On the semiprimity of cyclic codes
Yves Aubry, Philippe Langevin

To cite this version:
ON THE SEMIPRIMITIVITY OF CYCLIC CODES

YVES AUBRY AND PHILIPPE LANGEVIN

Abstract. We prove, without assuming the Generalized Riemann Hypothesis, but with at most one exception, that an irreducible cyclic code $c(p, m, v)$ with v prime and p of index 2 modulo v is a two-weight code if and only if it is a semiprimitive code or it is one of the six sporadic known codes. The result is proved without any exception for index-two irreducible cyclic $c(p, m, v)$ codes with v prime not congruent to 3 modulo 8. Finally, we prove that these two results hold true in fact for irreducible cyclic code $c(p, m, v)$ such that there is three p-cyclotomic cosets modulo v.

1. Introduction

Irreducible cyclic codes are extensively studied in the literature. They can be defined by three parameters p, m and v and are denoted $c(p, m, v)$ (see section 2 for a precise definition). Such codes with only few different (Hamming) weights are highly appreciated, especially those with exactly two non-zero weights, called two-weight codes. The classification of two-weight codes is a classical problem in coding theory (see [3]); it is still an open problem but recent progress has been made. An infinite family, namely the semiprimitive codes (i.e. when -1 is a power of p modulo v), and eleven sporadic examples are known. Schmidt and White in [9] provided evidence to conjecture that this is the whole story:

Conjecture 1. An irreducible cyclic code $c(p, m, v)$ is a two-weight code if and only if it is a semiprimitive code or it is one of the eleven sporadic known codes.

They proved their conjecture, conditional on the Generalized Riemann Hypothesis (G.R.H.), for index-two codes, that is when p has index 2 modulo v. Note that semiprimitive codes have two non-zero weights and thus only the “only if” part had to be proved.

We considered in [1] the conjecture in the binary case and we proved it in a particular case without assuming G.R.H.. Our main result here is a proof of this conjecture without assuming G.R.H. but with at most one exception in the case where p has index 2 and v is prime. We prove before, using near-primitive root densities and conditionally on G.R.H., that for any prime number p there are infinitely many such codes namely index-two irreducible cyclic codes $c(p, m, v)$ with v prime.
We prove the conjecture without any exception (and without assuming G.R.H.) in the case where \(p \) has index 2 and \(v \) is a prime not congruent to 3 modulo 8. Finally, we remark that the results hold true in fact for irreducible cyclic codes \(c(p, m, v) \) with \(v \) an integer such that there is three \(p \)-cyclotomic cosets modulo \(v \).

2. IRREDUCIBLE CYCLIC CODES AND McELIECE WEIGHT-FORMULA

Let us introduce irreducible cyclic codes over a prime finite field (indeed, it is enough for our purpose, namely the classification of two-weight irreducible cyclic codes, to consider such codes over prime fields, as remarked in [9]).

Let \(p \) be a prime number and consider the finite field \(K \) with \(p \) elements. Let \(L \) be the extension of degree \(m \) of \(K \), consider a divisor \(n \) of \(p^m - 1 \) and write \(v = (p^m - 1)/n \) (thus \(v \) and \(p \) are coprime). Let \(\zeta \) be a primitive \(n \)-th root of unity in \(L \) (i.e. \(\zeta \) is a generator of the cyclic subgroup of order \(n \) of the multiplicative group \(L^* \)). We define the \(c(p, m, v) \) code to be the image of the following map \(\Phi_m \):

\[
\Phi_m : \quad L \rightarrow K^n
\]

\[
t \mapsto (\text{Tr}_{L/K}(t \zeta^{-i}))_{i=0}^{n-1}
\]

where \(\text{Tr}_{L/K} \) is the trace of the field \(L \) over \(K \).

