B. Goodenough and K. S. Park, The Li-Ion Rechargeable Battery: A Perspective, Journal of the American Chemical Society, vol.135, issue.4, pp.1167-1176, 2013.
DOI : 10.1021/ja3091438

M. Matsumoto, K. Yanagida, M. Tanimoto, Y. Nomura, Y. Kitagawa et al., Highly Conductive Room Temperature Molten Salts Based on Small Trimethylalkylammonium Cations and Bis(trifluoromethylsulfonyl)imide, Chemistry Letters, vol.29, issue.8, pp.922-923, 2000.
DOI : 10.1246/cl.2000.922

C. Howlett, D. R. Macfarlane, and A. F. Hollenkamp, High Lithium Metal Cycling Efficiency in a Room-Temperature Ionic Liquid, Electrochemical and Solid-State Letters, vol.7, issue.5, pp.97-101, 2004.
DOI : 10.1149/1.1664051

S. Garcia, G. Lavalle, C. Perron, M. Michot, and . Armand, Room temperature molten salts as lithium battery electrolyte, Electrochimica Acta, vol.49, issue.26, pp.4583-4588, 2004.
DOI : 10.1016/j.electacta.2004.04.041

H. Matsumoto, K. Sakaebe, M. Tatsumi, E. Kikuta, M. Ishiko et al., Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]???, Journal of Power Sources, vol.160, issue.2, pp.1308-1313, 2006.
DOI : 10.1016/j.jpowsour.2006.02.018

T. Ishikawa, M. Sugimoto, E. Kikuta, M. Ishiko, and . Kono, Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries, Journal of Power Sources, vol.162, issue.1, pp.658-662, 2006.
DOI : 10.1016/j.jpowsour.2006.02.077

F. Tsunashima, M. Yonekawa, and . Sugiya, A Lithium Battery Electrolyte Based on a Room-temperature Phosphonium Ionic Liquid, Chemistry Letters, vol.37, issue.3, pp.314-315, 2008.
DOI : 10.1246/cl.2008.314

F. Tsunashima, M. Yonekawa, and . Sugiya, Lithium Secondary Batteries Using a Lithium Nickelate-Based Cathode and Phosphonium Ionic Liquid Electrolytes, Electrochemical and Solid-State Letters, vol.12, issue.3, pp.54-57, 2009.
DOI : 10.1149/1.3054290

J. Yuan, X. Feng, Y. Ai, S. Cao, H. Chen et al., Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte, Electrochemistry Communications, vol.8, issue.4, pp.610-614, 2006.
DOI : 10.1016/j.elecom.2006.02.007

E. Baranchugov, E. Markevich, G. Pollak, D. Salitra, and . Aurbach, Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes, Electrochemistry Communications, vol.9, issue.4, pp.796-800, 2007.
DOI : 10.1016/j.elecom.2006.11.014

D. R. Sivakkumar, M. Macfarlane, D. Forsyth, and . Kim, Ionic Liquid-Based Rechargeable Lithium Metal-Polymer Cells Assembled with Polyaniline/Carbon Nanotube Composite Cathode, Journal of The Electrochemical Society, vol.154, issue.9, pp.834-838, 2007.
DOI : 10.1149/1.2750443

E. Borgel, D. Markevich, G. Aurbach, M. Semrau, and . Schmidt, On the application of ionic liquids for rechargeable Li batteries: High voltage systems, Journal of Power Sources, vol.189, issue.1, pp.331-336, 2009.
DOI : 10.1016/j.jpowsour.2008.08.099

S. Plashnitsa, E. Kobayashi, S. Okada, and J. Yamaki, Symmetric lithium-ion cell based on lithium vanadium fluorophosphate with ionic liquid electrolyte, Electrochimica Acta, vol.56, issue.3, pp.1344-1351, 2011.
DOI : 10.1016/j.electacta.2010.10.051

Y. Seki, H. Kobayashi, Y. Miyashiro, Y. Ohno, A. Mita et al., Reversibility of Lithium Secondary Batteries Using a Room-Temperature Ionic Liquid Mixture and Lithium Metal, Electrochemical and Solid-State Letters, vol.8, issue.11, pp.577-578, 2005.
DOI : 10.1149/1.2041330

M. Egashira, I. Tanaka-nakagawa, S. Watanabe, J. Okada, and . Yamaki, Charge???discharge and high temperature reaction of LiCoO2 in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation, Journal of Power Sources, vol.160, issue.2, pp.1387-1390, 2006.
DOI : 10.1016/j.jpowsour.2006.03.015

T. Sato, S. Maruo, K. Marukane, and . Takagi, Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells, Journal of Power Sources, vol.138, issue.1-2, pp.253-261, 2004.
DOI : 10.1016/j.jpowsour.2004.06.027

H. Lane, A. S. Best, D. R. Macfarlane, M. Forsyth, P. M. Bayley et al., The electrochemistry of lithium in ionic liquid/organic diluent mixtures, Electrochimica Acta, vol.55, issue.28, pp.8947-8952, 2010.
DOI : 10.1016/j.electacta.2010.08.023

