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Odd permutations are nicer than even ones✩

Robert Coria, Michel Marcusa, Gilles Schaefferb

aLaBRI, Université Bordeaux 1, 351 cours de la Liberation F33400 Talence, France
bLIX, Ecole Polytechnique, Route de Saclay, F91128 Palaiseau Cedex

Abstract

We give simple combinatorial proofs of some formulas for the number of factorizations of
permutations in Sn as a product of two n-cycles, or of an n-cycle and an (n − 1)-cycle.

Dedicated to Antonio Mach̀ı, on his 70th birthday

1. Introduction

The parameter number of cycles plays a central role in the algebraic theory of the
symmetric group, however there are very few results giving a relationship between the
number of cycles of two permutations and that of their product.

The first results on the subject go back to O. Ore, E. Bertram, R. Stanley (see [13], [1],
[15]), who proved some existence theorems. These results allowed to obtain informations
on the structure of the commutator subgroup of the alternating group.

After these pionneering works, enumerative results were investigated probably for
the first time by D. Walkup (in [17]). In order to obtain enumeration formulas, different
techniques were used. Some of them are purely combinatorial, while others use character
theory. The key point of this second approach is a theorem, often attributed to Frobenius,
expressing linearization coefficients for the product of conjugacy classes in the group
algebra, as a sum of products of characters of irreducible representations.

The use of character theory was very fruitful to many authors and gave rise to many
papers by R. Stanley, D. Jackson, D. Zagier G. Jones, A. Goupil, G. Schaeffer, D. Poulal-
hon, P. Biane ([15], [9], [10], [18], [8], [14], [2]).

The main results using combinatorial methods were obtained by G. Boccara in a
paper [3] containing many results, but using also some integrals of polynomials with a
lot of computations, that can be considered as ugly by pure combinatorists. The most
surprizing result in Boccara’s paper is that for any odd permutation in Sn, the number
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of different ways to write it as a product of an n-cycle and an (n − 1)-cycle is 2(n − 2)!.
This formula was puzzling, and M. P. Schützenberger asked for a bijective proof for it.
Antonio Mach̀ı found such a proof (in [12]), giving a bijection, in which cycles of length 3
play a central role, while generally combinatorialists use products of transpositions (i.e.
cycles of length 2) to represent permutations. His approach was applied by some of his
students (see [5] and [6]), obtaining new enumerative results.

G. Boccara’s method was recently used by R. Stanley (in [16]) in order to solve a
conjecture of M. Bóna (mentioned in [4]), and to give another proof of a result obtained by
D. Zagier (see [18], application 3 of Theorem 1). In his paper R. Stanley asks for purely
combinatorial proofs of these results. Our paper gives some answers to his questions.
Another approach to the same problem was developed independently by V. Feray and
E. Vassilieva (see [7]).

Our approach is purely combinatorial, it consists in rederiving combinatorialy Boc-
cara’s main result, and using this central theorem to derive many other results. The
paper is organized as follows: after some definitions and notation in the first part, the
second one gives a bijective proof of Boccara’s main result which is different from Mach̀ı’s
one. In the third section we show how to deduce results for even permutations from those
for odd ones, thus illustrating the title of our article, we also give a new proof of Zagier’s
result. The forth section is devoted to a new, purely combinatorial proof of Bóna’s con-
jecture. We conclude in the fifth section with a new proof for a formula of Boccara (see
[3] Corollary 4.8) enumerating factorizations of even permutations.

Notation and definitions

A permutation α of Sn will be considered here as a bijection from {1, 2, . . . , n} on to
itself, so that α(i) will denote the image of i by the permutation α. The convention we
use is that the product αβ of the two permutations α and β is the permutation mapping
i on α(β(i)). Permutations will be represented by their cycles like:

α = (i1, α(i1), . . .)(i2, α(i2), . . .) · · · (im, α(im), . . .).

The number of cycles of a permutation α will be denoted z(α). Hence α is an n-cycle of
Sn if and only if z(α) = 1; moreover if β is an (n− 1)-cycle of Sn then z(β) = 2. Recall
that a permutation α of Sn is odd if it is the product of an odd number of transpositions,
or equivalently if n + z(α) is an odd number, it is even otherwise.

