
.
=

∫

g(x, V, f + tδf(x, V, f))dν(x, V, f) . (102)
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Here again, the function t 7→ J̃(νt) is differentiable everywhere and we have for ωi .= KW (µ(Xi,f i)−
ν)

d

dt
J̃(νt)

↾t=0

= ν

((

γff + γW

N∑

i=1

∂ωi

∂f
(x, V, f)

)

δf(x, V, f)

)

,

so that when ν = ν∗ we get







γff + γWA(x, V, f) = 0 ν∗ a.e.
with

A(x, V, f)
.
=
∑N

i=1
∂ωi

∂f (x, V, f) .

(103)

The partial derivative of f 7→ γff + γWA(x, V, f) with respect to f equals γf + γW
∂A
∂f (x, V, f).

As before, using the continuous embedding W →֒ C2
0 (E × Gd(E) × R), we have once again a

certain constant K such that

∣
∣
∣
∣

∂A

∂f
(x, V, f)

∣
∣
∣
∣
≤ K

N∑

i=1

(

Hd(Xi) +Hd(X)
)

, for all (x, V, f) ∈ E ×Gd(E)× R. (104)

It results that for γf/γW large enough and for all (x, V ) ∈ E ×Gd(E), f 7→ γff + γWA(x, V, f)
is a strictly increasing function going from −∞ at −∞ to +∞ at +∞ and thus there is a
unique solution f̃(x, V ) to (103). Now, since the application f 7→ γff + γWA(x, V, f) is also
C1 on E ×Gd(E) × R, we deduce from the Implicit Function Theorem that f̃ is a C1 function
on E × Gd(E). Going back to the solution ν∗, we know that for ν∗ almost every (x, V, f) ∈
E ×Gd(E)× R, we have (x, V, f) ∈ C and f = f̃(x, V ), so that |f̃ | ≤ a a.e. For any continuous
and bounded function ω:

ν∗(ω) =

∫

ω(x, V, f)dν∗ =

∫

ω(x, V, f̃(x, V ))dν∗

and if we denote by ω̃(x, V )
.
= ω(x, V, f̃(x, V )) which is a continuous and bounded function on

E ×Gd(E), we have by definition of the space MX (eq.(54)):

ν∗(ω) = ν∗(ω̃) =

∫

X
ω(x, TxX, f̃(x, TxX))dHd(x) . (105)

Therefore, setting f∗(x) = f̃(x, TxX) for x ∈ X, we see that |f∗| ≤ a so that f ∈ L∞(X) and
with (105), we deduce that ν∗ = µ(X,f∗) which shows that the solution of the optimization is a
fvarifold associated to a true fshape (X, f∗). In addition, if X is a Cp submanifold then x 7→ TxX
is a Cp−1 function on X and, if W →֒ Cm

0 (E ×Gd(E)×R) with m ≥ 2 and m ≥ p, A and f̃ are
Cp−1 functions so f∗ is also Cp−1, which concludes the proof of Proposition 6.

C Proof of Theorem 6

We shall basically follow the same steps as in the previous simpler cases. First of all, exactly
as in 5.2.2, existence of a template shape X is guaranteed with the same compacity and lower
semicontinuity arguments. Thus we may assume that X is fixed and we only have to show
existence of minimizers to the simplified functional:

JX(f, (ζi), (vi))
.
=
γf
2

∫

X
|f(x)|2dHd(x)

+
1

2

N∑

i=1

(

‖vi‖2L2([0,1],V ) + γζ

∫

X
|ζi(x)|2dHd(x) + γW ‖µ(Xi,f i) − µ(φvi

1
(X),(f+ζi)◦(φvi

1
)−1)
‖2W ′

)
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Now, as for v0, due to the presence of the penalizations ‖vi‖2L2([0,1],V ), one can assume that

all vector fields vi belong to a fixed closed ball B of radius r > 0 in L2([0, 1], V ). As in the
proof of Proposition 6, we first show existence of a minimizer in a space of fvarifolds. Namely,
extending the definitions of the previous subsections, we introduce the spaceMX of measures ν
on E ×Gd(E)×R×R

N such that for all continuous and bounded function h on E ×Gd(E), we
have:

ν(h) =

∫

h(x, V )dν(x, V, f, (ζi)) =

∫

X
h(x, TxX)dHd(x) .

For a measure ν on E×Gd(E)×R×R
N and a diffeomorphism φ, we denote by φ.ν the transport

of ν by φ defined by:

(φ.ν)(g) =

∫

|dxφ↾V |g(φ(x), dxφ(V ), f, (ζi))dν(x, V, f, (ζi)) .