D. R. Yoshizawa-fujita, P. C. Macfarlane, M. Howlett, and . Forsyth, A new Lewis-base ionic liquid comprising a mono-charged diamine structure: A highly stable electrolyte for lithium electrochemistry, Electrochemistry Communications, vol.8, issue.3, pp.445-449, 2006.
DOI : 10.1016/j.elecom.2006.01.008

R. Macfarlane, M. Forsyth, P. C. Howlett, J. M. Pringle, J. Sun et al., Ionic Liquids in Electrochemical Devices and Processes: Managing Interfacial Electrochemistry, Accounts of Chemical Research, vol.40, issue.11, pp.1165-1173, 2007.
DOI : 10.1021/ar7000952

R. Macfarlane, J. M. Pringle, P. C. Howlett, and M. Forsyth, Ionic liquids and reactions at the electrochemical interface, Physical Chemistry Chemical Physics, vol.21, issue.136, pp.1659-1669, 2010.
DOI : 10.1016/j.electacta.2009.11.080

H. Lane, Electrochemical reduction mechanisms and stabilities of some cation types used in ionic liquids and other organic salts, Electrochimica Acta, vol.83, pp.513-528, 2012.
DOI : 10.1016/j.electacta.2012.08.046

P. C. Byrne, D. R. Howlett, M. Macfarlane, and . Forsyth, The Zwitterion Effect in Ionic Liquids: Towards Practical Rechargeable Lithium-Metal Batteries, Advanced Materials, vol.103, issue.20, pp.2497-2501, 2005.
DOI : 10.1002/adma.200500595

G. Yoon, Y. Lane, P. Shekibi, M. Howlett, A. Forsyth et al., Lithium electrochemistry and cycling behaviour of ionic liquids using cyano based anions, Energy & Environmental Science, vol.14, issue.3, pp.979-986, 2011.
DOI : 10.1039/c3ee23753b

K. Wang, A. Zaghib, F. F. Guer?, R. M. Bazito, J. Torresi et al., Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials, Electrochimica Acta, vol.52, issue.22, pp.6346-6352, 2007.
DOI : 10.1016/j.electacta.2007.04.067

S. Lombardo, M. A. Brutti, S. Navarra, P. Panero, and . Reale, Mixtures of ionic liquid ??? Alkylcarbonates as electrolytes for safe lithium-ion batteries, Journal of Power Sources, vol.227, pp.8-14, 2013.
DOI : 10.1016/j.jpowsour.2012.11.017

Y. Higashi, K. Kato, H. Takechi, F. Nakamoto, H. Mizuno et al., Evaluation and analysis of Li-air battery using ether-functionalized ionic liquid, Journal of Power Sources, vol.240, pp.14-17, 2013.
DOI : 10.1016/j.jpowsour.2013.03.008

C. Pozo-gonzalo, A. A. Torriero, M. Forsyth, D. R. Macfarlane, and P. C. Howlett, Redox Chemistry of the Superoxide Ion in a Phosphonium-Based Ionic Liquid in the Presence of Water, The Journal of Physical Chemistry Letters, vol.4, issue.11, pp.1834-1837, 2013.
DOI : 10.1021/jz400715r

H. Zhang and . Zhou, to Li-Air Batteries: Carbon Nanotubes/Ionic Liquid Gels with a Tricontinuous Passage of Electrons, Ions, and Oxygen, Angewandte Chemie, vol.4, issue.44, pp.11224-11229, 2012.
DOI : 10.1002/ange.201204983

J. Recham, L. Chotard, C. Dupont, W. Delacourt, M. Walker et al., A 3.6???V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries, Nature Materials, vol.52, issue.1, pp.68-74, 2009.
DOI : 10.1038/nmat2590

URL : https://hal.archives-ouvertes.fr/hal-00452484

A. Nikitina, A. Nazet, T. Sonnleitner, and R. Buchner, Properties of Sodium Tetrafluoroborate Solutions in 1-Butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid, Journal of Chemical & Engineering Data, vol.57, issue.11, pp.3019-3025, 2012.
DOI : 10.1021/je300603d

T. Egashira, N. Tanaka, M. Yoshimoto, and . Morita, Influence of Ionic Liquid Species in Non-Aqueous Electrolyte on Sodium Insertion into Hard Carbon, Electrochemistry, vol.80, issue.10, pp.755-758, 2012.
DOI : 10.5796/electrochemistry.80.755

T. Nohira, R. Ishibashi, and . Hagiwara, Properties of an intermediate temperature ionic liquid NaTFSA???CsTFSA and charge???discharge properties of NaCrO2 positive electrode at 423K for a sodium secondary battery, Journal of Power Sources, vol.205, pp.506-509, 2012.
DOI : 10.1016/j.jpowsour.2011.11.086

P. C. Khoo, M. Howlett, D. R. Tsagouria, M. Macfarlane, and . Forsyth, The potential for ionic liquid electrolytes to stabilise the magnesium interface for magnesium/air batteries, Electrochimica Acta, vol.58, pp.583-588, 2011.
DOI : 10.1016/j.electacta.2011.10.006