Definition 1. A factorization of a permutation σ of Sn into two large cycles is a pair
of permutations α, β such that: σ = αβ, the permutation α is an n-cycle, and the
permutation β is an n-cycle when σ is even and an (n − 1)-cycle when σ is odd.

Example 1. There are 4 factorizations of the permutation σ = (1, 2, 3, 4) into two large
cycles, they are:

α β α β
(1, 3, 2, 4) (1, 3, 2) (4) (1, 2, 4, 3) (2, 4, 3) (1)
(1, 4, 2, 3) (1, 4, 3) (2) (1, 3, 4, 2) (1, 4, 2) (3)
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We use the following classical notation and definitions on partitions of an integer:
A partition of the integer n is a finite sequence of postive integers λ = (λ1, λ2, . . . , λm)

such that:

λ1 ≥ λ2 ≥ . . . ≥ λm > 0, and

m
∑

i=1

λi = n.

We will write λ ⊢ n and define the length of λ as ℓ(λ) = m. A partition λ ⊢ n will be
said to be odd if n + ℓ(λ) is an odd number it to be even otherwise.

The cyclic type of a permutation is the sequence of the lengths of its cycles written in
weakly decreasing order, defining hence a partition of n, whose length is the number of
cycles of the permutation. Note that a permutation has the same parity as the partition
given by its cyclic type.

Definition 2. An ELC-factorization of type λ (even factorization into large cycles) is a
pair of n-cycles (α, β) such that αβ = σ is of cyclic type λ.

An OLC-factorization of type λ (odd factorization into large cycles) is a pair (α, β)
such that, α is an n-cycle, β an (n − 1)-cycle and αβ = σ is of cyclic type λ.

The sets of ELC-factorizations and of OLC-factorizations of type λ are denoted E(λ)
and O(λ) respectively. We will denote by En the set of all even factorizations into two
large cycles of Sn, and On that of all odd factorizations into two large cycles of Sn.
Clearly the number |En| of elements in En is equal to (n − 1)!2 and |On| = n!(n − 2)!.

2. Odd factorizations into two large cycles

In this section we give a new combinatorial proof of the following central result:

Theorem 1. For any odd permutation σ in Sn the number of OLC-factorizations (α, β)
such that αβ = σ is equal to 2(n − 2)!.

The proof we give here uses a technique introduced by A. Lehman in order to enu-
merate the number of maps with one vertex and one face embedded on an orientable
surface [11] 1. The key point is to represent factorizations (α, β) of a permutation σ in 2
large cycles by using a sequence of integers u = b0, b1, b2, . . . , bn−1, which represents the
permutation β, and a directed graph Gσ,u which partially represents the permutation α.

A permutation α of Sn is classically represented by a (directed) graph, which we
denote Gα, it has {1, 2, . . . , n} as vertex set and contains n arcs, each one has head i and
tail α(i) for 1 ≤ i ≤ n. The circuits of Gα correspond to the cycles of α.

When σ = αβ where β = (b1, b2, . . . , bn−1)(bn) is an (n − 1)-cycle, then (since α =
σβ−1), the graph Gα may be obtained from σ, by joining bi to σ(bi−1) for i = 2, . . . , n−1,
then adding an arc form b1 to σ(bn−1) and an arc from bn to σ(bn). This remark leads
to an algorithm allowing to compute factorizations of σ into two large cycles. Lehman’s
contribution consists in adding an element b0, allowing to obtain enumeration formulas.

1This is a manuscript he gave to his students which we obtained thanks to Timothy Walsh
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Definition 3. Let σ be a permutation of Sn, and let u = b0, b1, . . . , bk be a sequence of
positive integers not greater than n and such that b1, b2, . . . , bk are all distinct. The graph
Gσ,u associated to σ, u has for vertices the integers {1, 2, . . . , n} and an arc for each j,
1 ≤ j ≤ k with head bj and tail σ(bj−1).

Definition 4. A sequence of integers u = b0, b1, . . . , bn−1 is a Lehman sequence of the
permutation σ in Sn, if no two bi for i ≥ 1 are equal and if the graph Gσ,u has no circuit.

