A character degradation model for grayscale ancient document images

Abstract : Kanungo noise model is widely used to test the robustness of different binary document image analysis methods towards noise. This model only works with binary images while most document images are in grayscale. Because binarizing a document image might degrade its contents and lead to a loss of information, more and more researchers are currently focusing on segmentation-free methods (Angelika et al [2]). Thus, we propose a local noise model for grayscale images. Its main principle is to locally degrade the image in the neighbourhoods of "seed-points" selected close to the character boundary. These points define the center of "noise regions". The pixel values inside the noise region are modified by a Gaussian random distribution to make the final result more realistic. While Kanungo noise models scanning artifacts, our model simulates degradations due to the age of the document itself and printing/writing process such as ink splotches, white specks or streaks. It is very easy for users to parameterize and create a set of benchmark databases with an increasing level of noise. These databases will further be used to test the robustness of different grayscale document image analysis methods (i.e. text line segmentation, OCR, handwriting recognition).
Type de document :
Communication dans un congrès
21st International Conference on Pattern Recognition (ICPR), Nov 2012, France
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00979057
Contributeur : Van Cuong Kieu <>
Soumis le : lundi 21 avril 2014 - 14:25:21
Dernière modification le : jeudi 9 février 2017 - 16:58:50
Document(s) archivé(s) le : lundi 10 avril 2017 - 13:14:52

Fichier

cifed.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00979057, version 1

Collections

Citation

Van Cuong Kieu, Jean-Philippe Domenger, Rémy Mullot, Nicholas Journet, Muriel Visani. A character degradation model for grayscale ancient document images. 21st International Conference on Pattern Recognition (ICPR), Nov 2012, France. <hal-00979057>

Partager

Métriques

Consultations de
la notice

188

Téléchargements du document

139