A. Khoo, A. A. Somers, D. R. Torriero, P. C. Macfarlane, M. Howlett et al., Discharge behaviour and interfacial properties of a magnesium battery incorporating trihexyl(tetradecyl)phosphonium based ionic liquid electrolytes, Electrochimica Acta, vol.87, pp.701-708, 2013.
DOI : 10.1016/j.electacta.2012.09.072

J. Y. Kakibe, N. Hishii, M. Yoshimoto, M. Egashira, and . Morita, Binary ionic liquid electrolytes containing organo-magnesium complex for rechargeable magnesium batteries, Journal of Power Sources, vol.203, pp.195-200, 2012.
DOI : 10.1016/j.jpowsour.2011.10.127

N. Yoshimoto, M. Matsumoto, M. Egashia, and M. Morita, Mixed electrolyte consisting of ethylmagnesiumbromide with ionic liquid for rechargeable magnesium electrode, Journal of Power Sources, vol.195, issue.7, pp.2096-2098, 2010.
DOI : 10.1016/j.jpowsour.2009.10.073

Y. Wang, J. Nuli, Z. Yang, and . Feng, Mixed ionic liquids as electrolyte for reversible deposition and dissolution of magnesium, Surface and Coatings Technology, vol.201, issue.6, pp.3783-3787, 2006.
DOI : 10.1016/j.surfcoat.2006.03.020

P. C. Birbilis, D. R. Howlett, M. Macfarlane, and . Forsyth, Exploring corrosion protection of Mg via ionic liquid pretreatment, Surface and Coatings Technology, vol.201, issue.8, pp.4496-4504, 2007.
DOI : 10.1016/j.surfcoat.2006.09.050

P. C. Forsyth, S. K. Howlett, D. R. Tan, N. Macfarlane, and . Birbilis, An Ionic Liquid Surface Treatment for Corrosion Protection of Magnesium Alloy AZ31, Electrochemical and Solid-State Letters, vol.9, issue.11, pp.52-55, 2006.
DOI : 10.1149/1.2344826

E. Sutto and T. T. Duncan, Electrochemical and structural characterization of Mg ion intercalation into Co3O4 using ionic liquid electrolytes, Electrochimica Acta, vol.80, pp.413-417, 2012.
DOI : 10.1016/j.electacta.2012.07.050

E. Sutto and T. T. Duncan, Electrochemical and structural characterization of Mg ion intercalation into RuO2 using an ionic liquid electrolyte, Electrochimica Acta, vol.79, pp.170-174, 2012.
DOI : 10.1016/j.electacta.2012.06.099

E. Switzer, R. Zeller, Q. Chen, K. Sieradzki, D. A. Buttry et al., Oxygen Reduction Reaction in Ionic Liquids: The Addition of Protic Species, The Journal of Physical Chemistry C, vol.117, issue.17, pp.8683-8690, 2013.
DOI : 10.1021/jp400845u

P. J. Simons, A. A. Howlett, D. R. Torriero, M. Macfarlane, and . Forsyth, Electrochemical, Transport, and Spectroscopic Properties of 1-Ethyl-3-methylimidazolium Ionic Liquid Electrolytes Containing Zinc Dicyanamide, The Journal of Physical Chemistry C, vol.117, issue.6, pp.2662-2669, 2013.
DOI : 10.1021/jp311886h

J. Simons, A. A. Torriero, P. C. Howlett, D. R. Macfarlane, and M. Forsyth, High current density, efficient cycling of Zn2+ in 1-ethyl-3-methylimidazolium dicyanamide ionic liquid: The effect of Zn2+ salt and water concentration, Electrochemistry Communications, vol.18, pp.119-122, 2012.
DOI : 10.1016/j.elecom.2012.02.034

J. Deng, P. C. Lin, J. K. Chang, J. M. Chen, and K. T. Lu, Electrochemistry of Zn(II)/Zn on Mg alloy from the N-butyl-N-methylpyrrolidinium dicyanamide ionic liquid, Electrochimica Acta, vol.56, issue.17, pp.6071-6077, 2011.
DOI : 10.1016/j.electacta.2011.04.082

M. Kar, B. Winther-jensen, M. Forsyth, and D. R. Macfarlane, Chelating ionic liquids for reversible zinc electrochemistry, Physical Chemistry Chemical Physics, vol.125, issue.207???249, pp.7191-7197, 2013.
DOI : 10.1039/c3cp51102b

M. Rocher, E. I. Izgorodina, T. Ruther, M. Forsyth, D. R. Macfarlane et al., Mixtures, Chemistry - A European Journal, vol.62, issue.14, pp.3435-3447, 2009.
DOI : 10.1002/chem.200801641

D. Kreuer, A. Fuchs, M. Ise, M. Spaeth, and J. Maier, Imidazole and pyrazole-based proton conducting polymers and liquids, Electrochimica Acta, vol.43, issue.10-11, pp.1281-1288, 1998.
DOI : 10.1016/S0013-4686(97)10031-7

