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Abstract. We study the behavior of the critical price of an American put option near maturity in the jump
diffusion model when the underlying stock pays dividends at a continuous rate and the limit of the
critical price is smaller than the stock price. In particular, we prove that, unlike the case where the
limit is equal to the strike price, jumps can influence the convergence rate.

Key words. American put, Lévy processes, critical price, free boundary, jump diffusion, convergence rate

AMS subject classifications. 60H30, 60J75, 91G80

DOI. 10.1137/140965910

1. Introduction. The behavior of the critical price of the American put near maturity has
been deeply investigated. Its limit was characterized in the Black–Scholes model (see [5, 13]) by

b(T ) := lim
t→T

b(t) = min
(r
δ
K,K

)
,

where r and δ denote the interest rate and the dividend rate and b(t) is the critical price at
time t.

This result was generalized to more general exponential Lévy models in [7]. In fact,
denoting d̄ = r − δ −

∫
(ey − 1)+ν(dy), 1 with ν the Lévy measure of the underlying Lévy

process, we have

b(T ) = K if d̄ ≥ 0

and

b(T ) = ξ if d̄ < 0,

where ξ is the unique solution, in [0,K], of

(1) rK − δx−
∫

(xey −K)+ν(dy) = 0.

In the Black–Scholes model, the quantity d̄ reduces to d̄ = r − δ and we distinguish,
according as d̄ > 0, d̄ = 0, and d̄ < 0, different behaviors of the critical price near maturity.
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In fact, Barles et al in [1] (see also Lamberton [6]) established, in the case where d̄ > 0 (which
implies b(T ) = K), that

(2)
K − b(t)
σK

∼t→T
√

(T − t)| ln(T − t)|,

where the expression f ∼t→a g (or f ∼a g) is equivalent to limt→a
f(t)
g(t) = 1. The cases d̄ < 0

and d̄ = 0 were investigated by Lamberton and by Villeneuve in [14] and they obtained as
follows: If d̄ = 0 (which also implies b(T ) = K)

K − b(t)
σK

∼t→T
√

2(T − t)| ln(T − t)|.

If d̄ < 0 (b(T ) < K), there exists y0 ∈ (0, 1), which is characterized thanks to an auxiliary
optimal stopping problem, such that

b(T )− b(t)
σb(T )

∼t→T y0

√
(T − t).

Note that y0 can also be characterized more explicitly as the solution of an equation (see [14]).
The critical price has also been studied in the jump diffusion model. In fact, Pham proved

in [11] that the result (2), obtained in [1, 6], remains exactly the same in the jump diffusion
model, in the case where d̄ > 0 and δ = 0. This remains true if δ > 0 (see [10]).

The purpose of this paper is to study the convergence rate of the critical price of the
American put, in the jump diffusion model, with d̄ ≤ 0. Considering the results of Pham
in [11], we expect to obtain the same results as the study performed by Lamberton and
Villeneuve in the Black–Scholes model when (d̄ = r − δ ≤ 0 ), meaning that jumps do not
have any influence on the convergence rate. Surprisingly, we obtain the expected result only
for the case d̄ = 0. Indeed, we obtain for d̄ = 0 (see Theorem 5.1)

K − b(t)
σK

∼t→T
√

2(T − t)| ln(T − t)|,

and for d̄ < 0 (see Theorem 4.7)

b(T )− b(t)
σb(T )

∼t→T yλ,β
√

(T − t),

where yλ,β is a real umber satisfying yλ,β ≥ y0, and depending on ν({ln(K/b(T ))}) we can
have yλ,β > y0. This point will be discussed in more detail in section 4.3.

This study is composed of four sections. In section 1, we recall some useful results on the
American put which will be used throughout this study. In section 2, we give some results
on the regularity of the American put price and the early exercise premium. In section 3, we
investigate the case where the limit of the critical price is far from the singularity K (we refer
to this as the regular case). Indeed, we then have enough regularity to give an expansion of the
American put price near maturity from which the critical price behavior will be deduced. The
method is similar to the one used in [14] and is based on an expansion of the American put
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price along parabolas. However, the possibility that the stock price jumps into a neighborhood
of the exercise price produces a contribution of the local time in the expansion. Section 4 is
devoted to the study of the case d̄ = 0. In this case b(T ) = K; hence we no longer have enough
smoothness to obtain an expansion around the limit point (T, b(T )). Then we will study the
behavior of the European critical price be(t) instead of b(t). Thereafter, we prove that b(t)
and be(t) have the same behavior.

2. Preliminaries. In the jump diffusion model, under a risk-neutral probability which is
used as a pricing measure, the risky asset price is modeled by (St)t≥0, given by

St = S0e
X̃t with X̃t = (r − δ)t+ σBt −

σ2

2
t+ Zt − t

∫
(ey − 1)ν(dy),

where r > 0 is the interest rate, δ ≥ 0 the dividend rate, (Bt)t≥0 a standard Brownian motion,
and (Zt)t≥0 a compound Poisson process and ν its Lévy measure. We then have

dSt = St−
(
γ0dt+ σdBt + dZ̄t

)
with Z̄t = Σ0<s≤t(e

∆Zs − 1) and γ0 = r− δ−
∫

(ey− 1)ν(dy).

Denote by F the completed natural filtration of the process X̃t and suppose throughout this
paper that the following assumptions are satisfied:

σ > 0, ν(R) <∞,
∫
eyν(dy) <∞, and d̄ = r − δ −

∫
y>0

(ey − 1)ν(dy) ≤ 0.

The price of an American put with maturity T > 0 and strike price K > 0 is given, at
t ∈ [0, T ], by P (t, St) with P defined for all (t, x) ∈ [0, T ]× R+ by

P (t, x) = sup
τ∈T0,T−t

E
(
e−rτψ(xeX̃τ )

)
with ψ(y) = (K − y)+,

where T0,T−t is the set of all F-stopping times taking values in [0, T − t].
The value function P can also be characterized (see [7]) as the unique continuous and

bounded solution of the variational inequality

max

{
ψ − P ;

∂P

∂t
+AP − rP

}
= 0 (in the sense of distributions)

with the terminal condition P (T, .) = ψ. Here, A is the infinitesimal generator of the process
S. The free boundary of this variational inequality is called the exercise boundary, and at
each t ∈ [0, T ], the critical price is given by

b(t) = inf
{
x > 0 | P (t, x) > (K − x)+

}
.

It was proved in [7] that if d̄ ≤ 0, then

(3) lim
t→T

b(t) = ξ := b(T ),
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where ξ is the unique solution, in [0,K], of rK = δx+
∫

(xey −K)+ν(dy). Note that if d̄ = 0,
then b(T ) = ξ = K.

Finally, recall that the price of a European put with maturity T and strike price K is
given, at time t, by

Pe(t, x) = E
(
e−r(T−t)(K − ST−t)+ | S0 = x

)
.

The quantity (P −Pe) is called the early exercise premium; we then have P (t, x) = Pe(t, x) +
e(T − t, x). Setting θ = T − t, then the early exercise premium, e(θ, x), is characterized for
the American put in the exponential Levy model as follows (see [10]):

e(θ, x) = E
{∫ θ

0
e−rs

×
(
rK − δSxs −

∫
y>0

[P (t+ s, Sxs e
y)− (K − Sxs ey)] ν(dy)

)
1{Sxs<b(t+s)}ds

}
.

Here Sxs = xeX̃s . We also define, for all t ∈ (0, T ), the European critical price, be(t), as the
unique solution of

F (t, x) = Pe(t, x)− (K − x) = 0.

It easy to check that for all t ∈ (0, T ), be(t) is well defined, be(t) ∈ (0,K). It is also straight-
forward that Pe ≤ P ; therefore b(t) ≤ be(t) ≤ K.

3. Regularity estimate for the value function in the jump diffusion model. In this
section, we study the spatial derivatives behavior of P , Pe, and e(θ, x) near (T, b(T )). We
also give a lower bound for the second spatial derivative near (T, b(T )). These results will be
proved in Appendix A.

Lemma 3.1. Under the model assumption, we have the following
1. For all x ∈ (0, be(t) ∧ b(T )], we have, as θ(= T − t) goes to 0,∣∣∣∣ ∂e∂x(θ, x)

∣∣∣∣ =
1

x
o(
√
θ)

with o(
√
θ) uniform with respect to x.

2. For all x ∈ (0, b(T ) ∧ be(t)], we have

∂P

∂x
(t, x) + 1 =

(
1 +

1

x

)
o(
√
θ)

with o(
√
θ) uniform with respect to x.

Lemma 3.2. According to the hypotheses of the model, we have, for all b(t) ≤ x < b(T ) ∧
be(t) and for all θ = T − t small enough, the following inequality:

inf
b(t)<u<x

u2σ2

2

∂2P

∂x2
(t, u) ≥

(
δ̂ − ε(θ)

)
(b(T )− x)− λKE

(
σBθ − ln

(
b(T )

x

))+

+ o(
√
θ)

with limθ↓0 ε(θ) = 0, δ̂ = δ +
∫
{y>ln(K/b(T ))} e

yν(dy), λ = ν{ln( K
b(T ))}.



240 AYCH BOUSELMI AND DAMIEN LAMBERTON

4. Regular case. We begin this section by introducing an auxiliary optimal stopping
problem which will be needed for deriving the expansion of the American put price near
maturity along a parabolic branch. Once we have this expansion we will be able to derive the
convergence rate of the critical price.

4.1. An auxiliary optimal stopping problem. Let β be a nonnegative number and (Bs)s≥0

be a standard Brownian motion with local time at x denoted by L̃x. We denote by T0,1 the
set of all σ(Bt ; t ≥ 0)-stopping times with values in [0, 1]. Consider also a Poisson process
(Ns)s≥0, independent of B, with intensity λ; we denote by T̂1 its first jump time and by T̂0,1

the set of all σ ((Nt, Bt) ; t ≥ 0)-stopping times with values in [0, 1]. We define the functions
υλ,β as follows:

vλ,β(y) = sup
τ∈T̂0,1

E
[
eλτ1{Nτ=0}

∫ τ

0
fλβ(y +Bs)ds+

β

2
eλτ1{Nτ=1}

(
L−yτ (B)− L−y

T̂1
(B)

)]
,

where fa(x) = x + ax+. Notice that vλ,β is a nonnegative function. Moreover, we have the
following.

Lemma 4.1. Define
yλ,β = − inf{x ∈ R | vλ,β(x) > 0}.

We have 0 < yλ,β < 1 + λβ(2 + eλ) and

∀y < −yλ,β, vλ,β(y) = 0.

We finish this subsection with an inequality, which will be used to derive a lower bound
for the second derivative of P (see the proof of the upper bound in Theorem 4.7).

We define the function C on R by C(x) = x− λβ E(B1 − x)+ and we have the following
lemma.

Lemma 4.2. For all x > yλ,β, we have

C(x) > 0.

These results will be proved in Appendix B.

4.2. American put price expansion. Throughout this section, we assume d̄ < 0, so that
b(T ) < K. We then have enough regularity of the American put price to derive an expansion
of P around b(T ) along a certain parabolic branch.

Theorem 4.3. Let a be a negative number (a < 0) and let b(T ) denote the limit of b(t) when
t goes to T , b(T ) = limt→T b(t). If d̄ < 0, we have

P (T − θ, b(T )ea
√
θ) = (K − b(T )ea

√
θ)+ + Cθ

3
2υλ,β

(a
σ

)
+ o(θ

3
2 ),

where C = σb(T )δ̂, with λ = ν{ln K
b(T )}, δ̂ = δ +

∫
y>ln(K/b(T )) e

yν(dy) and υλ,β(y) as defined

in the previous section with β = K
b(T )δ̂

.