We now introduce the extended functional:

J̃(ν, (vi))
.
=
γf
2
ν(|f |2) + 1

2

N∑

i=1

(

‖vi‖2L2([0,1],V ) + γζν(|ζi|2) + γW ‖µ(Xi,f i) − (φv
i

1 ).νi‖2W ′

)

for ν ∈ MX , (vi) ∈ (L2([0, 1], V ))N and for all i ∈ {1, .., N}, νi being the fvarifold defined for
all ω ∈W by:

νi(ω) =

∫

ω(x, V, f + ζi)dν(x, V, f, ζi) .

As previously, we can consider the perturbation function ρt acting on signals and the measures

νt(g)
.
=

∫

g(x, V, ρt(f), (ρt(ζ
i)))dν(x, V, f, (ζi)) .

Denoting Jt = J̃(νt, (v
i)), we have, for t ∈ [0, 1],

J ′
t = ν

(

d

dt
(ρt(f))

(

γfρt(f) + γW

N∑

i=1

|dxφv
i

1 ↾V
|.∂ω

i

∂f
(φv

i

(x), dxφ
vi(V ), ρt(f) + ρt(ζ

i))

))

+ ν

(
N∑

i=1

d

dt

(
ρt(ζ

i)
)
(

γfρt(ζ
i) + γW |dxφv

i

1 ↾V
|.∂ω

i

∂f
(φv

i

(x), dxφ
vi(V ), ρt(f) + ρt(ζ

i))

))

(106)

where, for all i ∈ {1, .., N}, ωi = KW (µ(Xi,f i) − (φv
i

1 ).νit). On the first hand, we know that

there exists a constant cte such that for all i, x ∈ E and V ∈ Gd(E), |dxφv
i

↾V
| ≤ cte|dφvi |∞.

In addition, it is a classical result on flows of differential equations (cf [35]) that there exists
a non-decreasing continuous function τ : R+ → R

+ independent of v ∈ L2([0, 1], V ) such that
|dφv1|∞ ≤ τ(‖v‖L2([0,1],V )). Now, using the same controls as in the previous subsections, we have,
on the other hand:

∣
∣
∣
∣

∂ωi

∂f
(φv

i

(x), dxφ
vi(V ), ρt(f) + ρt(ζ

i))

∣
∣
∣
∣
≤
∣
∣
∣
∣

∂ωi

∂f

∣
∣
∣
∣
∞

≤ cte‖ωi‖W
≤ cte(‖µ(Xi,f i)‖W ′ + ‖(φvi1 ).νit‖W ′)

≤ cte(Hd(Xi) + (φv
i

1 ).νit(E ×Gd(E)× R)) .

It is also straightforward that (φv
i

1 ).νit(E × Gd(E) × R)) ≤ cte|dφvi |∞νit(E × Gd(E) × R) and,
using the fact that ν ∈MX as already argued in 5.2.1, νit(E ×Gd(E)×R) = Hd(X). It results,
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from all the previous inequalities, the existence of a non-decreasing continuous function that we
will still call τ such that for all i, x, V, f, ζi:

∣
∣
∣
∣
|dxφv

i

1 ↾V
|.∂ω

i

∂f
(φv

i

(x), dxφ
vi(V ), ρt(f) + ρt(ζ

i))

∣
∣
∣
∣
≤ τ(‖vi‖L2([0,1],V )).(Hd(Xi) +Hd(X)) (107)

Following the same path that previously lead to (95)

J ′
t ≤ ν

(

−
∣
∣
∣
∣

d

dt
(ρt(f))

∣
∣
∣
∣
1|f |>a

(

γf a− γW
N∑

i=1

τ(‖vi‖L2([0,1],V ))
(

Hd(Xi) +Hd(X)
)
))

+

N∑

i=1

ν

(

−
∣
∣
∣
∣

d

dt

(
ρt(ζ

i)
)
∣
∣
∣
∣
1|ζi|>a

(

γζ a− γW τ(‖vi‖L2([0,1],V ))
(

Hd(Xi) +Hd(X)
)))

. (108)

Just as in 5.2.1, this implies that J̃(ν1, (v
i)) ≤ J̃(ν0, (vi)) as soon as:







a ≥ γW
γf

∑N
i=1 τ(‖vi‖L2([0,1],V ))

(
Hd(Xi) +Hd(X)

)

and
a ≥ maxi

γW
γζ
τ(‖vi‖L2([0,1],V ))

(
Hd(Xi) +Hd(X)

)

Therefore, one may restrict the search of a minimum on a set of measures ν that are supported
on a compact subset C of E×Gd×R×R

N , which space we shall denote againMX,C . The rest
of the proof is now very close to the one of 5.2.1. Due to lower semi-continuity of the functional
and the compacity of MX,C and B for the weak convergence topologies (respectively on the
space of measures and on L2([0, 1], V )), we obtain the existence of a minimizer (ν∗, (v

i)∗) for the
functional J̃ .