Z. Sun, L. R. Jordan, M. Forsyth, and D. R. Macfarlane, Acid???Organic base swollen polymer membranes, Electrochimica Acta, vol.46, issue.10-11, pp.1703-1708, 2001.
DOI : 10.1016/S0013-4686(00)00774-X

W. Yoshizawa, H. Ogihara, and . Ohno, Design of New Ionic Liquids by Neutralization of Imidazole Derivatives with Imide-Type Acids, Electrochemical and Solid-State Letters, vol.4, issue.6, pp.25-27, 2001.
DOI : 10.1149/1.1369218

A. B. Noda, K. Susan, S. Kudo, K. Mitsushima, M. Hayamizu et al., Br??nsted Acid???Base Ionic Liquids as Proton-Conducting Nonaqueous Electrolytes, The Journal of Physical Chemistry B, vol.107, issue.17, pp.4024-4033, 2003.
DOI : 10.1021/jp022347p

-. Y. Lee, A. Ogawa, M. Kanno, H. Nakamoto, T. Yasuda et al., Nonhumidified Intermediate Temperature Fuel Cells Using Protic Ionic Liquids, Journal of the American Chemical Society, vol.132, issue.28, pp.9764-9773, 2010.
DOI : 10.1021/ja102367x

S. Yasuda, Y. Nakamura, K. Honda, S. Kinugawa, M. Lee et al., Effects of Polymer Structure on Properties of Sulfonated Polyimide/Protic Ionic Liquid Composite Membranes for Nonhumidified Fuel Cell Applications, ACS Applied Materials & Interfaces, vol.4, issue.3, pp.1783-1790, 2012.
DOI : 10.1021/am300031k

Y. Bai, J. Cao, M. Zhang, R. Wang, P. Li et al., High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts, Nature Materials, vol.108, issue.8, pp.626-630, 2008.
DOI : 10.1038/nmat2224

R. Harikisun and H. Desilvestro, Long-term stability of dye solar cells, Solar Energy, vol.85, issue.6, pp.1179-1188, 2011.
DOI : 10.1016/j.solener.2010.10.016

M. Pringle and V. Armel, The influence of ionic liquid and plastic crystal electrolytes on the photovoltaic characteristics of dye-sensitised solar cells, International Reviews in Physical Chemistry, vol.54, issue.2, pp.371-407, 2011.
DOI : 10.1038/nchem.966

M. Zakeeruddin and M. Grätzel, Solvent-Free Ionic Liquid Electrolytes for Mesoscopic Dye-Sensitized Solar Cells, Advanced Functional Materials, vol.104, issue.14, pp.2187-2202, 2009.
DOI : 10.1002/adfm.200900390

J. Bai, Y. Zhang, M. Wang, P. Zhang, and . Wang, Lithium-Modulated Conduction Band Edge Shifts and Charge-Transfer Dynamics in Dye-Sensitized Solar Cells Based on a Dicyanamide Ionic Liquid, Langmuir, vol.27, issue.8, pp.4749-4755, 2011.
DOI : 10.1021/la200156m

J. Zhang, Y. Zhang, Y. Bai, M. Wang, P. Su et al., Anion-correlated conduction band edge shifts and charge transfer kinetics in dye-sensitized solar cells with ionic liquid electrolytes, Phys. Chem. Chem. Phys., vol.1, issue.9, pp.3788-3794, 2011.
DOI : 10.1039/C0CP02728F

. Grätzel, Recent Advances in Sensitized Mesoscopic Solar Cells, Accounts of Chemical Research, vol.42, issue.11, pp.1788-1798, 2009.
DOI : 10.1021/ar900141y

C. Wang, S. M. Grätzel, M. Zakeeruddin, and . Grätzel, Recent developments in redox electrolytes for dye-sensitized solar cells, Energy & Environmental Science, vol.488, issue.11, pp.9394-9405, 2012.
DOI : 10.1039/c2ee22095d

L. Tian and . Sun, Iodine-free redox couples for dye-sensitized solar cells, Journal of Materials Chemistry, vol.4, issue.29, pp.10592-10601, 2011.
DOI : 10.1039/c1jm10598a

H. Yella, H. N. Lee, C. Tsao, A. K. Yi, M. K. Chandiran et al., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency, Science, vol.334, issue.6056, pp.629-634, 2011.
DOI : 10.1126/science.1209688

K. Kashif, J. C. Axelson, N. W. Duffy, C. M. Forsyth, C. J. Chang et al., A New Direction in Dye-Sensitized Solar Cells Redox Mediator Development: In Situ Fine-Tuning of the Cobalt(II)/(III) Redox Potential through Lewis Base Interactions, Journal of the American Chemical Society, vol.134, issue.40, pp.16646-16653, 2012.
DOI : 10.1021/ja305897k

G. Hagfeldt, L. Boschloo, L. Sun, H. Kloo, and . Pettersson, Dye-Sensitized Solar Cells, Chemical Reviews, vol.110, issue.11, pp.6595-6663, 2010.
DOI : 10.1021/cr900356p