Remark 1. Notice that if ν does not charge ln(K/b(T )), meaning that λ = 0 and T̂1 =
∞ a.s., then

υλ,β(a) = υ0(a) = sup
τ∈T0,1

E
(∫ τ

0
(a+Bs) ds

)
.
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In this case, the American put price will have the same expansion as in the Black–Scholes
model (see [9]).

The proof of Theorem 4.3 will require some estimates for the local time at K of the process
(St)t≥0, which we denote by (LKt )t≥0. In fact, the main difference with the approach used in
the Black–Scholes case lies in this analysis of the local time. The process LK can be derived
from the Ito–Tanaka formula (see [12]):

(K − St)+ = (K − S0)+ +

∫ t

0
(−1{Ss≤K})Ss(γ0ds+ σdBs)(4)

+
∑

0<s≤t

(
(K − Ss)+ − (K − Ss−)+

)
+

1

2
LKt .

The following proposition provides an expansion of ELKτ for stopping times τ with values in
[0, θ] with θ close to 0.

Proposition 4.4. We assume b(T ) < K. Let a be a fixed negative number, a < 0, and

S0 = b(T )ea
√
θ.

• We have lim sup
θ↓0

E(LKθ )

θ3/2
<∞. Moreover, if ν{ln( K

b(T )} = 0, lim sup
θ↓0

E(LKθ )

θ3/2
= 0.

• If ν{ln(K/b(T ))} 6= 0, then we have, for all F-stopping time τ with values in [0, θ],

E
(
LKτ
)

= 2KE
[(

(−a
√
θ − σBτ )+ − (−a

√
θ − σBT̂1)+

)
1{T̂1<τ}

]
+ o(θ

3
2 ),

where T̂1 = inf{s ≥ 0 ; ∆Xs = ln( K
b(T ))} and o(θ3/2) is uniform with respect to τ .

For the proof of Proposition 4.4, we will need an elementary estimate for the expectation
of the local time of Brownian motion.

Lemma 4.5. For all real number a and for all t > 0, we have

0 ≤ E(a−Bt)+ − a+ ≤
√
t
e−

a2

2t

√
2π
.

Proof of Lemma 4.5. The first inequality follows from Jensen’s inequality. For the other
inequality, we have

E(a−Bt)+ =

∫ a/
√
t

−∞
(a−

√
ty)e−y

2/2 dy√
2π

= a

∫ a/
√
t

−∞
e−y

2/2 dy√
2π

+
√
t
e−

a2

2t

√
2π
.

Then, if a ≤ 0,

E(a−Bt)+ ≤
√
t
e−

a2

2t

√
2π
.

If a ≥ 0, we can write

E(a−Bt)+ − a = −a
∫ +∞

a/
√
t
e−y

2/2 dy√
2π

+
√
t
e−

a2

2t

√
2π
≤
√
t
e−

a2

2t

√
2π
.
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Before proving Proposition 4.4, we state and prove an estimate for E(LKθ | S0 = x).
Lemma 4.6. There exists a positive constant C such that for all x > 0 and for all θ > 0,

we have

E
(
LKθ | S0 = x

)
≤ Cx

(√
θ exp

(
−(K − x)2

2x2σ2θ

)
+ θ

)
.

Proof of Lemma 4.6. We will use the notation Ex for E(. | S0 = x). Taking expectations
in (4) and using the compensation formula (see, for instance, [3]), we have

1

2
Ex
(
LKθ
)

= Ex(K − Sθ)+ − (K − S0)+ + Ex
[∫ θ

0

(
γ0Ss1{Ss≤K} −

∫
Ψ(Ss, y)ν(dy)

)
ds

]
,

where Ψ(x, y) = (K − xey)+ − (K − x)+.
We deduce easily from this equality that

1

2
Ex
(
LKθ
)

= Ex(K − Sθ)+ − (K − x)+ + xO(θ)

with O(θ) independent of x. We have, with the notation Z̃θ = Zθ − θ
∫

(ey − 1)ν(dy),

Ex(K − Sθ)+ − (K − x)+ = Ex(K − xe(r−δ−σ
2

2
)θ+σBθ+Z̃θ)+ − (K − x)+.

We also have

E
∣∣∣∣e(r−δ−σ

2

2
)θ+σBθ+Z̃θ − eσBθ

∣∣∣∣ = eσ
2θ/2E

∣∣∣∣e(r−δ−σ
2

2
)θ+Z̃θ − 1

∣∣∣∣
= O(θ).

Therefore

Ex(K − Sθ)+ − (K − x)+ = E(K − xeσBθ)+ − (K − x)+ + xO(θ)

= E(K − x(1 + σBθ))
+ − (K − x)+ + xO(θ)

= xσ

(
E
(
K − x
xσ

−Bθ
)+

−
(
K − x
xσ

)+
)

+ xO(θ).

Hence, using Lemma 4.5 above,

Ex(K − Sθ)+ − (K − x)+ ≤ xσ
√
θ/(2π) exp

(
−(K − x)2

2x2σ2θ

)
+ xO(θ).

Proof of Proposition 4.4. Let T1 be the first jump time of the process Z. We will use the
following decomposition:

LKθ = LKθ∧T1 + LKθ − LKθ∧T1 = LKθ∧T1 + 1{T1<θ}
(
LKθ − LKT1

)
.

Estimating ELKθ∧T1
. In the stochastic interval [0, T1[, the process (St) matches the

process (Št) defined by

Št = S0e
(γ0−σ

2

2
)t+σBt .
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We deduce (when observing that the process LK is continuous) that

LKθ∧T1 = ĽKθ∧T1 ≤ Ľ
K
θ ,

where ĽK is the local time at K of the process Š. Note that

1

2
ĽKθ = (K − Šθ)+ − (K − S0)+ −

∫ θ

0
(−1{Šs≤K})Šs(γ0ds+ σdBs).

As the process (ĽKθ ) increases only on {Št = K}, we have

ĽKθ = ĽKθ 1{τ̌K<θ},

where τ̌K = inf{t ≥ 0; Št > K}. Note that τ̌K = inf{t ≥ 0; (γ0 − σ2

2 )t+ σBt > ln(K/S0)}, so
that, with our assumptions on S0, we have P(τ̌K ≤ θ) = o(θn) for all n > 0. By Hölder,

EĽKθ ≤ (P(τ̌K < θ))
1− 1

p ||ĽKθ ||p, p > 1.

We easily deduce that EĽKθ = o(θn) for all n > 0, so that ELKθ∧T1 = o(θn) for all n > 0.

Estimating E
[
1{T1<θ}

(
LKθ − LKT1

)]
. By the strong Markov property, we have

E
[
1{T1<θ}

(
LKθ − LKT1

)]
≤ E

[
1{T1<θ}

(
LKT1+θ − LKT1

)]
= E

(
1{T1<θ}EST1(L

K
θ )
)
,(5)

where Ex is the expectation associated to Px and Px defines the law of St when S0 = x.
Using Lemma 4.6, we deduce

E
[
1{T1<θ}

(
LKT1+θ − LKT1

)]
≤ CE

(
1{T1<θ}ST1

(
√
θ exp

(
−(K − ST1)2

2S2
T1
σ2θ

)
+ θ

))
.(6)

At this stage, we notice that P(T1 ≤ θ) = O(θ) and that, conditionally on {T1 ≤ θ}, T1 is
uniformly distributed on [0, θ].

As ZT1 is independent of both T1 and B, we see that, conditionally to {T1 < θ}, ST1 has
the same law as the random variable ζθ defined by

ζθ = K exp

{
(V − ln(K/b(T ))) +

√
θ

(
a+

(
γ0 −

σ2

2

)√
θU + σg

√
U

)}
,

where U , g, and V are independent random variables, U is uniform on [0, 1], g is standard
Gaussian, and V has the same law as ZT1 . Therefore, the estimate (6) can be rewritten as
follows:

E
[
1{T1<θ}

(
LKT1+θ − LKT1

)]
≤ C
√
θP(T1 < θ)E

(
ζθ

(
exp

(
−(K − ζθ)2

2ζ2
θσ

2θ

)
+
√
θ

))
(7)

≤ C
√
θP(T1 < θ)E

(
ζθ

(
1 +
√
θ
))

.(8)
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Clearly, with probability one,

lim
θ→0

ζθ = K exp

(
V − ln

(
K

b(T )

))
,

and we easily deduce from (8) that E
[
1{T1<θ}

(
LKT1+θ − LKT1

)]
= O(θ3/2). We can now conclude

that E(LKθ ) = O(θ3/2).

Moreover, if we assume ν{ln( K
b(T ))} = 0, we have V − ln( K

b(T )) 6= 0 a.s., so that limθ→0 ζθ 6=
K a.s. and, by dominated convergence,

lim
θ↓0

E
(
ζθ exp

(
−(K − ζθ)2

2ζ2
θσ

2θ

))
= 0.

Therefore, using (7), E
[
1{T1<θ}

(
LKT1+θ − LKT1

)]
= o(θ3/2), hence

E
(
LKθ | S0 = b(T )ea

√
θ
)

= o(θ3/2).

Expansion of E
(
LKτ

)
, in the case where ν{ln( K

b(T )
)} > 0. For the proof of the

second part of the proposition, we assume ν{ln( K
b(T ))} > 0, and we introduce the processes X̂

and Ẑ such that

Ẑt =
∑
s<t

∆X̃s1{∆X̃s=ln K
b(T )
} and X̂ = X̃ − Ẑ,

and T̂1 = inf{s ≥ 0, Ẑt 6= 0}.
For any stopping time with values in [0, θ], we have

E
(
LKτ
)

= E
(
LKτ∧T1

)
+ E

(
LKτ − LKτ∧T1

)
= E

(
LKτ − LKτ∧T1

)
+ o(θ3/2),

where we have used the inequality E
(
LKτ∧T1

)
≤ E

(
LKθ∧T1

)
and the fact (observed in the first

step of the proof) that E
(
LKθ∧T1

)
= o(θ3/2).

We now observe that since T1 ≤ T̂1 and τ ≤ θ,

0 ≤ E
(
LK
τ∧T̂1

− LKτ∧T1
)
≤ E

(
LK
θ∧T̂1

)
.

On the stochastic interval [0, T̂1), the process X̃ matches the process X̂ whose Lévy measure
does not charge the point ln(K/b(T )). So, we have E(LK

θ∧T̂1
) = E(L̂K

θ∧T̂1
) ≤ E(L̂Kθ ), where

L̂K is the local time at K of the process S obtained by replacing X̃ with X̂ in the definition
of S. Since the Lévy measure of X̂ does not charge ln(K/b(T )), we deduce from the above
discussion that E(L̂Kθ ) = o(θ3/2). Hence

E
(
LKτ
)

= E
(
LKτ − LKτ∧T̂1

)
+ o(θ3/2).
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Going back to (4) and using again the compensation formula, we have

1

2
E
(
LKτ − LKτ∧T̂1

)
= E

(
(K − Sτ )+ − (K − Sτ∧T̂1)+

)
+E

[∫ τ

τ∧T̂1

(
γ0Ss1{Ss≤K} −

∫
Ψ(Ss, y)ν(dy)

)
ds

]
with Ψ(x, y) = (K − xey)+ − (K − x)+. Note that∣∣∣∣E [∫ τ

τ∧T̂1

(
γ0Ss1{Ss≤K} −

∫
Ψ(Ss, y)ν(dy)

)
ds

]∣∣∣∣ ≤ E
(

1{T̂1<θ}

∫ θ

0
j(Ss)ds

)
with j(z) = |γ0|z +

∫
|Ψ(z, y)|ν(dy). Since the function Ψ is bounded, we easily derive

E(1{T̂1<θ}
∫ θ

0 j(Ss)ds) = O(θ2), so that

1

2
E
(
LKτ − LKτ∧T̂1

)
= E

(
(K − Sτ )+ − (K − Sτ∧T̂1)+

)
+O(θ2)

= E
[
1{T̂1<τ}

(
(K − Sτ )+ − (K − ST̂1)+

)]
+O(θ2).