It is a code of length \(n \) and dimension \(\text{ord}_n(p) \), the multiplicative order of \(p \) modulo \(n \). Every irreducible cyclic code over \(K \) can be viewed as a \(c(p, m, v) \) code (see [9]), so we can take \(c(p, m, v) \) as the definition of irreducible cyclic codes over \(K \) of length \(n \). The \(c(p, m, v) \) codes are known to be projective or saturated according to whether \(\gcd(n, p - 1) = 1 \) or \(\gcd(n, p - 1) = p - 1 \). As remarked in [9], we may assume the saturated situation.

Now we are interested in the weight \(w(t) \) of a codeword \(\Phi_m(t) \) of such a code, for \(t \in L^* \). Let \(\chi \) be a character of the multiplicative group \(L^* \) and let

\[
\tau_L(\chi) = -\sum_{x \in L^*} \chi(x)e^{2\pi i \text{Tr}_{L/K}(x)}
\]

be the Gauss sum associated with \(\chi \).

Let \(V \) be the subgroup of \(L^* \) of index \(v \) and let \(\Gamma \) be the subgroup of characters of \(L^* \) which are trivial both on \(V \) and \(K^* \). Note that the order of \(\Gamma \) is equal to \(v \gcd(n, p - 1)/(p - 1) \) which is just equal to \(v \) in the saturated situation. We have the following McEliece formula:

Proposition 2. For any \(t \in L^* \), the weight \(w(t) \) of the codeword \(\Phi_m(t) \) is given by:

\[
w(t) = \frac{p - 1}{pv} \left(p^m + \sum_{\chi \in \Gamma \setminus \{1\}} \tau_L(\chi) \bar{\chi}(t)\right).
\]

And, conversely by Fourier inversion
\begin{equation}
\tau_L(\chi) = \frac{p}{p-1} \sum_{t \in L^*/V} w(t) \chi(t).
\end{equation}

One says that p is semiprimitive modulo v when -1 is in the group generated by p in $(\mathbb{Z}/v\mathbb{Z})^*$, i.e. when $\text{ord}_v(p)$ is even. Note that in this case all the Gauss sums are rational and a $c(p, m, v)$ code is a two-weight code. In the paper we investigate the reciprocal: besides some sporadic known examples, is any two-weight irreducible cyclic code semiprimitive?

3. The case v small

Before going further let us treat the case where v is small, i.e. $v = 2$ or 3. We know that a $c(p, m, 2)$ code is a two-weight code, and that the weights can be expressed in term of quadratic Gauss sum (see [7]). In the same way, the weights of a $c(p, m, 3)$ code can be expressed by means of cubic Gauss sums. However, it is hard to give the exact values of the cubic Gauss sums (see [6]), and thus also the weights of such a code. Nevertheless, we have the following characterization:

Proposition 3. A $c(p, m, 3)$ code has two weights if and only if it is semiprimitive (that is here, if and only if $p \equiv 2 \mod 3$).

Proof. Let χ be a multiplicative character of L of order 3. The number of weights of a $c(p, m, 3)$ code is equal to the number of distincts values taken by the mapping:

$$L^* \ni t \mapsto f(t) = \tau_L(\chi)(t) + \tau_L(\bar{\chi})(t).$$

Let $1 \neq j$ be a cubic root of unity. Let t be such that $\chi(t) = j$. It is easy to see that $f(1) = f(t)$ implies $\tau_L(\chi) = j\tau_L(\bar{\chi})$, that $f(t) = f(t^2)$ implies $\tau_L(\chi) = \tau_L(\bar{\chi})$ and that $f(1) = f(t^2)$ implies $\tau_L(\bar{\chi}) = j^2\tau_L(\chi)$. Therefore, the code has two weights if and only if there exists a cubic root of unity ω such that

\begin{equation}
\tau_L(\bar{\chi}) = \omega \tau_L(\chi).
\end{equation}

In particular, since $\tau_L(\chi)^3$ is an algebraic integer of degree 2 and norm p^{3m}, we deduce that $\tau_L(\chi)^6 = \tau_L(\bar{\chi})^6 = p^{6m}$. Hence the Gauss sums $\tau_L(\chi)$ are pure Gauss sums (see [7] for a definition of a pure Gauss sum). It follows by a theorem of Baumert, Mills and Ward (see Theorem 11.6.4 of [7] for example) that p is semiprimitive modulo 3. \hfill \Box