J. M. Armel, M. Pringle, D. R. Forsyth, D. L. Macfarlane, P. Officer et al., Ionic liquid electrolyte porphyrin dye sensitised solar cells, Chemical Communications, vol.111, issue.18, pp.3146-3148, 2010.
DOI : 10.1039/b926087k

K. Hashmi, T. Miettunen, J. Peltola, I. Halme, K. Asghar et al., Review of materials and manufacturing options for large area flexible dye solar cells, Renewable and Sustainable Energy Reviews, vol.15, issue.8, pp.3717-3732, 2011.
DOI : 10.1016/j.rser.2011.06.004

J. Ikegami, K. Suzuki, M. Teshima, T. Kawaraya, and . Miyasaka, Improvement in durability of flexible plastic dye-sensitized solar cell modules, Solar Energy Materials and Solar Cells, vol.93, issue.6-7, pp.836-839, 2009.
DOI : 10.1016/j.solmat.2008.09.051

X. Wu, Y. Lin, L. Wang, W. Wang, D. Guo et al., Economical Pt-Free Catalysts for Counter Electrodes of Dye-Sensitized Solar Cells, Journal of the American Chemical Society, vol.134, issue.7, pp.3419-3428, 2012.
DOI : 10.1021/ja209657v

A. M. Wang, B. Anghel, N. Marsan, N. Ha, S. M. Pootrakulchote et al., CoS Supersedes Pt as Efficient Electrocatalyst for Triiodide Reduction in Dye-Sensitized Solar Cells, Journal of the American Chemical Society, vol.131, issue.44, pp.15976-15977, 2009.
DOI : 10.1021/ja905970y

J. Kavan, M. Yum, and . Grätzel, Optically Transparent Cathode for Co(III/II) Mediated Dye-Sensitized Solar Cells Based on Graphene Oxide, ACS Applied Materials & Interfaces, vol.4, issue.12, pp.6999-7006, 2012.
DOI : 10.1021/am302253e

W. Saito, T. Kubo, Y. Kitamura, S. Wada, and J. Yanagida, I???/I3??? redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, vol.164, issue.1-3, pp.153-157, 2004.
DOI : 10.1016/j.jphotochem.2003.11.017

M. Pringle, V. Armel, M. Forsyth, and D. R. Macfarlane, PEDOT-Coated Counter Electrodes for Dye-Sensitized Solar Cells, Australian Journal of Chemistry, vol.62, issue.4, pp.348-352, 2009.
DOI : 10.1071/CH09006

M. Armel, D. R. Forsyth, J. M. Macfarlane, and . Pringle, Organic ionic plastic crystal electrolytes; a new class of electrolyte for high efficiency solid state dye-sensitized solar cells, Energy & Environmental Science, vol.38, issue.6, pp.2234-2239, 2011.
DOI : 10.1039/c1ee01062j

J. Li, B. Zhao, B. Sun, L. Lin, Y. Qiu et al., High-Temperature Solid-State Dye-Sensitized Solar Cells Based on Organic Ionic Plastic Crystal Electrolytes, Advanced Materials, vol.23, issue.8, pp.945-950, 2012.
DOI : 10.1002/adma.201103976

M. Fredin, H. Gorlov, A. Pettersson, L. Hagfeldt, G. Kloo et al., On the Influence of Anions in Binary Ionic Liquid Electrolytes for Monolithic Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, vol.111, issue.35, pp.13261-13266, 2007.
DOI : 10.1021/jp072514r

I. Quickenden and Y. Mua, A Review of Power Generation in Aqueous Thermogalvanic Cells, Journal of The Electrochemical Society, vol.142, issue.11, pp.3985-3994, 1995.
DOI : 10.1149/1.2048446

B. C. Hu, N. Cola, J. N. Haram, S. Barisci, S. Lee et al., Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based Thermo-Electrochemical Cell, Nano Letters, vol.10, issue.3, pp.838-846, 2010.
DOI : 10.1021/nl903267n

T. Hupp and M. J. Weaver, Solvent, ligand, and ionic charge effects on reaction entropies for simple transition-metal redox couples, Inorganic Chemistry, vol.23, issue.22, pp.3639-3644, 1984.
DOI : 10.1021/ic00190a042

T. Migita, N. Tachikawa, Y. Katayama, and T. Miura, Thermoelectromotive Force of Some Redox Couples in an Amide-type Room-temperature Ionic Liquid, Electrochemistry, vol.77, issue.8, pp.639-641, 2009.
DOI : 10.5796/electrochemistry.77.639

Y. Yamato, T. Katayama, and . Miura, Effects of the Interaction between Ionic Liquids and Redox Couples on Their Reaction Entropies, Journal of the Electrochemical Society, vol.160, issue.6, pp.309-314, 2013.
DOI : 10.1149/2.055306jes