We now argue that up to O(θ2), we have at most one jump before θ. More precisely, let
(Nt)t≥0 be the counting process of the jumps of Z, so that

Nθ =
∑

0<s≤θ
1{∆X̃s 6=0} =

∑
s≤θ

1{∆Zs 6=0}.

We have P(Nθ ≥ 2) = O(θ2), so that

E
[
1{T̂1<τ}

(
(K − Sτ )+ − (K − ST̂1)+

)]
= E

[
1{T̂1<τ,Nθ≤1}

(
(K − Sτ )+ − (K − ST̂1)+

)]
+O(θ2).

On {T̂1 < τ,Nθ ≤ 1}, we have, for T̂1 ≤ s ≤ θ,

Ss = S0e
X̂s+ẐT̂1 = S0e

X̂sK/b(T ) = Kea
√
θ+X̂s = Kea

√
θ+µs+σBs ,

where µ = γ0 − σ2

2 . Therefore

1

2
E
(
LKτ − LKτ∧T̂1

)
= KE

[
1{T̂1<τ}

(
(1− ea

√
θ+µτ+σBτ )+ − (1− ea

√
θ+µT̂1+σBT̂1 )+

)]
+O(θ2)

= KE
[(

(−a
√
θ − µτ − σBτ )+−(−a

√
θ − µT̂1 − σBT̂1)+

)
1{T̂1<τ}

]
+O(θ2)

= KE
[(

(−a
√
θ − σBτ )+ − (−a

√
θ − σBT̂1)+

)
1{T̂1<τ}

]
+O(θ2).

The last two equalities follow from P(T̂1 < τ) = O(θ),
∣∣(1− ex + x)1{x≤0}

∣∣ ≤ x2

2 , and the fact

that E (Bτ )2 ≤ θ.
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Proof of Theorem 4.3. First of all, we recall our notation X̌t = X̃t − Zt, Št = S̃t/e
Zt , and

T1 the first jump time T1 = inf{t > 0|Zt 6= 0}, and from now on we consider S0 as a function

of θ. More precisely, we denote by Sθ0 = b(T )ea
√
θ = ex0+a

√
θ with a < 0 and x0 = ln(b(T )).

We deduce from (4) and the compensation formula that for all stopping times τ ∈ T0,θ,

E
[
e−rτ (K − Sτ )+

]
− (K − S0)+

= E
[∫ τ

0

(
e−rs1{Ss≤K}

(
−rK + δSs + Ss

∫
(ey − 1)ν(dy)

)
+ e−rs

∫ [
(K − Ssey)+ − (K − Ss)+

]
ν(dy)

)
ds

]
+

1

2
E
(∫ τ

0
e−rsdLKs

)
= Ia(τ) + J a(τ),(9)

where, with the notation Ψ(x, y) = (K − xey)+ − (K − x)+,

Ia(τ) = E
[∫ τ

0

(
e−rs1{Ss≤K}

(
−rK + δSs + Ss

∫
(ey − 1)ν(dy)

)
+ e−rs

∫
Ψ(Ss, y)ν(dy)

)
ds

]
and

J a(τ) =
1

2
E
(∫ τ

0
e−rsdLKs

)
.

Note that since τ ≤ θ, E
(∫ τ

0 (1− e−rs)dLKs
)
≤ rθE(LKθ ), so that using Proposition 4.4,

J a(τ) =
1

2
E
(
LKτ
)

+O(θ1+ 3
2 )

= KE
[(

(−a
√
θ − σBτ )+ − (−a

√
θ − σBT̂1)+

)
1{T̂1<τ}

]
+ o(θ

3
2 ).(10)

Estimating Ia. First of all, note that we have

E
[∫ τ

0

(
e−rs1{Ss>K}

∫ ∣∣(K − Ssey)+− (K − Ss)+
∣∣ ν(dy)

)
ds

]
≤ Kν(R)

∫ θ

0
P{Ss > K}ds

≤ Kν(R)

∫ θ

0
P{Ss > K,T1 > θ}+ P{Ss > K,T1 ≤ θ}ds

≤ Kν(R)

(∫ θ

0
P{Šs > K}ds+ θP{T1 ≤ θ}

)
= O(θ2).

Here, we have used the fact that with the notation τ̌K = inf{t ≥ 0; Št > K}, P(Šs > K) =
P(τ̌K ≤ s) ≤ P(τ̌K ≤ θ) = o(θn) for all n > 0, as observed in the proof of Proposition 4.4.

We can now write

Ia(τ) = E
[∫ τ

0
e−rs1{Ss≤K}

(
−rK + δSs +

∫
(Ss(e

y − 1) + Ψ(Ss, y)) ν(dy)

)
ds

]
+O(θ2)

= E
(∫ τ

0
e−rs1{Ss≤K}

(
−rK + δSs +

∫
(Sse

y −K)+ν(dy)

)
ds

)
+O(θ2),
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where the last equality follows from

1{x≤K}
(
x(ey − 1) +

[
(K − xey)+ − (K − x)+

])
= (xey −K)+1{x≤K}.

We can also omit e−rs in the expression as an error of the order of O(θ2). Then we obtain,
for all stopping times τ with values in [0, θ],

Ia(τ) = E
(∫ τ

0
1{Ss≤K}

(
−rK + δSs +

∫
(Sse

y −K)+ν(dy)

)
ds

)
+O(θ2).

We denote

h(x) = −rK + δex +

∫
(exey −K)+ν(dy)

and recall that St = Sθ0e
X̃t = b(T )ea

√
θ+X̃t = b(T )eX̃

a
√
θ

t = ex0+X̃a
√
θ

t , where X̃y
t = y+ X̃t . We

thus have

Ia(τ) = E
(∫ τ

0
1{a
√
θ+X̃s≤ln K

b(T )
}h(x0 + a

√
θ + X̃s)ds

)
︸ ︷︷ ︸

(I)

+o(θ
3
2 ).(11)

Now, we will try to express the quantity (I) under a more appropriate form. The first step is
to neglect the contribution of the finite variation part of the process X̃. Notice that∣∣1{x≤ln(K)}h(x)

∣∣ ≤ K(r ∨ |d̄|) and |h(x)− h(y)| ≤ |ex − ey|
(
δ +

∫
eyν(dy)

)
.

Moreover, for all (x, y) ∈ R2, we have∣∣1{x≤ln(K)}h(x)− 1{y≤ln(K)}h(y)
∣∣

=
∣∣(h(x)− h(y)) 1{x∨y≤ln(K)} + h(x)1{x≤ln(K)<y} − h(y)1{y≤ln(K)<x}

∣∣
≤ A0 |ex − ey| 1{x∨y≤ln(K)} +A1

(
1{ln(K)<y} + 1{ln(K)<x}

)
,

where A1 = K(r ∨ |d̄|) and A0 = δ +
∫
eyν(du). Let kb = ln( K

b(T )) > 0 and recall that

X̃t − σBt = (γ0 − σ2

2 )t+ Zt; then∣∣∣1{x0+a
√
θ+X̃s≤lnK}h(x0 + a

√
θ + X̃s)− 1{x0+a

√
θ+σBs≤lnK}h(x0 + a

√
θ + σBs)

∣∣∣
≤ A0

∣∣∣ex0+a
√
θ+X̃s − ex0+a

√
θ+σBs

∣∣∣ 1{X̃s∨σBs≤kb−a√θ} +A1(1{kb−a
√
θ<σBs} + 1{kb−a

√
θ<X̃s})

≤ A0b(T )eσBs
∣∣∣∣e(γ0−σ

2

2
)s+Zs − 1

∣∣∣∣+A1(1{kb<σBs} + 1{kb<X̃s}),

where the last inequality is due to a < 0 and ex0 = b(T ).
Note that for all s ∈ [0, θ],

P(kb < σBs) ≤ P
(

kb

σ
√
θ
< B1

)
≤ C
√
θe−

k2b
2σ2θ .
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Moreover, for θ small enough, we have kb
2 < kb − (γ0 − σ2

2 )s, so that

P(kb < X̃s) ≤ P

(
kb − (γ0 − σ2

2 )s

σ
√
θ

< B1

)
+ P(T1 ≤ θ) ≤ C

√
θe−

k2b
8σ2θ +Aθ

and

E
(
eσBs

∣∣∣∣e(γ0−σ
2

2
)s+Zs − 1

∣∣∣∣) ≤ eσ22 s ∣∣∣∣e(r−δ−σ
2

2
)s − 1

∣∣∣∣+ e
σ2

2
sE
∣∣∣eZs−s ∫ (ey−1)ν(dy) − 1

∣∣∣ ≤ Dθ.
Hence, ∫ θ

0
E
(∣∣∣1{x0+a

√
θ+X̃s≤lnK}h(x0 + a

√
θ + X̃s)

− 1{x0+a
√
θ+σBs≤lnK}h(x0 + a

√
θ + σBs)

∣∣∣) ds = O(θ2).

Thanks to this estimation, (11) becomes

Ia(τ) = E
(∫ τ

0
1{ξa,θs ≤ln K

b(T )
}h(x0 + ξa,θs )ds

)
+ o(θ

3
2 ),(12)

where

ξa,θs = a
√
θ + σBs.

We will now use an expansion of h around x0. When h is differentiable at x0, we have
h(x0 + y) = h(x0) + yh′(x0) + o(y). As we will see, when ν{ln(K/b(T ))} >, there is a jump
in the derivative that modifies the expansion.

The function h is convex; therefore it has right-hand and left-hand derivatives everywhere.
Particularly, we have, for x < ln(K),

h′g(x) = ex
(
δ +

∫
ey1{y>ln(K)−x}ν(dy)

)
and

h′d(x) = ex
(
δ +

∫
ey1{y≥ln(K)−x}ν(dy)

)
.