4. Infinitely many index-two $c(p, m, v)$ codes with v prime

For the study of $c(p, m, v)$ codes with v prime and p of index two modulo v, we are interested in primitive and near-primitive root densities.
In 1927, Emil Artin made the following conjecture (called now the Artin’s primitive root conjecture): for any integer $\alpha \neq \pm 1$ not a square, the natural density

$$\lim_{x \to +\infty} \frac{\#\{v \text{ prime } | \ v \leq x \text{ and } \alpha \text{ generates } \mathbb{F}_v^*\}}{\#\{v \text{ prime } | \ v \leq x\}}$$

exists and is positive. In 1967, Hooley proved this conjecture under the assumption of G.R.H.. In particular, he proved that if α is neither ± 1 nor a perfect square, then there are infinitely many primes v for which α is a primitive root modulo v.

If we ask α to generate only the squares of \mathbb{F}_v^* and not the whole group \mathbb{F}_v^*, i.e. to have index 2 and not index 1 modulo v, we come to the notion of near-primitive roots. Precisely, fix $\alpha \neq \pm 1$ not a perfect power and let v be a prime and t be an integer such that $v \equiv 1 \pmod{t}$. Consider

$$N_{\alpha,t}(x) = \#\{v \text{ prime } | \ v \leq x \text{ and } v \nmid \alpha \text{ and } \text{ind}_v(\alpha) = t\}.$$

Notice that for $t = 1$ this quantity is just the previous one studied by Artin and Hooley. In 2000, Moree introduced in [8] a weighting function depending on α and t and gave an estimation of $N_{\alpha,t}(x)$ assuming G.R.H.. In particular, for $\alpha = p$ a prime number and $t = 2$, he proved that

$$N_{p,2}(x) = \sum_{v \text{ odd prime } v \leq x} \frac{\varphi\left(\frac{v-1}{2}\right)}{v-1} + O\left(\frac{x \log \log x}{\log^2 x}\right).$$

This implies that there exist infinitely many primes v such that p has index 2 modulo v.

In particular, we have:

Proposition 4. Conditionally on G.R.H., for any prime number p there are infinitely many index-two irreducible cyclic codes $c(p, m, v)$ with v prime.

5. Necessary conditions on two-weight codes

The irreducible cyclic codes $c(p, m, v)$, with v a prime number and with p of index 2 modulo v, range in two families: the first one with $v \equiv 1 \pmod{4}$ and the second one with $v \equiv 3 \pmod{4}$. If $v \equiv 1 \pmod{4}$, then -1 is a square modulo v and since p generates the squares modulo v, we are reduced to the semiprimitive case. This lead us to consider the second case, where -1 is not a square modulo v. Moreover, in view of Proposition 3, we can suppose that v is greater than 3.

Hence, let us consider a prime number p and an integer v satisfying the following (2) conditions:

(a) v is a prime greater than 3,
(b) $\text{ord}_v(p) = (v-1)/2$ i.e. p has index 2 modulo v,
(c) $v \equiv 3 \pmod{4}$.
Let f be the multiplicative order of p modulo v. Note that f divides m, and we set $s = m/f$. It is shown in [4] that if a $c(p, m, v)$ code with v satisfying the (\sharp) conditions has two weights then:

\begin{equation}
\frac{v + 1}{4} = p^{hs}.
\end{equation}

We give, now, a more precise result:

