Regularity Results and Large Time Behavior for Integro-Differential Equations with Coercive Hamiltonians

Abstract : In this paper we obtain regularity results for elliptic integro-differential equations driven by the stronger effect of coercive gradient terms. This feature allows us to construct suitable strict supersolutions from which we conclude Hölder estimates for bounded subsolutions. In many interesting situations, this gives way to a priori estimates for subsolutions. We apply this regularity results to obtain the ergodic asymptotic behavior of the associated evolution problem in the case of superlinear equations. One of the surprising features in our proof is that it avoids the key ingredient which are usually necessary to use the Strong Maximum Principle: linearization based on the Lipschitz regularity of the solution of the ergodic problem. The proof entirely relies on the Hölder regularity.
Type de document :
Article dans une revue
Calculus of Variations and Partial Differential Equations, Springer Verlag, 2015, 54 (1), pp.535-572. <10.1007/s00526-014-0794-x>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00980228
Contributeur : Guy Barles <>
Soumis le : jeudi 17 avril 2014 - 16:02:17
Dernière modification le : mercredi 12 juillet 2017 - 01:15:42
Document(s) archivé(s) le : lundi 10 avril 2017 - 15:11:42

Fichiers

bklt-final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Guy Barles, Shigeaki Koike, Olivier Ley, Erwin Topp. Regularity Results and Large Time Behavior for Integro-Differential Equations with Coercive Hamiltonians. Calculus of Variations and Partial Differential Equations, Springer Verlag, 2015, 54 (1), pp.535-572. <10.1007/s00526-014-0794-x>. <hal-00980228>

Partager

Métriques

Consultations de
la notice

493

Téléchargements du document

173