Hence, we can write

h′d(x0)(x− x0)+ − h′g(x0)(x− x0)− ≤ h(x)− h(x0) ≤ h′g(x)(x− x0)+ − h′d(x)(x− x0)−,

and hence

0 ≤ h(x)−
(
h(x0) + h′d(x0)(x− x0)+ − h′g(x0)(x− x0)−

)
≤
(
h′g(x)− h′d(x0)

)
(x− x0)+ +

(
h′g(x0)− h′d(x)

)
(x− x0)−

=
(
h′g(x ∨ x0)− h′d(x ∧ x0)

)
|x− x0|.
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Thanks to the equation characterizing b(T ) when d̄ < 0, we have h(x0) = h(ln(b(T )) = 0. We
thus obtain, by setting ∆h′(x0) = h′d(x0)− h′g(x0),

h(x0 + x) = ∆h′(x0)x+ + h′g(x0)x+ |x| R̃(x),

where R̃(x) −→x→0 0, and

0 ≤ R̃(x) ≤
(
h′g(x0 + x+)− h′d(x0 − x−)

)
≤ L (1 + ex) ,

with L a positive constant. We can then write

1{ξa,θs ≤ln K
b(T )
}h(x0 + ξa,θs )

=
(

∆h′(x0)(ξa,θs )+ + h′g(x0)ξa,θs

)(
1− 1{ξa,θs >ln K

b(T )
}

)
+
∣∣∣ξa,θs ∣∣∣ R̃(ξa,θs )1{ξa,θs ≤ln K

b(T )
}.(13)

We claim that

E
∫ θ

0

∣∣∣ξa,θs ∣∣∣ R̃(ξa,θs )1{ξa,θs ≤ln K
b(T )
}ds = o(θ

3
2 )(14)

and

E
∫ θ

0

∣∣∣∆h′(x0)(ξa,θs )+ + h′g(x0)ξa,θs

∣∣∣ 1{ξa,θs >ln K
b(T )
}ds = o(θ

3
2 ).(15)

Indeed, for (14), we have, by setting s = uθ and using the fact that ξa,θθu has the same

distribution as
√
θξa,1u ,∣∣∣∣E(∫ θ

0

∣∣∣ξa,θs ∣∣∣ R̃(ξa,θs )1{ξa,θs ≤ln K
b(T )
}ds

)∣∣∣∣
= θ

3
2

∫ 1

0
E
[∣∣ξa,1u ∣∣ R̃(

√
θξa,1u )1{

√
θξa,1u ≤ln K

b(T )
}

]
du.

As |R̃(x)| ≤ L(ex + 1) and |R̃(x)| −→x→0 0, we have by dominated convergence

lim
θ↓0

(∫ 1

0
E
[∣∣ξa,1u ∣∣ R̃(

√
θξa,1u )

]
du

)
= 0.

This proves (14). For (15), we have, for some positive constant C,

E
∫ θ

0

∣∣∣∆h′(x0)(ξa,θs )+ + h′g(x0)ξa,θs

∣∣∣ 1{ξa,θs >ln K
b(T )
}ds

≤ C
√
θ

∫ θ

0
E
[(
|a|+ σ

√
s

θ
|B1|

)
1{a+σ

√
s/θB1>

1√
θ

ln K
b(T )
}

]
ds

≤ Cθ
3
2

√
E (|a|+ |B1|)2

√
P
{
a+ σB1 >

1√
θ

ln
K

b(T )

}
= O(θn).
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Going back to (13), we deduce from (14) and (15)

Ia(τ) = h′g(x0)E
∫ τ

0
ξa,θs ds+ ∆h′(x0)E

∫ τ

0

(
ξa,θs

)+
ds+ o(θ

3
2 ),

= b(T )δ̂E
(∫ τ

0

(
a
√
θ + σBs

)
+ λβ

(
a
√
θ + σBs

)+
ds

)
+ o(θ

3
2 )(16)

with δ̂ = δ +
∫
y>ln K

b(T )
eyν(dy), β = K

b(T )δ̂
, λ = ν{ln K

b(T )} and we recall that h′g(x0) = b(T )δ̂

and ∆h′(x0) = Kν{ln K
b(T )}, so that λβ = ∆h′(x0)

h′g(x0) .

Going back to (9) and using (10) and (16), we obtain

E
(
e−rτ (K − Sτ )+

)
= (K − S0)+ + E

(
b(T )δ̂

∫ τ

0

(
a
√
θ + σBs + λβ(a

√
θ + σBs)

+
)
ds

)
+K1{T̂1<τ}

(
(a
√
θ + σBτ )+ − (a

√
θ + σBT̂1)+

)
+ o(θ3/2)

with o(θ3/2) uniform with respect to τ . Hence

P (T − θ, b(T )ea
√
θ) = (K − b(T )ea

√
θ)+ + σb(T )δ̂v̄λ,β,θ(a/σ) + o(θ3/2),

where v̄λ,β,θ is defined by

v̄λ,β,θ(y) = sup
τ∈T0,θ

E
(∫ τ

0
fλβ(y

√
θ +Bs)ds+ β1{T̂1<τ}

(
(y
√
θ +Bτ )+ − (y

√
θ +BT̂1)+

))
with fa(x) = x + ax+. Recall that β = K/(b(T )δ̂). To simplify the expression of v̄λ,β,θ, we
notice first that if we set Bθ

t = Bθt/
√
θ, we can write

v̄λ,β,θ =
√
θ sup
τ∈T0,θ

E
(∫ τ

0
fλβ(y +Bθ

s/θ)ds+ β1{T̂1<τ}

(
(y +Bθ

τ/θ)
+ − (y +Bθ

T̂1/θ
)+
))

=
√
θ sup
τ∈T0,θ

E

(
θ

∫ τ/θ

0
fλβ(y +Bθ

s )ds+ β1{T̂1<τ}

(
(y +Bθ

τ/θ)
+ − (y +Bθ

T̂1/θ
)+
))

.

We also notice that τ ∈ T0,θ if and only if τ/θ ∈ T θ0,1, where T θ0,1 is the set of the stopping
times of the filtration (Fθt)t≥0, with values in [0, 1], so that

v̄λ,β,θ =
√
θ sup
τ∈T θ0,1

E
(
θ

∫ τ

0
fλβ(y +Bθ

s )ds+ β1{T̂1<θτ}

(
(y +Bθ

τ )+ − (y +Bθ
T̂1/θ

)+
))

.

Note that v̄λ,β,θ(y) does not change if we replace T θ0,1 by T̂0,1 the set of the stopping times of

the natural filtration of the couple (Bθ
t , N̂θt), where N̂ is defined by

N̂t =
∑

0<s≤t
1{∆Zs=ln(K/b(T ))}.
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The process (N̂θt)t≥0 is a Poisson process with intensity θλ, where λ = ν{ln(K/b(T ))}. Under
the probability P̂, defined by

dP̂
dP

= θN̂1e−λ(θ−1),

the process (Bt, N̂t)0≤t≤1 has the same law as (Bθ
t , N̂θt)0≤t≤1. Observe that (θN̂te−λt(θ−1))t≥0

is a martingale. Hence,

v̄λ,β,θ(y) =
√
θ sup
τ∈T0,1

E
[
θN̂1e−λ(θ−1)

(
θ

∫ τ

0
fλβ(y +Bs)ds+ β1{T̂1<τ}

× ·
(

(y +Bτ )+ − (y +BT̂1)+
))]

=
√
θ sup
τ∈T0,1

E
[
θN̂τ e−λτ(θ−1)

(
θ

∫ τ

0
fλβ(y +Bs)ds+

β

2
1{T̂1<τ}

(
L−yτ (B)− L−y

T̂1
(B)

))]
,

where L−y(B) denotes the local time of B at −y. We have for τ ∈ T0,1,

E
[
θN̂τ e−λτ(θ−1)

(
θ

∫ τ

0
fλβ(y +Bs)ds

)]
= θE

[
1{N̂τ=0}e

−λτ(θ−1)

(∫ τ

0
fλβ(y +Bs)ds

)]
+θRτ ,

and if θ ≤ 1

|Rτ | ≤ θE
[
1{N̂τ≥1}e

−λτ(θ−1)

(∫ 1

0
|fλβ(y +Bs)|ds

)]
= O(θ).

Hence,

E
[
θN̂τ e−λτ(θ−1)

(
θ

∫ τ

0
fλβ(y +Bs)ds

)]
= θE

[
1{N̂τ=0}e

λτ

(∫ τ

0
fλβ(y +Bs)ds

)]
+O(θ2).

Besides,

E
[
θN̂1e−λ(θ−1)1{T̂1<τ}

(
L−yτ (B)− L−y

T̂1
(B)

)]
= E

[
θN̂τ e−λτ(θ−1)1{T̂1<τ}

(
L−yτ (B)− L−y

T̂1
(B)

)]
= θE

[
eλτ1{N̂τ=1}

(
L−yτ (B)− L−y

T̂1
(B)
)]

+O(θ2).

We then have

v̄λ,β,θ(y) = θ3/2vλ,β(y) + o(θ3/2)

with

vλ,β(y) = sup
τ∈T0,1

E
[
eλτ1{N̂τ=0}

∫ τ

0
fλβ(y +Bs)ds+

β

2
eλτ1{N̂τ=1}

(
L−yτ (B)− L−y

T̂1
(B)

)]
.

Finally, we obtain

P (T − θ, b(T )ea
√
θ)− (K − b(T )ea

√
θ) = θ

3
2 (σb(T )δ̂)υλ,β

(a
σ

)
+ o(θ

3
2 ).
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4.3. Convergence rate of the critical price. Thanks to the expansion given in Theo-
rem 4.3, we are now able to state the first main result of this paper.

Theorem 4.7. Under the hypothesis of the model and d̄ < 0, we have as follows.

If ν{ln K
b(T )} = 0, then we have

lim
t→T

b(T )− b(t)
σb(T )

√
(T − t)

= y0

with y0 = − sup{x ∈ R ; v0(x) = supτ∈T0,1 E(
∫ τ

0 (x+Bs)ds) = 0}.
If ν{ln K

b(T )} > 0, we then have

lim
t→T

b(T )− b(t)
σb(T )

√
(T − t)

= yλ,β

with yλ,β as defined in Lemma 4.1, with

λ = ν

{
ln

K

b(T )

}
, β =

K

b(T )δ̂
and δ̂ = δ +

∫
y>ln(K/b(T ))

eyν(dy).

Proof of Theorem 4.7.

According to Theorem 4.3, we have for all a < 0,

P (T − θ, b(T )ea
√
θ) = (K − b(T )ea

√
θ)+ + Cθ

3
2υλ,β

(a
σ

)
+ o(θ

3
2 ).

Lower bound for b(T ) − b(t). Specifically, we have for all a > −σyλ,β, where yλ,β is
defined by Lemma 4.1,

υλ,β

(a
σ

)
> 0;

we thus obtain for θ close to 0,

P (t, b(T )ea
√
θ) > (K − b(T )ea

√
θ),

and then

ln(b(T )) + a
√
θ > ln(b(t)),

hence

b(T )− b(t)
b(t)
√
θ

> −a.

Noting that since r > 0 we have b(T ) > 0, and by making t tend to T , then a to −σyλ,β, we
obtain

lim inf
t→T

b(T )− b(t)
b(T )
√
T − t

≥ σyλ,β.



CRITICAL PRICE BEHAVIOR IN JUMP DIFFUSION MODEL 253

Upper bound for b(T )−−b(t). Let’s consider a ≤ −σyλ,β. We thus have υλ,β( aσ ) = 0
and consequently,

P (t, b(T )ea
√
θ)− (K − b(T )ea

√
θ) = g(θ)

with g(θ) = o(θ
3
2 ).

In addition, we have for all b(t) < x < K,

P (t, x)− P (t, b(t))− (x− b(t))∂P
∂x

(t, b(t)) =

∫ x

b(t)
(u− b(t))∂

2P

∂x2
(t, du)

since ∂2P
∂x2

(t, du) is a positive measure on ]0,+∞[. As the smooth fit is satisfied, ∂P
∂x (t, b(t)) =

−1 (see [8]), we have for all b(t) < x < K,

P (t, x)− (K − x) =

∫ x

b(t)
(u− b(t))∂

2P

∂x2
(t, du).