The last step is to prove that ν∗, which belongs a priori to the measure spaceMX,C , can be
written under the form ν∗ = νX,f∗,(ζi∗)

, i.e that there exists functions f∗ and ζi∗ on X such that,

for all continuous and bounded function g on E ×Gd(E)× R× R
N :

ν∗(g) =

∫

X
g(x, TxX, f∗(x), (ζ

i
∗(x)))dHd(x) (109)

We then consider variations of the signals (δf, (δζi)) all belonging to the space Cb(E ×Gd(E)×
R× R

N ) and the path t 7→ νt defined by:

νt(g) =

∫

g(x, V, f + tδf(x, V, f, (ζi)), (ζi + tδζi(x, V, f, (ζi))))dν∗(x, V, f, (ζ
i)) .

Now, if Jt
.
= J̃(νt, v

i
∗), expressing that J ′

t↾t=0
= 0 for all δf and (δζi) gives, similarly to 5.2.1, the

following set of equations:

(γff, (γζζ
i)) = −A(x, V, f, (ζi)) ν∗-a.e (110)

withA(x, V, f, (ζi))
.
=
(
∑N

i=1
∂ωi

∂f (φ
vi∗
1 (x), dxφ

vi∗
1 (V ), f + ζi), (∂ω

i

∂f (φ
vi∗
1 (x), dxφ

vi∗
1 (V ), f + ζi))

)

. The

derivatives ∂fA and ∂ζiA can be shown again to be uniformly bounded in x, V, f, ζi, and a previ-

ous argument provides the existence of unique solutions f = f̃(x, V ) and ζi = ζ̃i(x, V ) to (110).
The rest of the proof is exactly the same as in the end of appendix B.3: we set f∗(x) = f̃(x, TxX)
and ζi∗(x) = ζ̃i(x, TxX), which are again L∞ functions on X. In addition, one shows easily that
the minimizing measure ν∗ equals νX,f∗,(ζi∗)

in the sense of (109). Finally, the regularity of f∗ and
ζ∗ when X is a Cp submanifold is obtained again by applying the Implicit Function Theorem to
(110).
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D Proof of Theorem 7

We shall only sketch the essential steps to adapt the content of appendix C. We start by writing
(61) in an extensive way. This gives:

J((v0, h0), (vi, hi)) =
γV0

2
‖v0‖2L2([0,1],V0)

+
γf0
2

∫ 1

0

∫

X0

|h0t |2|dxφv
0

1 ↾TxX
|dHd(x) (111)

+
N∑

i=1

(
γV
2
‖vi‖2L2([0,1],V ) +

γf
2

∫ 1

0

∫

X
|hit|2|dxφv

i

1 ↾TxX
|dHd(x) +

γW
2
‖µ(Xi,f i) − µ(φvi

1
(X),(f+ζh

i

1
)◦(φvi

1
)−1)
‖2W ′

)

(112)

Now, with Lemma 3, we know that the optimal functions h0∗ and hi∗ are given by (60) and thus
the variational problem of (111) can be replaced by the optimization with respect to residual
functions ζ0 and ζi living in L2(X) of the functional:

J((v0, ζ0), (vi, ζi)) =
γV0

2
‖v0‖2L2([0,1],V0)

+
γf0
2

∫

X0

C0(x).|ζ0(x)|2dHd(x)

+
N∑

i=1

(
γV
2
‖vi‖2L2([0,1],V ) +

γf
2

∫

X
Ci(x).|ζi(x)|2dHd(x) +

γW
2
‖µ(Xi,f i) − µ(φvi

1
(X),(f+ζi)◦(φvi

1
)−1)
‖2W ′

)

where C0(x)
.
= (
∫ 1
0

1

|dx[φv0
s ◦(φ

v0
1

)−1]
↾TxX

|
ds)−1 and for all i ∈ {1, ..., N}, Ci(x)

.
= (
∫ 1
0

1

|dxφvi
s ↾TxX

|
ds)−1.