J. Abraham, D. R. Macfarlane, and J. M. Pringle, Seebeck coefficients in ionic liquids ???prospects for thermo-electrochemical cells, Chemical Communications, vol.52, issue.22, pp.6260-6262, 2011.
DOI : 10.1039/c1cc11501d

L. Yaws, Yaw's Handbook of Thermodynamic and Physical Properties of Chemical Compounds, 2003.

Y. Simon and . Gogotsi, Materials for electrochemical capacitors, Nature Materials, vol.45, issue.11, pp.845-854, 2008.
DOI : 10.1038/nmat2297

F. Armand, D. R. Endres, H. Macfarlane, B. Ohno, and . Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nature Materials, vol.16, issue.8, pp.621-629, 2009.
DOI : 10.1038/nmat2448

B. Mcewen, H. L. Ngo, K. Lecompte, and J. L. Goldman, Electrochemical Properties of Imidazolium Salt Electrolytes for Electrochemical Capacitor Applications, Journal of The Electrochemical Society, vol.146, issue.5, pp.1687-1695, 1999.
DOI : 10.1149/1.1391827

K. Chiba, T. Ueda, and H. Yamamoto, Highly Conductive Electrolytic Solution for Electric Double-layer Capacitor Using Dimethylcarbonate and Spiro-type Quaternary Ammonium Salt, Electrochemistry, vol.75, issue.8, pp.668-671, 2007.
DOI : 10.5796/electrochemistry.75.668

K. Ue, S. Ida, and . Mori, Electrochemical Properties of Organic Liquid Electrolytes Based on Quaternary Onium Salts for Electrical Double-Layer Capacitors, Journal of The Electrochemical Society, vol.141, issue.11, pp.2989-2996, 1994.
DOI : 10.1149/1.2059270

A. Krause and . Balducci, High voltage electrochemical double layer capacitor containing mixtures of ionic liquids and organic carbonate as electrolytes, Electrochemistry Communications, vol.13, issue.8, pp.814-817, 2011.
DOI : 10.1016/j.elecom.2011.05.010

R. Palm, H. Kurig, K. Tonurist, A. Jaenes, and E. Lust, Electrical double layer capacitors based on 1-ethyl-3-methylimidazolium tetrafluoroborate with small addition of acetonitrile, Electrochimica Acta, vol.85, pp.139-144, 2012.
DOI : 10.1016/j.electacta.2012.08.030

U. Balducci, S. Bardi, M. Caporali, F. Mastragostino, and . Soavi, Ionic liquids for hybrid supercapacitors, Electrochemistry Communications, vol.6, issue.6, pp.566-570, 2004.
DOI : 10.1016/j.elecom.2004.04.005

F. Balducci, M. Soavi, and . Mastragostino, The use of ionic liquids as solvent-free green electrolytes for hybrid supercapacitors, Applied Physics A, vol.42, issue.358, pp.627-632, 2006.
DOI : 10.1007/s00339-005-3402-2

R. Balducci, P. L. Dugas, P. Taberna, D. Simon, M. Plee et al., High temperature carbon???carbon supercapacitor using ionic liquid as electrolyte, Journal of Power Sources, vol.165, issue.2, pp.922-927, 2007.
DOI : 10.1016/j.jpowsour.2006.12.048

N. Handa, T. Sugimoto, M. Yamagata, M. Kikuta, M. Kono et al., A neat ionic liquid electrolyte based on FSI anion for electric double layer capacitor, Journal of Power Sources, vol.185, issue.2, pp.1585-1588, 2008.
DOI : 10.1016/j.jpowsour.2008.08.086

C. Largeot, P. L. Taberna, Y. Gogotsi, and P. Simon, Microporous Carbon-Based Electrical Double Layer Capacitor Operating at High Temperature in Ionic Liquid Electrolyte, Electrochemical and Solid-State Letters, vol.14, issue.12, pp.174-176, 2011.
DOI : 10.1149/2.013112esl

R. Mysyk, E. Raymundo-pinero, M. Anouti, D. Lemordant, and F. Beguin, Pseudo-capacitance of nanoporous carbons in pyrrolidinium-based protic ionic liquids, Electrochemistry Communications, vol.12, issue.3, pp.414-417, 2010.
DOI : 10.1016/j.elecom.2010.01.007

L. Timperman, P. Skowron, A. Boisset, H. Galiano, D. Lemordant et al., Triethylammonium bis(tetrafluoromethylsulfonyl)amide protic ionic liquid as an electrolyte for electrical double-layer capacitors, Physical Chemistry Chemical Physics, vol.6, issue.75, pp.8199-8207, 2012.
DOI : 10.1039/c2cp40315c

S. Kunze, E. Jeong, M. Paillard, S. Winter, and . Passerini, Melting Behavior of Pyrrolidinium-Based Ionic Liquids and Their Binary Mixtures, The Journal of Physical Chemistry C, vol.114, issue.28, pp.12364-12369, 2010.
DOI : 10.1021/jp103746k

M. Kunze, G. B. Montanino, S. Appetecchi, M. Jeong, M. Schoenhoff et al., Melting Behavior and Ionic Conductivity in Hydrophobic Ionic Liquids, The Journal of Physical Chemistry A, vol.114, issue.4, pp.1776-1782, 2010.
DOI : 10.1021/jp9099418