Then, for b(t) < x = b(T )ea
√
θ, we have according to Lemma 3.2,

u2σ2

2

∂2P

∂x2
(t, u) ≥ b(T )δ̂

(
(1− ea

√
θ)− λβ

√
θσE

(
B1 +

a

σ

)+
)

+ o(
√
θ)

≥ b(T )δ̂
√
θσ

(
−a
σ
− λβE

(
B1 +

a

σ

)+
)

+ o(
√
θ).

Hence

P (t, x)− (K − x) ≥ [(x− b(t))+]2b(T )δ̂

(
C(− a

σ )

b(0)2σ

√
θ + o(

√
θ)

)
,

where C(x) = x− λβE(B1 − x)+. Due to Lemma 4.2 and to the continuity of C(x), we have,
for −aσ close enough to yλ,β, C(− a

σ ) > 0. Moreover,

P (t, b(T )ea
√
θ)− (K − b(T )ea

√
θ) = g(θ) = o(θ

3
2 ).

Therefore, for θ small enough, there exists a positive constant A such that

(17) [(b(T )ea
√
θ − b(t))+]2 ≤ Ab(0)2σ2 g(θ)

C(− a
σ )
√
θ

= o(θ),

(b(T )ea
√
θ − b(t))+ = o(

√
θ),

and then, for θ small enough,
b(T )− b(t)
b(T )
√
θ
≤ −a+ o(1).

Finally, by making a tend to −σyλ,β, we obtain

lim sup
t→T

b(T )− b(t)
b(T )
√
T − t

≤ σyλ,β.
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5. Limit case. In this part, we consider the limit case where d̄ = r−δ−
∫
y>0(ey−1)ν(dy) =

0. We then have the next theorem.
Theorem 5.1. According to the model hypothesis, if d̄ = 0, then we have

lim
t→T

K − b(t)
σK
√

(T − t)| ln(T − t)|
=
√

2.

The method for proving Theorem 5.1 consists (as in the Black–Scholes case) of analyzing
the behavior of the European critical price be(t) introduced in section 1. Afterward we prove
that the behavior of the critical price b(t) is similar by controling the difference b(t)− be(t).

Let us denote

α(θ) =
ln( K

be(t)
)− µθ

σ
√
θ

,

where µ = γ0 − σ2

2 = r − δ −
∫

(ey − 1)ν(dy)− σ2

2 .
Proposition 5.1. Under the model hypothesis, if d̄ = 0, then we have

(i) α(θ) ∼
√

2 ln(1
θ ),

(ii) limθ→0
K−be(t)

σK
√
|θ ln(θ)|

=
√

2.

Proof of Proposition 5.1. Since b(t) ≤ be(t) ≤ K and b(t)→ K, we clearly have
√
θα(θ) −→θ→0 0.

We will first prove that α(θ) −→θ→0 +∞ or, equivalently,

(18) lim
θ→0

K − be(t)
σ
√
θ

= +∞.

We have

(19) K − be(t) = e−rθE
[(
K − be(t)eX̃θ

)+
]
.

Therefore

K − be(t)√
θ

= e−rθE

[(
K − be(t)√

θ
+ be(t)

1− eX̃θ√
θ

)+]

= e−rθE

[(
K − be(t)√

θ
+ be(t)

1− eσ
√
θB1+µθ+Zθ
√
θ

)+]
.

Now, if we notice that 1−eσ
√
θB1+µθ+Zθ√
θ

−→p.s
θ→0 −σB1, we have by the Fatou lemma

lim inf
θ→0

K − be(t)√
θ

≥ E

[(
lim inf
θ→0

K − be(t)√
θ

− σKB1

)+
]

= lim inf
θ→0

K − be(t)√
θ

+ E

[(
σKB1 − lim inf

θ→0

K − be(t)√
θ

)+
]
,
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which is equivalent to

E

[(
σKB1 − lim inf

θ→0

K − be(t)√
θ

)+
]
≤ 0.

This gives (18), which yields the wanted result.
(i) We now rewrite (19) to obtain

K − be(t) = e−rθK − be(t)e−δθ + e−rθE
[(
be(t)e

X̃θ −K
)+
]
,

and therefore

(20) e−rθE
[(
eX̃θ − eln( K

be(t)
)
)+
]

=
K

be(t)
(1− e−rθ)− (1− e−δθ).

We will give an expansion for each side of the equation. For the left-hand side of the equation,
we have

e−rθE
[(
eX̃θ − eln( K

be(t)
)
)+
]

= e−rθ+θµ+σα(θ)
√
θE
[(
eσ
√
θB1+Zθ−σα(θ)

√
θ − 1

)+
]

= e−rθ+θµ+σα(θ)
√
θE
[(
Uθe

Zθ − 1
)+]

,

where Uθ = eσ
√
θB1−σα(θ)

√
θ. Since the process Zt is independent of Uθ, we can write

E
[(
Uθe

Zθ − 1
)+ |Uθ]

= (Uθ − 1)+ + E
[∫ θ

0
ds

∫ ((
Uθe

Zs+y − 1
)+ − (UθeZs − 1

)+)
ν(dy)|Uθ

]
= (Uθ − 1)+ +

∫ θ

0
ds

∫ (
(Uθe

y − 1)+ − (Uθ − 1)+) ν(dy) + UθO(θ2),

where O(θ2) is deterministic. Indeed,∣∣∣∣E [∫ θ

0
ds

∫ ((
Uθe

yeZs − 1
)+ − (Uθe

y − 1)+
)
ν(dy)|Uθ

]∣∣∣∣
≤ Uθ

∫
eyν(du)

∫ θ

0
E
∣∣eZs − 1

∣∣ ds = UθO(θ2).

Taking the expectation, we thus obtain

E
[(
Uθe

Zθ − 1
)+]

= E
[
(Uθ − 1)+]+ θ

∫
E
[
(Uθe

y − 1)+] ν(dy)− ν(R)θE
[
(Uθ − 1)+]+O(θ2).
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Since α(θ)→∞, we have like in [6]

E
[
(Uθ − 1)+] ∼ σ√θE (B1 − α(θ))+ = o(

√
θ),

then

E
[(
Uθe

Zθ − 1
)+]

= E
[
(Uθ − 1)+]+ θ

∫
E
[
(Uθe

y − 1)+] ν(dy) + o(θ
3
2 ).

We recall that Uθ = eσ
√
θB1−σα(θ)

√
θ, then

E
[
(Uθe

y − 1)+]− (ey−σα(θ)
√
θ − 1

)+

≤ ey−σα(θ)
√
θE
∣∣∣eσ√θB1 − 1

∣∣∣ = eyO(
√
θ).

Hence,

E
[(
Uθe

Zθ − 1
)+]

= E
[
(Uθ − 1)+]+ θ

∫ (
ey−σα(θ)

√
θ − 1

)+
ν(dy) +O(θ

3
2 )

= E
[
(Uθ − 1)+]+ θ

∫
y>0

(
ey−σα(θ)

√
θ − 1

)
ν(dy)

−θ
∫

0<y<σα(θ)
√
θ

(
ey−σα(θ)

√
θ − 1

)
ν(dy) +O(θ

3
2 ).

Since (1− e−x) ≤ x, we then have∣∣∣∣∣
∫

(0,σα(θ)
√
θ)

(ey−σα(θ)
√
θ − 1)ν(dy)

∣∣∣∣∣ ≤
−→θ→00︷ ︸︸ ︷

ν{0 < y < σα(θ)
√
θ}σα(θ)

√
θ︸ ︷︷ ︸

=o(α(θ)θ
1
2 )

,

and noticing that θ
3
2 = o(α(θ)θ

3
2 ), we obtain

E
(
Uθe

Zθ− 1
)+

= E (Uθ− 1)++ θ

∫
(ey − 1)+ν(dy)− α(θ)θ

3
2σ

∫
y>0
eyν(dy) + o(α(θ)θ

3
2 ).

The left-hand side of (20) becomes

e−rθE
[(
eX̃θ − eln( K

be(t)
)
)+
]

= e−rθ+θµ+σα(θ)
√
θE
[(
Uθe

Zθ − 1
)+]

= e−rθ+θµ+σα(θ)
√
θE
[
(Uθ − 1)+]

+
(

1 + σα(θ)
√
θ + o(α(θ)

√
θ)
)(

θ

∫
(ey − 1)+ ν(dy) −α(θ)θ

3
2σ

∫
y>0
eyν(dy) + o(α(θ)θ

3
2 )

)
= e−rθ+θµ+σα(θ)

√
θE
[
(Uθ − 1)+]+ θ

∫
(ey − 1)+ν(dy)− ν(R+)σα(θ)θ

3
2 + o(α(θ)θ

3
2 ).

(21)
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Besides, the right-hand side of (20)

K

be(t)
(1− e−rθ)− (1− e−δθ) = eσ

√
θα(θ)+µθrθ − δθ +O(θ2)

= (r − δ)θ + rσθ
3
2α(θ) + o(θ

3
2α(θ))

=

(∫
(ey − 1)+ν(dy)

)
θ + rσα(θ)θ

3
2 + o(θ

3
2α(θ)).(22)

Thanks to (21) and (22), (20) becomes

e−rθ+θµ+σα(θ)
√
θE
[
(Uθ − 1)+] = σ

(
r + ν(R+)

)
α(θ)θ

3
2 + o(θ

3
2α(θ)).

Hence,

E
[
(Uθ − 1)+] ∼ σ (r + ν(R+)

)
α(θ)θ

3
2 .

As explained above, thanks to Proposition 2.1 in [14], we have

E
[
(Uθ − 1)+] ∼ σ√θE(B1 − α(θ))+ ∼ σ

√
θ

√
2πα2(θ)e

α2(θ)
2

.

Thus, we have

(23)
1

√
2πα2(θ)e

α2(θ)
2

∼
(
r + ν(R+)

)
θα(θ),

hence

(24) α(θ) ∼

√
2 ln

(
1

θ

)
.

(ii) Since K−be(t)
Kσ
√
θ
∼ α(θ), we obtain

K − be(t)
σK

∼

√
2θ ln

(
1

θ

)
.

To compare the behaviors of b(t) and be(t), we have to control the difference between
them.

Proposition 5.2. According to the model hypothesis, if d̄ = 0, then there exists C > 0 such
that

0 ≤ be(t)− b(t)√
T − t

≤ C.

Before proving Proposition 5.2, we need to prove the nondecreasing of be(t) near maturity,
which is the purpose of this following lemma

Lemma 5.2. The critical European put price, be(t), is differentiable on (0, T ) and for t
close to T , we have

b′e(t) ≥ 0.
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Proof of Lemma 5.2. We recall that F is the function defined by F (t, x) = Pe(t, x)−(K−x),
and F is C1 on (0, T )× (0,K) and satisfies ∂F

∂x (t, x) = ∂Pe
∂x (t, x) + 1 > 0. Due to its definition,

be(t) satisfies the following equation: Pe(t, be(t)) − (K − be(t)) = 0. Then, thanks to the
implicit function theorem, be(t) is differentiable on (0, T ) and

b′e(t) = −
∂F
∂t (t, be(t))
∂F
∂x (t, be(t))

= −
∂Pe
∂t (t, be(t))

∂Pe
∂x (t, be(t)) + 1

,

which means that

−b′e(t)
∂Pe
∂t

(t, be(t)) ≥ 0.

We will study the sign of ∂Pe
∂t (t, be(t)) instead of that of b′e(t).

