A. , A. M. Rangel, and R. H. , Numerical investigation of particle?particle and particle? wall collisions in a viscous fluid, J. Fluid Mech, vol.596, pp.437-466, 2008.

B. , G. Davis, and R. H. , Elastohydrodynamic collision and rebound of spheres: experimental verification, Phys. Fluids, vol.31, pp.1324-1329, 1988.

B. , G. Davis, and R. H. , The influence of pressure-dependent density and viscosity on the elastohydrodynamic collision and rebound of two spheres, J. Fluid Mech, vol.209, pp.501-519, 1989.

B. , B. Bonometti, T. Lacaze, L. Thual, and O. , 2013 A simple immersed-boundary method for solid?fluid interaction in constant-and stratified-density flows, Comput. Fluids

B. De-motta, J. C. Breugem, W. Gazanion, B. Estivalezes, J. Vincent et al., Numerical modelling of finite-size particle collisions in a viscous fluid, Physics of Fluids, vol.25, issue.8, p.83302
DOI : 10.1063/1.4817382

URL : https://hal.archives-ouvertes.fr/hal-01078260

H. Brenner, The slow motion of a sphere through a viscous fluid towards a plane surface, Chemical Engineering Science, vol.16, issue.3-4, pp.242-251, 1961.
DOI : 10.1016/0009-2509(61)80035-3

C. , R. G. Brenner, and H. , The slow motion of a sphere through a viscous fluid towards a plane surface?II small gap widths, including inertial effects, Chem. Engng Sci, vol.22, pp.1753-1777, 1967.

C. , P. A. Strack, and O. D. , 1979 A discrete numerical model for granular assemblies, Gèotechnique, vol.29, pp.47-65

D. , R. H. Serayssol, J. &. Hinch, and E. J. , Elastohydrodynamic collision of two spheres, J. Fluid Mech, vol.163, pp.479-497, 1986.

F. , D. Tchoufag, J. Magnaudet, and J. , 2012 The steady oblique path of buoyancy-driven disks and spheres, J. Fluid Mech, vol.707, pp.24-36

F. , E. A. Verzicco, R. Orlandi, P. Mohd-yusof, and J. , Combined immersedboundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys, vol.161, pp.35-60, 2000.

F. , Z. G. Michaelides, E. E. Mao, and S. , 2010 A three-dimensional resolved discrete particle method for studying particle-wall collision in a viscous fluid, J. Comput. Phys, vol.161, pp.35-60

F. , S. F. Louge, M. Y. Chang, H. Allia, and K. , Measurements of the collision properties of small spheres, Phys. Fluids, vol.6, pp.1108-1115, 1994.

G. , P. Lance, M. &. Petit, and L. , Bouncing motion of spherical particles in fluids, Phys. Fluids, vol.14, pp.643-652, 2002.

J. , M. Dusek, J. Bouchet, and G. , Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid, J. Fluid Mech, vol.508, pp.201-239, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01447013

J. , G. G. Hunt, and M. L. , Oblique particle-wall collisions in a liquid, J. Fluid Mech, vol.510, pp.71-93, 2004.

J. , G. G. Zenit, R. Hunt, M. L. Rosenwinkel, and A. M. , Particle-wall collisions in a viscous fluid, J. Fluid Mech, vol.433, pp.329-346, 2001.

K. , T. Fröhlich, and J. , 2012 Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids, J. Fluid Mech, vol.709, pp.445-489

K. , J. Kim, D. Choi, and H. , An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. Comput. Phys, vol.171, pp.132-150, 2001.

L. , L. Phillips, J. C. Kerswell, and R. R. , Planar collapse of a granular column: experiments and discrete element simulations, Phys. Fluids, vol.20, p.63302, 2008.

L. , N. Anthore, R. Cichocki, B. Szymczak, P. Feuillebois et al., Drag force on a sphere moving towards a corrugated wall, J. Fluid Mech, vol.513, pp.247-264, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00160795

L. , D. Daniel, C. Guiraud, and P. , Experimental study of a drop bouncing on a wall in a liquid, Phys. Fluids, vol.17, p.97105, 2005.

L. , D. Zenit, R. Daniel, C. Guiraud, and P. , A note on the modelling of the bouncing of spherical drops or solid spheres on a wall in viscous fluid, Chem. Engng Sci, vol.61, pp.3543-3549, 2006.

L. , X. Hunt, M. L. Colonius, and T. , 2012 A contact model for normal immersed collisions between a particle and a wall, J. Fluid Mech, vol.691, pp.123-145

L. , G. Adams, M. J. Thornton, and C. , Elastohydrodynamic collisions of solid spheres, J. Fluid Mech, vol.311, pp.141-152, 1996.

L. , J. Shen, and H. H. , Collisional restitution dependence on viscosity, J. Engng Mech. ASCE, vol.118, pp.979-989, 1992.

M. , A. Chastel, T. Asmolov, E. S. Vinogradova, and O. , 2013 Effective hydrodynamic boundary conditions for microtextured surfaces, Phys. Rev. E, vol.87, p.11002

M. , A. Lamriben, C. Yahiaoui, S. Feuillebois, and F. , The approach of a sphere to a wall at finite Reynolds number, J. Fluid Mech, vol.661, pp.229-238, 2010.

P. , G. Ten-cate, A. Derksen, J. J. Arquis, and E. , Assessment of the 1-fluid method for dns of particulate flows: sedimentation of a single sphere at moderate to high Reynolds numbers, Comput. Fluids, vol.36, pp.359-375, 2007.

R. , D. Quéré, and D. , Bouncing water drops, Europhys. Lett, vol.50, pp.769-775, 2000.

S. , J. Dippel, S. Wolf, and D. E. , Force schemes in simulations of granular materials, J. Phys. I France, vol.6, pp.5-20, 1996.
URL : https://hal.archives-ouvertes.fr/jpa-00247176

S. , J. A. Calantoni, and J. , 2012 Modeling mechanical contact and lubrication in direct numerical simulations of colliding particles, Intl J. Multiphase Flow, vol.46, pp.38-53

S. , J. R. Leighton, and D. , 1989 Measurement of the hydrodynamic surface roughness of noncolloidal spheres, Phys. Fluids A, vol.1, pp.52-60

T. Cate, A. Nieuwstad, C. H. Derksen, J. J. Van-den-akker, and H. E. , Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity, Physics of Fluids, vol.14, issue.11, pp.4012-4025, 2002.
DOI : 10.1063/1.1512918

Y. , F. Hunt, and M. L. , Dynamics of particle?particle collisions in a viscous liquid, Phys. Fluids, vol.18, 2006.

Y. , F. Hunt, and M. L. , A mixed contact model for an immersed collision between two solid surfaces, Phil. Trans. R. Soc. Lond. A, vol.366, pp.2205-2218, 2008.

Y. , Y. Takeuchi, S. Kajishima, and T. , Efficient immersed boundary method for strong interaction problem of arbitrary shape object with the self-induced flow, J. Fluid Sci. Technol, vol.2, pp.1-11, 2007.