V. Fedorov and A. A. Kornyshev, Towards understanding the structure and capacitance of electrical double layer in ionic liquids, Electrochimica Acta, vol.53, issue.23, pp.6835-6840, 2008.
DOI : 10.1016/j.electacta.2008.02.065

Z. Bazant, B. D. Storey, and A. A. Kornyshev, Double Layer in Ionic Liquids: Overscreening versus Crowding, Physical Review Letters, vol.106, issue.4, pp.46102-46103, 2011.
DOI : 10.1103/PhysRevLett.106.046102

H. J. Shim and . Kim, Nanoporous Carbon Supercapacitors in an Ionic Liquid: A Computer Simulation Study, ACS Nano, vol.4, issue.4, pp.2345-2355, 2010.
DOI : 10.1021/nn901916m

J. Wu, V. Huang, B. G. Meunier, R. Sumpter, and . Qiao, Complex Capacitance Scaling in Ionic Liquids-Filled Nanopores, ACS Nano, vol.5, issue.11, pp.9044-9051, 2011.
DOI : 10.1021/nn203260w

R. Pelrine, Q. B. Kornbluh, J. Pei, and . Joseph, High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%, Science, vol.287, issue.5454, pp.836-839, 2000.
DOI : 10.1126/science.287.5454.836

A. Osada and . Matsuda, Shape memory in hydrogels, Nature, vol.376, issue.6537, p.219, 1995.
DOI : 10.1038/376219a0

. H. Baughman, Conducting polymer artificial muscles, 150 E. Smela, pp.339-353, 1995.
DOI : 10.1016/0379-6779(96)80158-5

A. Susan, T. Kaneko, A. Noda, and M. Watanabe, Ion Gels Prepared by in Situ Radical Polymerization of Vinyl Monomers in an Ionic Liquid and Their Characterization as Polymer Electrolytes, Journal of the American Chemical Society, vol.127, issue.13, pp.4976-4983, 2005.
DOI : 10.1021/ja045155b

A. G. Lu, B. Fadeev, E. Qi, B. R. Smela, J. Mattes et al., Use of Ionic Liquids for pi -Conjugated Polymer Electrochemical Devices, Science, vol.297, issue.5583, pp.983-987, 2002.
DOI : 10.1126/science.1072651

D. Bennett and D. J. Leo, Ionic liquids as stable solvents for ionic polymer transducers, Sensors and Actuators A: Physical, vol.115, issue.1, pp.79-90, 2004.
DOI : 10.1016/j.sna.2004.03.043

J. Akle, M. D. Bennett, and D. J. Leo, High-strain ionomeric???ionic liquid electroactive actuators, Sensors and Actuators A: Physical, vol.126, issue.1, pp.173-181, 2006.
DOI : 10.1016/j.sna.2005.09.006

T. Fukushima, K. Asaka, A. Kosaka, and T. Aida, Fully Plastic Actuator through Layer-by-Layer Casting with Ionic-Liquid-Based Bucky Gel, Angewandte Chemie International Edition, vol.6, issue.16, pp.2410-2413, 2005.
DOI : 10.1002/anie.200462318

K. Mukai, K. Asaka, T. Kiyohara, I. Sugino, T. Takeuchi et al., High performance fully plastic actuator based on ionic-liquid-based bucky gel, Electrochimica Acta, vol.53, issue.17, pp.5555-5562, 2008.
DOI : 10.1016/j.electacta.2008.02.113

M. Noda and . Watanabe, Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts, Electrochimica Acta, vol.45, issue.8-9, pp.1265-1270, 2000.
DOI : 10.1016/S0013-4686(99)00330-8

M. A. Seki, T. Susan, H. Kaneko, A. Tokuda, M. Noda et al., Distinct Difference in Ionic Transport Behavior in Polymer Electrolytes Depending on the Matrix Polymers and Incorporated Salts, The Journal of Physical Chemistry B, vol.109, issue.9, pp.3886-3892, 2005.
DOI : 10.1021/jp045328j

J. Fuller, A. C. Breda, and R. T. Carlin, Ionic liquid???polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids, Journal of Electroanalytical Chemistry, vol.459, issue.1, pp.29-34, 1998.
DOI : 10.1016/S0022-0728(98)00285-X

T. P. He and . Lodge, Thermoreversible Ion Gels with Tunable Melting Temperatures from Triblock and Pentablock Copolymers, Macromolecules, vol.41, issue.1, pp.167-174, 2007.
DOI : 10.1021/ma702014z

D. Gao, J. R. Wang, T. E. He?in, and . Long, Imidazolium sulfonate-containing pentablock copolymer???ionic liquid membranes for electroactive actuators, Journal of Materials Chemistry, vol.115, issue.27, pp.13473-13476, 2012.
DOI : 10.1080/19475411.2011.650232