The European put price satisfies the following equation:

∂Pe
∂t

(t, be(t))

= rPe(t, be(t))−
σ2be(t)

2

2

∂2Pe
∂x2

(t, be(t))− (r − δ)be(t)
∂Pe
∂x

(t, be(t))

−
∫ [

Pe(t, be(t)e
y)− Pe(t, be(t))− be(t)(ey − 1)

∂Pe
∂x

(t, be(t))

]
ν(dy)

= r(K − be(t))−
σ2be(t)

2

2

∂2Pe
∂x2

(t, be(t))−
(
r−δ−

∫
(ey − 1)+ν(dy)

)
︸ ︷︷ ︸

d̄=0

be(t)
∂Pe
∂x

(t, be(t))

−
∫
y>0

Pe(t, be(t)e
y)ν(dy) + ν(R+)Pe(t, be(t))

−
∫
y<0

[
Pe(t, be(t)e

y)− Pe(t, be(t))− be(t)(ey − 1)
∂Pe
∂x

(t, be(t))

]
ν(dy).

Since Pe(t, .) is a nonnegative convex function, we have
∫
y>0 [Pe(t, be(t)e

y)] ν(dy) ≥ 0 and∫
y<0

[
Pe(t, be(t)e

y)− Pe(t, be(t))− be(t)(ey − 1)
∂Pe
∂x

(t, be(t))

]
ν(dy) ≥ 0,

so that

∂Pe
∂t

(t, be(t)) ≤
(
r + ν(R+)

)
(K − be(t))−

σ2be(t)
2

2

∂2Pe
∂x2

(t, be(t)).

Thanks to Proposition 5.1, we have an expansion for (K − be(t)). Now, let’s have a look at

the estimate of ∂2Pe
∂x2

(t, be(t)) near T . We have

∂Pe
∂x

(t, x) = −e−r(T−t)E
[
eX̃T−t1

{K−xeX̃T−t>0}

]
= −e−r(T−t)

∫ ln(K
x

)

−∞
eupX̃T−t(u)du,
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where pX denotes the density of X and X̃t = µ(t) + σBt + Zt. Then, we have

∂2Pe
∂x2

(t, x) = e−r(T−t)
K

x2
pX̃T−t

(
ln

(
K

x

))
≥ e−r(T−t)K

x2
pµ(T−t)+σBT−t

(
ln

(
K

x

))
P(T1 > θ)

= e−rθ
K

x2σ
√

2πθ
e
−1
2

(
ln(K/x)−µθ

σ
√
θ

)2
P(T1 > θ).

Then,

∂Pe
∂t

(t, be(t)) ≤
(
r + ν(R+)

)
(K − be(t))− e−rθ

σK

2
√

2πθ
e−

α(θ)2

2 P(T1 > θ).

We can easily check that K − be(t) ∼ σK
√
θα(θ) = o(α3(θ)

√
θ), and we recall the equiva-

lency (23)
1

√
2πα2(θ)e

α2(θ)
2

∼
(
r + ν(R+)

)
θα(θ),

which yields

e−rθ
σK

2
√

2πθ
e−

α(θ)2

2 P(T1 > θ) ∼ σK e−
α2(θ)

2

2
√

2πθ
∼ σK

2

(
r + ν(R+)

)
α3(θ)

√
θ.

Then, we have, for θ small enough

∂Pe
∂t

(t, be(t)) ≤ −
σK

2

(
r + ν(R+)

)
α3(θ)

√
θ + o(α3(θ)

√
θ) < 0,

which proves that b′e(t) is a nondecreasing function for t close to T .
We are now in a position to prove Proposition 5.2.
Proof of Proposition 5.2. An expansion of P (t, x) around (t, b(t)) gives

P (t, x)− P (t, b(t))− (x− b(t))∂P
∂x

(t, b(t)) =

∫ x

b(t)
(u− b(t))∂

2P

∂x2
(t, du),

and thanks to the smooth fit which is satisfied at b(t), we obtain

P (t, x)− (K − x) ≥ (x− b(t))2

2
inf

b(t)≤u≤x

∂2P

∂x2
(t, u).

First, we are going to give, as in Lemma 3.2, a lower bound for infb(t)≤u≤be(t)
u2σ2

2
∂2P
∂x2

(t, u).
The variational inequality gives, for u ∈ (b(t),K),

u2σ2

2

∂2P

∂x2
(t, u)

≥ rP (t, u)− (r − δ)u∂P
∂x

(t, u)−
∫(
P (t, uey)− P (t, u)− u(ey − 1)

∂P

∂x
(t, u)

)
ν(dy)

≥ r(K − u)−
(
r − δ −

∫
y>0
(ey − 1)ν(dy)

)
u
∂P

∂x
(t, u)−

∫
y>0
P (t, uey)− P (t, u)ν(dy)

−
∫
y<0

(
P (t, uey)− (K − u)− u(ey − 1)

∂P

∂x
(t, u)

)
ν(dy).
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Since P (t, .) is nonincreasing and d̄ = 0, we obtain

u2σ2

2

∂2P

∂x2
(t, u) ≥ r(K − u)−

∫
y<0

(
P (t, uey)− (K − u)− u(ey − 1)

∂P

∂x
(t, u)

)
ν(dy)

= r(K−u)−
∫
y<0
P (t, uey)−(K − uey)ν(dy)− u

(
∂P

∂x
(t, u) + 1

)(∫
y<0
(1− ey)ν(dy)

)
.

Thanks to the convexity of P , ∂P
∂x (t, u) is nondecreasing and ∂P

∂x (t, u) ≥ −1. We then have,
for all t < T ,

inf
b(t)≤u≤be(t)

u2σ2

2

∂2P

∂x2
(t, u) ≥ r(K−be(t))−

∫
y<0
P (t, be(t)e

y)−(K − be(t)ey)ν(dy)

−be(t)
(
∂P

∂x
(t, be(t)) + 1

)(∫
y<0
(1− ey)ν(dy)

)
≥ r(K−be(t))−

∫
y<0
Pe(t, be(t)e

y)−(K − be(t)ey)ν(dy) + o(
√
θ).

We obtained the last inequality, using the estimate of e(θ, x) = O(θ) and ∂P
∂x (t, x)+1 = o(

√
θ)

(see Lemma 3.1). Since y < 0, we also have Pe(t, be(t)e
y)−(K − be(t)ey) ≤ 0, thus

inf
b(t)≤u≤be(t)

u2σ2

2

∂2P

∂x2
(t, u) ≥ r(K−be(t)) + o(

√
θ).

Besides, for θ small enough, we have
√
θ ≤ K − be(t), and then we obtain

P (t, be(t))− (K − be(t)) ≥
(be(t)− b(t))2

b2e(t)σ
2

r(K − be(t))(1 + o(1)).

Furthermore,

P (t, be(t))− (K − be(t)) = e(θ, be(t))

= E
{∫ θ

0
e−rs

(
rK−δSbe(t)s −

∫
y>0
P (t+ s, Sbe(t)s ey)−

(
K−Sbe(t)s ey

)
ν(dy)

)
1{Sbe(t)s <b(t+s)}ds

}
≤ E

{∫ θ

0
e−rs

(
rK − δSbe(t)s −

∫
y>0

(
Sbe(t)s ey −K

)+
ν(dy)

)
1{Sbe(t)s <b(t+s)}ds

}
.

Since δ = r −
∫
y>0(ey − 1)ν(dy), we have

0 ≤
(
rK − δx−

∫
y>0

(xey −K)+ ν(dy)

)
1{x<b(t+s)}

≤
(
r(K − x)−

∫
y>0

(xey −K)+ − (xey − x)+ ν(dy)

)
1{x<K}

≤
(
r + ν(R+)

)
(K − x)+ ,
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thus,

e(θ, be(t)) ≤
(
r + ν(R+)

)
E
{∫ θ

0
e−rs

(
K − Sbe(t)s

)+
ds

}
=
(
r + ν(R+)

) ∫ θ

0
Pe(T − s, be(t))ds

=
(
r + ν(R+)

) ∫ θ

0
Pe(t+ u, be(t))du.

And as we saw in Lemma 5.2, near T , be(t) is nondecreasing, then be(t) ≤ be(t + u). Due to
the nondecreasing of Pe(t, x)− (K − x) on x, we thus have

Pe(t+ u, be(t)) ≤ K − be(t).

In conclusion, we have
e(θ, be(t)) ≤

(
r + ν(R+)

)
θ(K − be(t))

and

e(θ, be(t)) ≥
[be(t)− b(t)]2

b2e(t)σ
2

r(K − be(t))(1 + o(1)).

We conclude that there exists a positive constant C such that

be(t)− b(t)√
θ

≤ C.

Appendix A. Proofs of lemmas.
Proof of Lemma 3.1. According to the early exercise premium formula, we have

P (t, x) = Pe(t, x) + e(T − t, x)

and

e(θ, x) = E
{∫ θ

0
e−rsΦ(t+ s, xS1

s )1{xS1
s<b(t+s)}ds

}
with

Φ(t, x) = rK − δx−
∫
y>0

(P (t, xey)− (K − xey)) ν(dy).

Notice that Φ is a continuous function and ‖Φ′x‖∞ ≤ δ +
∫
y>0 e

yν(dy).

(1) It is obvious that 0 ≤ e(θ, x) ≤ θrK = O(θ), since 0 ≤ Φ(t, x)1{x<b(t+s)} ≤ rK.
(2) For all random variable X, we denote by pX its density, and we thus have for all fixed

s ∈ [0, θ],

p−X̃s(x) = p−µs−σBs ∗ p−Zs(x) =
1√
s

1

σ
√

2π

∫
e−

(−x+µs−u)2

2σ2s p−Zs(u)du

≤ Cte 1√
s
.(25)
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We can state

∂e

∂x
(θ, x) = E

{∫ θ

0
e−rsS1

sΦ′x(t+ s, xS1
s )1{xS1

s<b(t+s)}ds

}
−
∫ θ

0

Φ(t+ s, b(t+ s))

x
p−X̃s

(
ln

(
x

b(t+ s)

))
ds.(26)

Then, we have∣∣∣∣ ∂e∂x(θ, x)

∣∣∣∣ ≤ ∣∣∣∣E{∫ θ

0
e−rsS1

sΦ′x(t+ s, xS1
s )1{xS1

s<b(t+s)}ds

}∣∣∣∣
+

∣∣∣∣∫ θ

0

Φ(t+ s, b(t+ s))

x
p−X̃s

(
ln

(
x

b(t+ s)

))
ds

∣∣∣∣
≤ ‖Φ′x‖∞

b(T )

x
θ +

∣∣∣∣∫ θ

0

Φ(t+ s, b(t+ s))

x
p−X̃s

(
ln

(
x

b(t+ s)

))
ds

∣∣∣∣ .
According to inequality (25), we also have∣∣∣∣∫ θ

0

Φ(t+ s, b(t+ s))

x
p−X̃s

(
ln

(
x

b(t+ s)

))
ds

∣∣∣∣
≤ Cte

∣∣∣∣∫ θ

0

Φ(t+ s, b(t+ s))

x
√
s

ds

∣∣∣∣
=
Cte

x
θ

∣∣∣∣∫ 1

0

Φ(t+ θu, b(t+ θu))√
θu

du

∣∣∣∣
≤ Cte

x

√
θ sup
t≤u≤t+θ

|Φ(u, b(u))|
∫ 1

0

1√
u
du

≤ Cte

x

√
θ sup
T−θ≤u≤T

|Φ(u, b(u))|
∫ 1

0

1√
u
du.