But we note that the previous, up to the weights in the L2 metrics given by functions Ci, becomes
now extremely close to the problem examined in Theorem 6. In fact, the proof of appendix C
can be adapted almost straightforwardly to this situation. As previously, the essential step is to
reformulate the optimization problem in a space of measures. Defining the functions:

C̃0(x,H) =

(
∫ 1

0

1

|dx[φv0s ◦ (φv01 )−1]
↾H
|ds
)−1

C̃i(x,H) =

(
∫ 1

0

1

|dxφvis ↾H
|ds
)−1

for i ∈ {1, ..., N} and (x,H) ∈ E ×Gd(E), we can set, with the same definitions as in appendix
C:

J̃(ν, (vi))
.
=
γf0
2
ν(C̃0.|f |2)+1

2

N∑

i=1

(

γV ‖vi‖2L2([0,1],V ) + γfν(C̃
i.|ζi|2) + γW ‖µ(Xi,f i) − (φv

i

)∗ν
i‖2W ′

)

(113)
for ν ∈MX . The rest of the proof follows the same path, relying on the fact that we can assume
the vector fields v0 and vi to be bounded in L2([0, 1], V0) and L2([0, 1], V ) as we explained in
the beginning of appendix C. This implies, as already argued in the same section, that we have
uniform lower and upper bounds for |dxφv

i

s ↾H
|, s ∈ [0, 1] and i ∈ {1, ..., N} and for the quantities

|dx[φv
0

s ◦ (φv01 )−1]
↾H
|. Consequently, we can assume that we have α, β > 0 such that for all

i ∈ {0, ..., N}, α ≤ ‖C̃i‖∞ ≤ β. Using these inequalities, one can check that we get equivalent
controls as in the proof of Theorem 6 which allows us to conclude the existence of a measure
minimizer for the extended functional J̃ and then go back to a fshape solution for J with a
similar implicit functions’ argument.

References

[1] W. Allard. On the first variation of a varifold. Annals of mathematics, 95(3), 1972.

54



[2] F. Almgren. Plateau’s Problem: An Invitation to Varifold Geometry. Student Mathematical
Library, 1966.

[3] S. Arguillere, E. Trélat, A. Trouvé, and L. Younes. Shape deformation analysis from the
optimal control viewpoint. arXiv:1401.0661, Jan 2014.

[4] V. Arnold. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses appli-
cations à l’hydrodynamique des fluides parfaits. Annales de l’Institut Fourier, 16(2):319–361,
1966.

[5] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Computing large deformation metric
mappings via geodesic flows of diffeomorphisms. International journal of computer vision,
61(139-157), 2005.

[6] M. Bruveris, L. Risser, and F. Vialard. Mixture of Kernels and Iterated Semidirect Product
of Diffeomorphisms Groups. Multiscale Modeling and Simulation, 10(4):1344–1368, 2012.

[7] C. Carmeli, E. De Vito, A. Toigo, and V. Umanita. Vector valued reproducing kernel hilbert
spaces and universality. Analysis and Applications, 8(01):19–61, 2010.

[8] N. Charon. Analysis of geometric and functional shapes with extensions of currents. Appli-
cation to registration and atlas estimation. PhD thesis, ENS Cachan, 2013.

[9] N. Charon and A. Trouvé. Functional currents : a new mathematical tool to model and
analyse functional shapes. JMIV, 2013.

[10] N. Charon and A. Trouvé. The varifold representation of non-oriented shapes for diffeomor-
phic registration. accepted for publication in SIAM journal of Imaging Science, 2013.

[11] P. Dupuis, U. Grenander, and M. I. Miller. Variational problems on flows of diffeomorphisms
for image matching. Quarterly of applied mathematics, 56(3):587, 1998.

[12] S. Durrleman. Statistical models of currents for measuring the variability of anatomical
curves, surfaces and their evolution. PhD thesis, Inria Sophia Antipolis, 2009.

[13] H. Federer. Geometric measure theory. Springer, 1969.

[14] J. Glaunès. Transport par difféomorphismes de points, de mesures et de courants pour la
comparaison de formes et l’anatomie numérique. PhD thesis, Université Paris 13, 2005.

[15] J. Glaunès, A. Trouvé, and L. Younes. Diffeomorphic matching of distributions: A new
approach for unlabelled point-sets and sub-manifolds matching. IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2:712–718, 2004.

[16] J. Glaunès and M. Vaillant. Surface matching via currents. Proceedings of Information
Processing in Medical Imaging (IPMI), Lecture Notes in Computer Science, 3565(381-392),
2006.

[17] S. Joshi, B. Davis, M. Jomier, and G. Gerig. Unbiased diffeomorphic atlas construction for
computational anatomy. NeuroImage, 23:S151–S160, 2004.