Theorem 5. If a $c(p, m, v)$ code with v satisfying the (\sharp) conditions is a two-weight code then we have:

$$m = \text{ord}_v(p).$$

Proof. Since p has index 2 modulo v, then p is a square modulo v, and $(p) = PP'$ splits in the extension $\mathbb{Q}(\sqrt{-v})/\mathbb{Q}$. We have that the norm

$$N_{\mathbb{Q}(\sqrt{-v})/\mathbb{Q}}(P) = p$$

and that $P^h = (\alpha)$ is a principal ideal (since h is the ideal class number of $\mathbb{Q}(\sqrt{-v})$, with $\alpha = (a + b\sqrt{-v})/2$ (with $a, b \in \mathbb{Z}$) an algebraic integer of $\mathbb{Q}(\sqrt{-v})$. Taking norms, we obtain $p^h = (a^2 + bv^2)/4$ and since a and b cannot be zero in this situation, we conclude that

$$\frac{v + 1}{4} \leq p^h.$$

But by (5) a $c(p, m, v)$ code with v satisfying the (\sharp) conditions has two weights if and only if

\begin{equation}
\frac{v + 1}{4} = p^{hs}.
\end{equation}

Thus, $p^{hs} \leq p^h$ and $s = 1$. \qed

Then, the previously defined parameter s appearing in [4] and [9] is equal to 1 under the (\sharp) conditions. In particular, we have:

Corollary 6. If a $c(p, m, v)$ code with v satisfying the (\sharp) conditions is a two-weight code then

\begin{equation}
\frac{v + 1}{4} = p^h.
\end{equation}

where h is the class number of the imaginary quadratic number field $\mathbb{Q}(\sqrt{-v})$. In particular, such a code is completely defined by the parameter v.

Furthermore, we have the following necessary condition on p for two-weight $c(p, m, v)$ code with v satisfying the (\sharp) conditions:

Corollary 7. If a $c(p, m, v)$ code with v satisfying the (\sharp) conditions has two weights, then p is the least prime which totally splits in the extension $\mathbb{Q}(\sqrt{-v})/\mathbb{Q}$, i.e. p is the least prime which is a square modulo v.
Proof. Indeed, if \(\ell \) is a prime which totally splits in \(\mathbb{Q}(\sqrt{-v})/\mathbb{Q} \), then the previous proof implies that \(\ell^h \geq \frac{v+1}{4} = p^h \) which gives \(\ell \geq p \). \(\square \)

6. Main results

Using the previous section, we can state the following result which can also be derived from the proof of lemma 4.1. of [4].

Theorem 8. There is no two-weight \(c(p, m, v) \) code with \(v \) satisfying the \((\sharp)\) conditions and with \(v \equiv 7 \pmod{8} \). Hence, Conjecture 1 holds true for index-two irreducible cyclic \(c(p, m, v) \) codes with \(v \) a prime not congruent to 3 modulo 8.

Proof. Since \(v \equiv 7 \pmod{8} \), it follows that 2 is a square modulo \(v \), and the ideal \((2)\) splits in the extension \(\mathbb{Q}(\sqrt{-v})/\mathbb{Q} \). By Corollary 7, we conclude that \(p = 2 \). But we proved in [1] that there exists no two-weight binary \(c(p, m, v) \) code with \(v \) satisfying the \((\sharp)\) conditions, so we get the non-existence of such codes. Hence, this proves the conjecture since the case \(v \equiv 1 \pmod{4} \) is trivial, as quoted in the previous section, and the last case \(v \equiv 3 \pmod{4} \) is divided in two subcases: when \(v \equiv 7 \pmod{8} \), which is now solved, and when \(v \equiv 3 \pmod{8} \) which is the remainder case. \(\square \)

Actually, we will consider now a more general approach using the identity of Corollary 6 but with at most one exception.

If a \(c(p, m, v) \) code with \(v \) satisfying the \((\sharp)\) conditions has two weights then we have the following relation

\[
\frac{v+1}{4} = p^h,
\]

where \(h \) is the class number of the imaginary quadratic number field \(\mathbb{Q}(\sqrt{-v}) \) (see Corollary 6).