However, thanks to the continuity of b(u) and of Φ(t, x), we have limθ→0 sup
T−θ≤u≤T

|Φ(u, b(u))| =

|Φ(T, b(T ))| = 0. Therefore, we conclude that
∣∣ ∂e
∂x(θ, x)

∣∣ = 1
xo(
√
θ).

(3) In view of the above estimate for ∂e/∂x, in order to establish the second part of the
lemma, it suffices to prove that, for x ∈ (0, be(t) ∧ b(T )],

(27) 1 +
∂Pe
∂x

(t, x) = o(
√
θ),

and, due to the convexity of Pe, it suffices to prove (27) for x = b(T ) ∧ be(t).
We have

0 ≤
(

1 +
∂Pe
∂x

(t, x)

)
= 1− e−rθE

(
eX̃θ1{X̃θ<ln K

x
}

)
≤ 1− E

(
eX̃θ1{X̃θ<ln K

x
}

)
+ o(
√
θ)

= 1− E
(
eµθ+σBθ1{µθ+σBθ<ln K

x
}

)
+ o(
√
θ),
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where the last equality is due to the fact that the probability that a jump occurs before θ is
O(θ).

If b(T ) = K, then be(t) ∧ b(T ) = be(t) and we have, using the notation of section 4,

1− E
(
eµθ+σBθ1{µθ+σBθ<ln K

be(t)
}

)
= 1− E

(
eσBθ1{Bθ<

√
θα(θ)}

)
+ o(
√
θ)

= P(Bθ ≥
√
θα(θ))− E

(
σBθ1{Bθ<

√
θα(θ)}

)
+ o(
√
θ).

Since α(θ) −→
θ→0
∞, we have

E
(
σBθ1{Bθ<

√
θα(θ)}

)
= σ
√
θE
(
B11{B1<α(θ)}

)
= o(
√
θ),

and using (23) and (24), we also have

P (B1 ≥ α(θ)) ≤ e−
α2(θ)

2

α(θ)
≤ Cθα2(θ) = O(θ| ln θ|) = o(

√
θ).

We now assume b(T ) < K. In this case, we observe that with the notation xt = b(T )∧be(t)

1− E
(
eµθ+σBθ1{µθ+σBθ<ln K

xt
}

)
= 1− E

(
eσ
√
θB11{B1<(ln K

xt
−µθ)/(σ

√
θ)}

)
+ o(θ)

= 1− eσ2θ/2P
(
B1 <

ln(K/xt)− µθ
σ
√
θ

− σ
√
θ

)
+ o(θ)

= P
(
B1 >

ln(K/xt)− µθ
σ
√
θ

− σ
√
θ

)
+ o(θ).

If we prove that lim supt↑T xt < K, we will have P(B1 >
ln(K/xt)−µθ

σ
√
θ

− σ
√
θ) = o(θn) for all

n > 0 and the proof of the lemma will be completed. We have assumed b(T ) < K. Therefore,
we want to prove that lim supt↑T be(T ) < K. In fact, we will show that

(28) lim sup
t↑T

be(T ) ≤ b(T ).

Indeed, from the definition of be(t), we have (see (20)), using Jensen’s inequality,

K(1− e−rθ)− be(t)(1− e−δθ) = e−rθE
(
be(t)e

X̃θ −K
)+

≥ e−rθE
(
be(t)e

γ0θ+Zθ −K
)+

≥ e−rθE
[
1{Nθ=1

(
be(t)e

γ0θ+ZT1 −K
)+
]

= e−rθP (Nθ = 1)E
[(
be(t)e

γ0θ+ZT1 −K
)+
]
,
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where (Nt)t≥0 is the counting process of the jumps of Z. Dividing by θ, we easily conclude
that any limit ξ of be(t) as t→ T satisfies

rK − δξ ≥
∫

(ξey −K)+ν(dy).

Hence ξ ≤ b(T ), which proves (28).
Proof of Lemma 3.2. Let be x ∈ (b(t), b(T )); then the variational inequality gives, for

almost u ∈ (b(t), x),

u2σ2

2

∂2P

∂x2
(t, u) ≥ rP (t, u)− (r − δ)u∂P

∂x
(t, u)

−
∫ (

P (t, uey)− P (t, u)− u(ey − 1)
∂P

∂x
(t, u)

)
ν(dy).

Notice that P (t, u) ≥ K − u; thus

u2σ2

2

∂2P

∂x2
(t, u) ≥ r(K − u) + (r − δ)u

−
∫

(P (t, uey)− (K − u) + u(ey − 1)) ν(dy)

−u
(
∂P

∂x
(t, u) + 1

)(
(r − δ)−

∫
(ey − 1)ν(dy)

)
(29)

And thanks to Lemma 3.1, we also have, for all b(0) ≤ u ≤ x ≤ be(t) ∧ b(T ),

∂P

∂x
(t, u) + 1 = o(

√
θ),

independently of u; therefore,

u2σ2

2

∂2P

∂x2
(t, u) ≥ rK − δu−

∫
(P (t, uey)− (K − uey)) ν(dy) + o(

√
θ).(30)

As the right-hand side of equality (30) is nonincreasing in u, we obtain

(31) inf
b(t)≤u≤x

u2σ2

2

∂2P

∂x2
(t, u) ≥ rK − δx−

∫
(P (t, xey)− (K − xey)) ν(dy) + o(

√
θ).

Notice that ∫
P (t, xey)ν(dy) = Pe(t, xe

y) + e(θ, xey)

=

∫
E(K − xeyeXθ)+ν(dy) + o(

√
θ)

=

∫
E (K − xey(1 + σBθ))

+ ν(dy) + o(
√
θ)

=

∫
E ((K − xey)− xeyσBθ)+ ν(dy) + o(

√
θ).
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We now consider the integral
∫
P (t, xey)ν(dy) over the sets {y < ln( K

b(T ))}, {ln( K
b(T )) < y},

and {y = ln( K
b(T ))}. Then, on the set {y < ln( K

b(T ))}, we have∫
{y<ln( K

b(T )
}
P (t, xey)ν(dy) =

∫
{y<ln( K

b(T )
}

E (K − xey)− xeyσBθ)+ ν(dy) + o(
√
θ)

=

∫
{y<ln( K

b(T )
}
(K − xey)P(xeyσBθ < (K − xey))ν(dy)

−
∫
{y<ln( K

b(T )
}
xeyσE

(
Bθ1{xeyσBθ<(K−xey)}

)
ν(dy) + o(

√
θ)

≤
∫
{y<ln( K

b(T )
}

(K − xey)ν(dy)− xσ
√
θ

∫
{y<ln( K

b(T )
}

eyE
(
B11{B1<

1

σ
√
θ

(K
x
e−y−1)}

)
ν(dy) + o(

√
θ).

For all y < ln( K
b(T )), we have K

x e
−y − 1 > K

b(T )e
−y − 1 > 0; therefore

0 ≤ −E
(
B11{B1<

1

σ
√
θ

(K
x
e−y−1)}

)
= E

(
B11{B1≥ 1

σ
√
θ

(K
x
e−y−1)}

)
≤ E

(
B11{B1≥ 1

σ
√
θ

( K
b(T )

e−y−1)}

)
−→θ→0 0.

By the dominated convergence we obtain∫
{y<ln( K

b(T )
}
P (t, xey)ν(dy) ≤

∫
{y<ln( K

b(T )
}
(K − xey)ν(dy) + o(

√
θ).(32)

On the set {y > ln( K
b(T ))}, we have K < b(T )ey, and therefore∫

{y>ln( K
b(T )
}

P (t, xey)ν(dy) =

∫
{y>ln( K

b(T )
}

E ((K − xey)− xeyσBθ)+ ν(dy) + o(
√
θ)

≤
∫
{y>ln( K

b(T )
}
E
[(
b(T )ey − xey − xeyσ

√
θB1

)
1{xeyσ

√
θB1<(K−xey)}

]
ν(dy) + o(

√
θ)

= (b(T )− x)

∫
{y>ln( K

b(T )
}
eyP

(
B1 <

1

σ
√
θ

(
K

x
e−y − 1

))
ν(dy)

−
√
θx

∫
{y>ln( K

b(T )
}
eyσE

(
B11{B1<

1

σ
√
θ
(Kx e−y−1)}

)
ν(dy) + o(

√
θ).

Notice that for all y > ln( K
b(T )), we have 1

σ
√
θ

(
K
x e
−y − 1

)
≤ 1

σ
√
θ
( K
b(t)e

−y − 1)→ −∞; thus

P
(
B1 <

1

σ
√
θ

(
K

x
e−y − 1

))
≤ P

(
B1 <

1

σ
√
θ

(
K

b(t)
e−y − 1

))
−→
θ→0

0,
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and

E
(
|B1|1{B1<

1

σ
√
θ

(K
x
e−y−1)}

)
≤ E

(
|B1|1{B1<

1

σ
√
θ

( K
b(t)

e−y−1)}

)
−→
θ→0

0.

Therefore, by dominated convergence, we obtain∫
{y>ln( K

b(T )
}
eyP

(
B1 <

1

σ
√
θ

(
K

b(t)
e−y − 1

))
ν(dy) −→

θ→0
0

and

−
√
θx

∫
{y>ln( K

b(T )
}
eyσE

(
B11{xeyσ

√
θB1<(K−xey)}

)
ν(dy) = o(

√
θ).

Consequently, if we denote by ε(θ) =
∫
{y>ln( K

b(T )
} e

yP(B1 <
1

σ
√
θ
( K
b(t)e

−y − 1))ν(dy), we obtain

∫
{y>ln( K

b(T )
}

P (t, xey)ν(dy) ≤ (b(T )− x)ε(θ) + o(
√
θ),(33)

with ε(θ) −→
θ→0

0.

Finally, on the set {y = ln( K
b(T ))}, we have

∫
{ln( K

b(T )
)}
P (t, xey)ν(dy) =

∫
{ln( K

b(T )
)}
E ((K − xey)− xeyσBθ)+ ν(dy) + o(

√
θ)

=

∫
{ln( K

b(T )
)}

(K − xey)ν(dy) +

∫
{ln( K

b(T )
)}

E (xeyσBθ − (K − xey))+ ν(dy) + o(
√
θ)

=

∫
{ln( K

b(T )
)}

(K − xey)ν(dy) +

∫
{ln( K

b(T )
)}

xeyE
(
σBθ −

(
K

x
e−y − 1

))+

ν(dy)

=

∫
{ln( K

b(T )
)}

(K − xey)ν(dy) +
xK

b(T )
ν

{
ln

(
K

b(T )

)}
E
(
σBθ −

(
b(T )

x
− 1

))+

≤
∫
{ln( K

b(T )
)}

(K − xey)ν(dy) +Kν

{
ln

(
K

b(T )

)}
E
(
σBθ − ln

(
b(T )

x

))+

.

We have thus proved that∫
P (t, xey)ν(dy) ≤

∫
{y≤ln( K

b(T )
)}

(K − xey)ν(dy) +Kν

{
ln

(
K

b(T )

)}
E
(
σBθ − ln

(
b(T )

x

))+

+ (b(T )− x) ε(θ) + o(
√
θ).
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Going back to inequality (31), we obtain∫
P (t, xey)− (K − xey)ν(dy)

≤ −
∫
{y>ln( K

b(T )
)}

(K − xey)ν(dy) +Kν

{
ln

(
K

b(T )

)}
E
(
σBθ − ln

(
b(T )

x

))+

+ (b(T )− x) ε(θ) + o(
√
θ).