D. Wu, M. Wang, J. R. Zhang, R. B. He?in, T. E. Moore et al., RAFT Synthesis of ABA Triblock Copolymers as Ionic Liquid-Containing Electroactive Membranes, ACS Applied Materials & Interfaces, vol.4, issue.12, pp.6552-6559, 2012.
DOI : 10.1021/am301662s

H. Imaizumi, M. Kokubo, and . Watanabe, Polymer Actuators Using Ion-Gel Electrolytes Prepared by Self-Assembly of ABA-Triblock Copolymers, Macromolecules, vol.45, issue.1, pp.401-409, 2011.
DOI : 10.1021/ma2022138

Y. Imaizumi, H. Kato, M. Kokubo, and . Watanabe, Driving Mechanisms of Ionic Polymer Actuators Having Electric Double Layer Capacitor Structures, The Journal of Physical Chemistry B, vol.116, issue.16, pp.5080-5089, 2012.
DOI : 10.1021/jp301501c

D. Izgorodin, A. Macfarlane, and . Chong, Low overpotential water oxidation to hydrogen peroxide on a MnOx catalyst, Energy & Environmental Science, vol.2, issue.11, pp.9496-9501, 2012.
DOI : 10.1002/aenm.201100783

R. R. Macfarlane, H. N. Vijayaraghavan, A. Ha, K. D. Izgorodin, G. D. Weaver et al., Ionic liquid ???buffers??????pH control in ionic liquid systems, Chemical Communications, vol.111, issue.41, pp.7703-7705, 2010.
DOI : 10.1039/c0cc03089a

M. Powell and T. F. Edgar, Modeling and control of a solar thermal power plant with thermal energy storage, Chemical Engineering Science, vol.71, pp.138-145, 2012.
DOI : 10.1016/j.ces.2011.12.009

N. Terasawa, S. Tsuzuki, T. Umecky, Y. Saito, and H. Matsumoto, Alkoxy chains in ionic liquid anions; effect of introducing ether oxygen into perfluoroalkylborate on physical and thermal properties, Chemical Communications, vol.56, issue.155, pp.1730-1732, 2010.
DOI : 10.1039/b916759e

L. Zhu, B. Bai, W. Chen, and . Fei, Thermodynamical properties of phase change materials based on ionic liquids, Chemical Engineering Journal, vol.147, issue.1, pp.58-62, 2009.
DOI : 10.1016/j.cej.2008.11.016

U. Paulechka, Heat Capacity of Room-Temperature Ionic Liquids: A Critical Review, Journal of Physical and Chemical Reference Data, vol.39, issue.3, pp.33108-033123, 2010.
DOI : 10.1063/1.3463478

D. Tomida, S. Kenmochi, T. Tsukada, and K. Qiao, Thermal Conductivities of [bmim][PF6], [hmim][PF6], and [omim][PF6] from 294 to 335??K at Pressures up to 20??MPa, International Journal of Thermophysics, vol.168, issue.4, pp.1147-1160, 2007.
DOI : 10.1007/s10765-007-0241-8

T. W. Ramdin, T. J. De-loos, and . Vlugt, Capture with Ionic Liquids, Industrial & Engineering Chemistry Research, vol.51, issue.24, pp.8149-8177, 2012.
DOI : 10.1021/ie3003705

P. Zhang, X. C. Zhang, H. F. Dong, Z. J. Zhao, S. J. Zhang et al., Carbon capture with ionic liquids: overview and progress, Energy & Environmental Science, vol.37, issue.182, pp.6668-6681, 2012.
DOI : 10.1039/c2ee21152a

D. Bates, R. D. Mayton, I. Ntai, and J. H. Davis, Capture by a Task-Specific Ionic Liquid, Journal of the American Chemical Society, vol.124, issue.6, pp.926-927, 2002.
DOI : 10.1021/ja017593d

H. Davis, Abstracts of Papers of the, pp.952-953, 2003.

S. Kasahara, E. Kamio, T. Ishigami, and H. Matsuyama, Task-speci?c ILs with amine-functionalized cations have been commercialized for sale by Iolitec GmbH; TSILs with amine-functionalized anions have been commercialized for sale by Frontier Scienti?c, J. Membr. Sci, pp.415-168, 2012.

L. Gin and R. D. Noble, Designing the Next Generation of Chemical Separation Membranes, Science, vol.332, issue.6030, pp.674-676, 2011.
DOI : 10.1126/science.1203771

K. Carlisle, E. F. Wiesenauer, G. D. Nicodemus, D. L. Gin, and R. D. Noble, /Light Gas Separation Performance of Poly(vinylimidazolium) Membranes and Poly(vinylimidazolium)-Ionic Liquid Composite Films, Industrial & Engineering Chemistry Research, vol.52, issue.3, pp.1023-1032, 2013.
DOI : 10.1021/ie202305m

J. Fang, Z. L. Luo, and J. W. Jiang, capture in poly(ionic liquid) membranes: atomistic insight into the role of anions, Phys. Chem. Chem. Phys., vol.35, issue.2, pp.651-658, 2013.
DOI : 10.1039/C2CP42837G