In 1935, Siegel gave a non-effective lower bound on the residue at \(s = 1 \) of the L-function \(L(s, \chi_v) \) associated to the primitive odd Dirichlet character \(\chi_v \) of \(\mathbb{Q}(\sqrt{-v}) \). Tatzawa, in 1951, proved an effective lower bound of \(L(1, \chi_v) \) but with at most one exception (see [10] and see also [5] for a simple proof): if \(0 < \varepsilon < 1/2 \) and \(v \geq \max(e^{1/\varepsilon}, e^{11/2}) \), then

\[
L(1, \chi_v) \geq 0.655\varepsilon v^{-\varepsilon}.
\]

Since the class number \(h \) of \(\mathbb{Q}(\sqrt{-v}) \) with \(-v \equiv 1 \pmod{4} \) is linked to \(L(1, \chi_v) \) by the following Dirichlet class number formula:

\[
L(1, \chi_v) = \frac{\pi h}{\sqrt{v}},
\]

we can use Tatzawa theorem to get an upper bound on \(v \).

Proposition 9. There exists at most one two-weight \(c(p, m, v) \) code with \(v \geq 10^8 \) satisfying the \((\sharp)\) conditions.
Table 1. Sporadic \(c(p, m, v)\) codes with \(v\) satisfying the \((\varepsilon)\) conditions and \(v \leq 10^8\).

<table>
<thead>
<tr>
<th>(v)</th>
<th>11</th>
<th>19</th>
<th>67</th>
<th>107</th>
<th>163</th>
<th>499</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>3</td>
<td>5</td>
<td>17</td>
<td>3</td>
<td>41</td>
<td>5</td>
</tr>
<tr>
<td>(h)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Proof. Let \(\varepsilon = 1/\log(10^8) \in (0, 1/2)\). For \(v \geq \max(e^{1/\varepsilon}, e^{11.2}) = 10^8\), we have, with at most one exception:

\[
L(1, \chi_v) \geq 0.655\varepsilon v^{-\varepsilon} = 0.035v^{-0.054}.
\]

Now, \(v^2/4 = p^h \geq 2^h\) implies that \(\log v^2/4 \geq h \log 2\). By the Dirichlet class number formula, we get:

\[
\log \frac{v + 1}{4} \geq \sqrt{\frac{\pi}{v}} L(1, \chi_v) \log 2.
\]

But, for \(v \geq 10^8\), we have on one hand \(\log \frac{v + 1}{4} \geq 17.03\) and on the other hand \(\sqrt{\frac{\pi}{v}} L(1, \chi_v) \log 2 > 28.55\) by Tatuzawa theorem. Thus, there exists no \(v \geq 10^8\) such that \(\frac{v + 1}{4} = p^h\), with at most one exception. \(\square\)

Now, we make an exhaustive research of the primes \(v \leq 10^8\) such that \((v + 1)/4\) is a power of a prime \(p\). Then, for such primes \(v\), we check whether \((v + 1)/4 = p^h(v)\) holds true or not, with \(h(v)\) the class number of \(\mathbb{Q}(\sqrt{-v})\). Actually, we recover the following sporadic known examples of Table 1.

Thus, we have proved the following theorem:

Theorem 10. Any two-weight irreducible cyclic \(c(p, m, v)\) code where \(p\) has index two modulo a prime \(v\) and which is not one of the six sporadic examples of Table 1 is semiprimitive, with at most one exception. Hence, Conjecture 1 is true, with at most one exception, for all index-two \(c(p, m, v)\) codes with \(v\) prime.

7. **Cyclotomic cosets**

Let \(p\) be a prime. For any integer \(v\) prime to \(p\), consider on the ring \(\mathbb{Z}/v\mathbb{Z}\) the equivalence relation given by: for \(a, b \in \mathbb{Z}/v\mathbb{Z}\), we set \(a \sim b\) if and only if there exists \(t \in \mathbb{Z}\) such that \(a = bp^t\). The equivalence classes for this equivalence relation are the so-called \(p\)-cyclotomic cosets modulo \(v\).