[18] S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A.
Albiani, M. Young, M. V. Sarunic, and M. F. Beg. Comparative analysis of repeatability
of manual and automated choroidal thickness measurements in nonneovascular age-related
macular degeneration. Investigative Ophthalmology and Vision Science, 53(5):2864–2871,
2013.

55



[19] S. Lee, S. X. Han, M. Young, M. F. Beg, M. V. Sarunic, and P. J. Mackenzie. Optic nerve
head and peripapillary morphometrics in myopic glaucoma. preprint, 2014.

[20] J. Ma, M. I. Miller, A. Trouvé, and L. Younes. Bayesian template estimation in computa-
tional anatomy. NeuroImage, 42(1):252 – 261, 2008.

[21] J. Ma, M. I. Miller, and L. Younes. A bayesian generative model for surface template
estimation. Journal of Biomedical Imaging, 2010:16, 2010.

[22] M. Micheli, P. W. Michor, and D. Mumford. Sobolev metrics on diffeomorphism groups and
the derived geometry of spaces of submanifolds. Izvestiya: Mathematics, 77(3):541, 2013.

[23] P. W. Michor and D. Mumford. A zoo of diffeomorphism groups on R
n. Annals of Global

Analysis and Geometry, 44(4):529–540, 2013.

[24] M. I. Miller, A. Trouvé, and L. Younes. On the metrics and euler-lagrange equations of
computational anatomy. Annual Review of Biomedical Engineering, 4(1):375–405, 2002.

[25] M. I. Miller, A. Trouvé, and L. Younes. Geodesic Shooting for Computational Anatomy.
Journal of Mathematical Imaging and Vision, 24(2):209–228, 2006.

[26] M. I. Miller, L. Younes, and A. Trouvé. Diffeomorphometry and geodesic positioning systems
for human anatomy. TECHNOLOGY, 2(1):36–43, 2014.

[27] F. Morgan. Geometric measure theory, a beginner’s guide. Academic Press, 1995.

[28] L. Simon. Lecture notes on geometric measure theory. Australian national university, 1983.

[29] B. Thibert. Sur l’approximation géométrique d’une surface lisse. Applications en géologie
structurale. PhD thesis, Université Claude Bernard - Lyon 1, 2003.

[30] A. Trouvé. An approach of pattern recognition through infinite dimensional group action.
Rapport de recherche du LMENS, 1995.

[31] A. Trouvé. Diffeomorphisms groups and pattern matching in image analysis. Intern. Jour.
of Computer Vision, 28(3):213–221, 1998.

[32] A. Trouvé and L. Younes. Local geometry of deformable templates. SIAM Journal of
Mathematical Analysis, 37(1):17–59, 2005.

[33] A. Trouvé and L. Younes. Metamorphoses through lie group action. Foundation of compu-
tational mathematics, 5:173–198, sep 2005.

[34] A. Trouvé and L. Younes. Handbook of Mathematical Imaging, chapter Shape spaces, pages
1309–1362. Springer, 2011.

[35] L. Younes. Shapes and diffeomorphisms. Springer, 2010.

56


	Introduction
	Riemannian metamorphosis framework for fshapes
	Fshape bundles
	Metamorphosis distance on fshapes bundles
	Existence of geodesics
	Karcher means on fshape bundles
	The tangential model

	Dissimilarity measure between fshapes
	Dissimilarity measures : state of the art
	Functional varifolds
	Representation of fshapes as functional varifolds
	RKHS of functional varifolds

	Properties of the metrics
	Control results
	Variation formula for fvarifold metrics


	Mathematical formulation of atlas estimation
	Template space
	Variational formulation (metamorphosis riemannian setting)
	Variational formulation (tangential setting)

	Existence results for fshape atlases
	Introduction
	Existence of the template fshape
	Existence with X fixed
	Existence with non-fixed X

	Existence of full fshape atlases (tangential setting)
	Existence in the metamorphosis framework

	A discrete framework for fshape
	Fvarifold norm of polyhedral meshes
	Discrete approximations of continuous fshapes. 
	Shooting equations for the metamorphosis Riemannian framework
	Shooting equations for the tangential setting

	Algorithms to compute mean template of fshapes
	Hypertemplate and tangential setting
	``Free'' mean fshape and tangential model
	Optimization

	Numerical experiments
	Synthetic dataset
	OCT dataset

	Numerical pitfalls
	Mass cancellation
	Boundary problems
	Tuning the parameters
	Scale invariance
	Consistency with respect to P


	Conclusion
	Variation formula for fvarifolds: proof of Theorem 5
	Proof of Proposition 6
	Perturbation
	Proof of Lemma 2
	Proof of proposition

	Proof of Theorem 6
	Proof of Theorem 7