Finally, since rK = δb(T ) +
∫

(b(t)ey −K)+ν(y), we have

inf
b(t)≤u≤x

u2σ2

2

∂2P

∂x2
(t, u)

≥ rK − δx−
∫

(P (t, xey)− (K − xey)) ν(dy) + o(
√
θ)

≥(b(T )− x)

(
δ +

∫
{y>ln K

b(T )
}

eyν(dy) + ε(θ)

)
−Kν

{
ln

K

b(T )

}
E
(
σBθ − ln

(
b(T )

x

))+

+ o(
√
θ).

We note α =
ν{ln(

K
b(T ) )}

δ̂
K
b(T ) and δ̂ = δ +

∫
{y>ln( K

b(T )
)} e

yν(dy); we then have for all u and all x

such that b(t) ≤ u ≤ x < b(T )

inf
b(t)≤u≤x

u2σ2

2

∂2P

∂x2
(t, u)

≥ b(T )δ̂

(
(b(T )− x)

b(T )
− αE

(
σBθ − ln

(
b(T )

x

))+
)
− (b(T )− x) ε(θ) + o(

√
θ).

Remark 2. The expression infb(t)<u<x
u2σ2

2
∂2P
∂x2

(t, u) is justified thanks to the smoothness
of P in the continuation region which can be proved thanks to PDE arguments (see, for
instance [2]). Nevertheless, we will only need this lower bound of the second derivative in the

distribution sense (∂
2P
∂x2

(t, du)).

Appendix B. A study of vλ,β.
Lemma 4.1. There exists yλ,β ∈

(
0, (1 + λβ(2 + eλ)

)
such that such that

∀y < −yλ,β, vλ,β(y) = 0,

yλ,β = − inf{x ∈ R | vλ,β(x) > 0}.

Proof of Lemma 4.1. We have

vλ,β(y) = sup
τ∈T0,1

(I0(τ) + I1(τ))

with

I0(τ) = E
(
eλτ1{N̂τ=0}

∫ τ

0
fλβ(y +Bs)ds

)



268 AYCH BOUSELMI AND DAMIEN LAMBERTON

and
I1(τ) = βE

(
eλτ1{N̂τ=1}

(
(y +Bτ )+ − (y +BT̂1)+

))
.

We will study I0(τ) and I1(τ). First of all, we note that the process (M0
t )t≥0 defined by

M0
t = eλt1{N̂t=0} is a nonnegative martingale with M0

0 = 1. Under the probability P0 with

density M0
t on Ft, it is straightforward to check that (B)t≥0 remains an F-Brownian motion.

We have, if y ≤ 0,

I0(τ) = E0

(∫ τ

0
fλβ(y +Bs)ds

)
= E0

(
yτ +

∫ τ

0
Bsds+ λβ

∫ τ

0
(y +Bs)

+ds

)
≤ yE0 (τ) + (1 + λβ)E0

(∫ τ

0
B+
s ds

)
≤ yE0 (τ) + (λβ + 1)E0

(∫ τ

0
E0
(
B+
τ | Fs

)
ds

)
.

Notice that, for τ ∈ T0,1,

E0

(∫ τ

0
E0
(
B+
τ | Fs

)
ds

)
= E0

(∫ 1

0
1{τ>s}E0

(
B+
τ | Fs

)
ds

)
=

∫ 1

0
E0
(
1{τ>s}E0

(
B+
τ | Fs

))
ds

= E0
(
τB+

τ

)
≤ E0

(
τ2 +B2

τ

2

)
≤ E0(τ),

where we used 0 ≤ τ ≤ 1 for the last inequality. We then have

I0(τ) ≤ (y + λβ + 1)E0 (τ) .

For the study of I1(τ), let us introduce the martingale (M1
t )0≤t≤1 defined by

M1
t = E

(
eλ1{N̂1=1} | Ft

)
= E

(
eλ1{N̂1=1,N̂t=0} | Ft

)
+ E

(
eλ1{N̂1=1,N̂t=1} | Ft

)
= 1{N̂t=0}e

λP(N̂1 − N̂t = 1) + 1{N̂t=1}e
λP(N̂1 − N̂t = 0)

= 1{N̂t=0}λ(1− t)eλt + 1{N̂t=1}e
λt.

Under the probability P1 with density M1
t /λ on Ft, it is straightforward to check that

(Bt)0≤t≤1 remains an F-Brownian motion. We have for y < 0

I1(τ) = λβE1
(

(y +Bτ )+ − (y +BT̂1∧τ )+
)

≤ λβE1
(
(y +Bτ )+

)
≤ λβE1

(
Bτ1{Bτ>−y}

)
≤ λβE1

(
B2
τ/|y|

)
= λβE1 (τ) /|y|
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Using the two upper bound of I0(τ) and I1(τ), we obtain

vλ,β(y) ≤ sup
τ∈T0,1

(
(y + λβ + 1)E0(τ) +

λβ

|y|
E1(τ)

)
= sup

τ∈T0,1
E
(

(y + λβ + 1)τM0(τ) +
β

|y|
τM1(τ)

)
= sup

τ∈T0,1
E
(

(y + λβ + 1)τeλτ1{N̂τ=0} +
β

|y|
τ
(

1{N̂τ=0}λ(1− τ)eλτ + 1{N̂τ=1}e
λτ
))

≤ sup
τ∈T0,1

E
(
f(τ, N̂τ )

)
with

f(t, x) = 1{x=0}te
λt

(
y + 1 + λβ

(
1 +

1

|y|

))
+ 1{x=1}βte

λt/|y|.

Notice that
sup
τ∈T0,1

E
(
f(τ, N̂τ )

)
= sup

τ∈T0,1(N̂)

E
(
f(τ, N̂τ )

)
,

where T0,1(N̂) denotes the set of the stopping times of the natural completed filtration of the
process (N̂t)t≥0, with values in [0, 1].

Then, if τ ∈ T0,1(N̂), there exists, thanks to Lemma B.1, t0 ∈ [0, 1] such that

τ ∧ T̂1 = t0 ∧ T̂1.

We then have

E
(
τeλτ1{N̂τ=0}

)
= E

(
τeλτ1{T̂1>τ}

)
= t0e

λt0P(T̂1 > τ)

= t0

and

E
(
τeλτ1{N̂τ=1}

)
≤ E

(
τeλτ1{T̂1≤τ}

)
= E

(
τeλτ1{T̂1≤t0}

)
≤ eλP(T̂1 ≤ t0)

= eλ(1− e−λt0) ≤ λeλt0.

We deduce that

sup
τ∈T0,1(N̂)

E
(
f(τ, N̂τ )

)
≤ sup

0≤t0≤1

(
t0

(
y + 1 + λ

β(2 + eλ)

|y|

))
.

The right-hand side of this equation will be equal to 0 if

y + 1 + λ
β(2 + eλ)

|y|
≤ 0,
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and particularly, if y ≤ −
(
1 + λβ(2 + eλ)

)
, then

−yλ,β ≥ −
(

1 + λβ(2 + eλ)
)
.

To prove −yλ,β < 0, we consider y = 0. Since for all stopping time τ ,

E
(
eλτ1{N̂τ=0}

∫ τ

0
λβ(y +Bs)

+ds+ βeλτ1{N̂τ=1}

(
(y +Bτ )+ − (y +BT̂1)+

))
≥ 0,

we have

υλ,β(0) ≥ sup
τ∈T0,1

E
∫ τ

0
Bsds = υ0(0),

and it is proved in [14] or [4, Proposition 2.2.4], υ0(0) > 0.
Lemma B.1. Let N = (Nt)t≥0 a homogeneous Poisson process with intensity λ and T1 its

first jump time. If τ is a stopping time of the natural completed filtration of N such that
τ ≤ T1 a.s., then τ = T1 a.s., or there exists t0 ≥ 0, such that τ = t0 ∧ T1 a.s.

Proof. We denote by F = (Ft)t≥0 the natural completed filtration of N . First of all, notice
that for all t ≥ 0 and A ∈ Ft,

P(A | Nt = 0) ∈ {0, 1}.

Indeed, the A having this property form a sub σ-algebra of Ft which contains the events of
the form {Ns = n}, with 0 ≤ s ≤ t and n ∈ N.

Now, let τ be a F-stopping time. We have for all t ≥ 0, P(τ > t | Nt = 0) ∈ {0, 1}. We set

I = {t ∈ [0,+∞[ | P(τ > t | Nt = 0) = 0}.

Notice that t ∈ I if and only if P(τ > t, T1 > t) = 0, or

t ∈ I ⇔ P (τ ∧ T1 ≤ t) = 1.

If τ ≤ T1 a.s. and if P(τ < T1) > 0, there exists s > 0 (rational number) such that P(τ ≤
s, s < T1) > 0, hence P(τ ≤ s | Ns = 0) > 0, and P(τ > s | Ns = 0) = 0. We deduce that I is
nonempty and we can write

I = [t0,+∞[, with t0 = inf{t ≥ 0 | P(τ > t | Nt = 0) = 0}.

We then have τ ∧T1 ≤ t0 a.s., hence τ ≤ t0∧T1. Moreover, for s < t0, we have P(τ > s | Ns =
0) = 1 and P(τ ≤ s | Ns = 0) = 0, hence P(τ ≤ s, s < T1) = 0. Therefore, P(τ < t0 ∧ T1) = 0
and consequently τ = t0 ∧ T1 a.s.

Lemma 4.2. For all x > yλ,β, we have

C(x) > 0.

Proof. We have vλ,β(−yλ,β) = 0; considering the stopping time τ = 1, we obtain

E
[
eλ1{N̂1=0}

∫ 1

0
fλβ(Bs − yλ,β)ds+ βeλ1{N̂1=1}

(
(B1 − yλ,β)+ − (BT̂1 − yλ,β)+

)]
≤ 0.
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However, we have, using the independence between N̂ and B,

E
[
eλ1{N̂1=0}

∫ 1

0
fλβ(Bs − yλ,β)ds

]
= eλP(N̂1 = 0)

(
−yλ,β + λβE

∫ 1

0
(Bs − yλ,β)+ds

)
= −yλ,β + λβE

∫ 1

0
(Bs − yλ,β)+ds.(34)

On the other hand, we have

E
[
βeλ1{N̂1=1}

(
(B1 − yλ,β)+ − (BT̂1 − yλ,β)+

)]
= βeλP(N̂1 = 1)

[
E(B1 − yλ,β)+ − E

(
(BT̂1 − yλ,β)+|N̂1 = 1

)]
= βλ

[
E(B1 − yλ,β)+ − E

(
(BT̂1 − yλ,β)+|T̂1 ≤ 1

)]
.

Noticing that λβ = λβ and that conditionally to {T̂1 ≤ 1}, T̂1 is uniformly distributed on
[0, 1], we obtain

E
[
βeλ1{N̂1=1}

(
(B1 − yλ,β)+ − (BT̂1 − yλ,β)+

)]
= λβ

[
E(B1 − yλ,β)+ − E

(∫ 1

0
(Bs − yλ,β)+ds

)]
.(35)

Combining (34) and (35), we have

−yλ,β + λβE(B1 − yλ,β)+ = −C(yλ,β) ≤ 0.

To conclude the proof, we use the strict increasing of C, and hence for all x > yλ,β, we have

C(x) > C(yλ,β) ≥ 0.
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