Recall that the order \(\text{ord}_v(g)\) of an element \(g\) of the multiplicative group \((\mathbb{Z}/v\mathbb{Z})^*\) divides the order \(\varphi(v)\) of this group, where \(\varphi\) is the Euler function. We denote by \(\text{ind}_v(g)\) the index of \(g\) modulo \(v\) i.e.

\[
\text{ind}_v(g) = \frac{\varphi(v)}{\text{ord}_v(g)}.
\]

Then \(\text{ind}_v(g) = [\langle g \rangle : \langle g \rangle]\) where \(\langle g \rangle\) denotes the subgroup of \((\mathbb{Z}/v\mathbb{Z})^*\) generated by \(g\). But the number \(\gamma(p, v)\) of \(p\)-cyclotomic cosets
modulo \(v \) is also equal to the number of irreducibles polynomials in the
decomposition of the polynomial \(X^v - 1 \) over \(F_p \), thus it is equal to
\[
\gamma(p, v) = \sum_{d \mid v} \frac{\varphi(d)}{\text{ord}_d(p)} = \sum_{d \mid v} \text{ind}_d(p)
\]
with the convention that \(\text{ind}_1(p) = 1 \). For example, the condition \(\gamma(p, v) = 2 \)
is equivalent to \(\text{ind}_v(p) = 1 \), that is \(p \) is a primitive root modulo \(v \).

Proposition 11. Let \(v \) be an integer. The ring \(\mathbb{Z}/v\mathbb{Z} \) contains exactly
3 \(p \)-cyclotomic cosets if and only if one of the following holds:

(i) \(v \) is a prime and \(p \) has index \(2 \) mod \(v \);

(ii) \(v \) is the square of a prime and \(p \) has index \(1 \) mod \(v \).

Proof. By (8) we have \(\gamma(p, v) = 3 \) if and only if \(\text{ind}_v(p) = 2 \) and \(v \) has
no proper divisor, or \(\text{ind}_v(p) = 1 \) and \(v \) has a unique proper divisor.
The proposition is then proved. \(\square \)

Proposition 12. Let \(v \) be an integer. If the ring \(\mathbb{Z}/v\mathbb{Z} \) contains exactly
three \(p \)-cyclotomic cosets then any \(c(p, m, v) \) code has at most three non-zero weights.

Proof. The result is in fact much general: the number of weights is
less or equal than the number of cyclotomic cosets. It follows from the
fact that the weight of a codeword of a \(c(p, m, v) \) code is invariant
under \(t \mapsto t\zeta \) and under \(t \mapsto t^p \); see Theorem 2.5 of [2] for a detailed proof.

The case (ii) of Proposition 11 falls into the semiprimitive case since
\(p \) generates the whole group \((\mathbb{Z}/v\mathbb{Z})^* \) and thus contains \(-1\).

Finally, we have proved the following result:

Theorem 13. If \(v \) is an integer such that there is three \(p \)-cyclotomic cosets modulo \(v \) then any two-weight irreducible cyclic code \(c(p, m, v) \)
which is not one of the six sporadic examples of Table 1 is semiprimitive,
with at most one exception. Hence, Conjecture 1 holds true, with
at most one exception, for all \(c(p, m, v) \) codes with \(v \) an integer such that
there is three \(p \)-cyclotomic cosets modulo \(v \).

Proof. If a binary irreducible cyclic code with three-cyclotomic cosets
has two weights then it is semiprimitive. Indeed, by Proposition 11, an
irreducible cyclic code with three-cyclotomic cosets leads to two cases.
The first one leads \(c(p, m, v) \) codes with \(v \) a square of a prime and \(p \) of
index 1 modulo \(v \) which gives a semiprimitive code.

The other case leads to \(c(p, m, v) \) codes with \(v \) a prime and \(p \) of index
2 modulo \(v \) (the so-called index-two codes). When \(v \equiv 1 \pmod{4} \), we
saw that we obtain a semiprimitive code. When \(v \equiv 3 \pmod{4} \), we
obtain \(c(p, m, v) \) codes with \(v \) satisfying the (\(\sharp \)) conditions. In the case
where \(p = 2 \), i.e. the binary case, we found in [1] that there is no two-weight codes. When \(p \neq 2 \), theorem 10 gives the result. □

REFERENCES

Institut de Mathématiques de Toulon, Université du Sud Toulon-Var, France.

E-mail address: {yaubry, langevin}@univ-tln.fr