Let u be a Lehman sequence of the permutation σ in Sn, then the graph Gσ,u has n
vertices and n − 1 arcs, each vertex b1, b2, . . . bn−1 is the head of an arc and each vertex
σ(b1), σ(b2), . . . , σ(bn−2) is the tail of an arc. Notice that no vertex can be the head of
two arcs, however σ(b0) may be the tail of either one or two arcs.

Example 2. The 6 Lehman sequences of the permutation (1, 2, 3) are given below with
their graphs:

3

1

2 3

1

2 3

1

2 3

3, 2, 13, 3, 22, 1, 3

1

2 3

1, 1, 3 1, 3, 2 2, 2, 1

1

2 3

1

2

Figure 1: The graphs of the 6 Lehman sequences of σ = (1, 2, 3)

To any Lehman sequence u = b0, b1, b2, . . . , bn−1 one associates an (n − 1)-cycle β =
(b1, b2, . . . , bn−1)(bn) where bn is the element of {1, 2, . . . , n} distinct from all the bi, 1 ≤
i ≤ n − 1. We will denote β = Λ(u).

Proposition 1. Let σ be an odd permutation of Sn, let u = b0, b1, . . . , bn−1 be a Lehman
sequence of σ and β = Λ(u), then the permutation α = σβ−1 is an n-cycle.

Proof : Let G′
σ,u be the graph obtained from Gσ,u deleting the arc (b1, σ(b0)). In

G′
σ,u the vertices b1 and bn are the head of no arc, and σ(bn) and σ(bn−1) are the tail of

no arc. The other vertices are the head of exactly one arc, and the tail of exactly one.
This graph is the union of two paths, where one may be reduced to a single vertex. We
have thus one of the two situations depicted in Figure 2:

  n
σ

σ

 b(   )

b

b
n

b1

α

α

α

α

α

α
n−1(     )

  n

α α α
σ

σ

 b(   )

b

b
1

bn

α α α
n−1(     )

Figure 2: The two situations in the proof of Proposition 1.

In the first case α(b1) = σβ−1(b1) = σ(bn−1), and α(bn) = σβ−1(bn) = σ(bn) hence
the graph Gα which is obtained by adding the two arcs (b1, σ(bn−1)), and (bn, σ(bn))
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to G′
σ,u has two circuits, and the permutation α has two cycles. This implies that σ

is the product of two permutations each one having two cycles, contradicting the fact
that σ is odd. Hence only the second case has to be considered and α(b1) = σ(bn−1),
α(bn) = σ(bn), proving that α has only one cycle.

✷

Proposition 2. The number of Lehman sequences of a permutation σ of Sn is equal to
n!.

Proof : One may build all the Lehman sequences of σ using the following algorithm,
which proceeds as an iteration of n steps:

• Choose any b0 among {1, 2, . . . , n}, and b1 different from σ(b0) in the same set,

• For i = 2, . . . n− 1 choose bi in {1, 2, . . . , n} different from b1, b2, . . . , bi−1 and from
b′i, the vertex which is the tail of the longest path with head σ(bi−1) in the graph
Gσ,b0b1...bi−1

.

Notice that at each step i the number of possible choices for bi is n− i. Indeed it is clear
that their are n possible choices for b0 and n − 1 choices for b1; moreover since b′i is a
vertex of out-degree 0 of Gσ,b0b1...bi−1

, it cannot be equal to any of the bj for 1 ≤ j < i, as
these vertices are all of out-degree 1. Hence at each step the number of possible choices
decreases by one, then the number of sequences built by the algorithm is n!.

Since the algorithm closely follows the definition of a Lehman sequence it is clear that
it builds exactly all the Lehman sequences of σ.

✷

Proposition 3. Let σ be an odd permutation of Sn and let (α, β) be a factorization of
σ into two large cycles. The number of Lehman sequences u of σ such that β = Λ(u) is
n(n−1)

2 .

Proof : Let α, β be a factorization of σ into two large cycles and let bn be the fixed
point of β. The Lehman sequences u of σ such that Λ(u) = β are all obtained from β in
the following way:

• Choose b1 as any element of the large cycle of β,

• Write this cycle of β as (b1, b2, . . . , bn−1), set v = b1, b2, . . . , bn−1 and build the
graph Gσ,v,

• Choose b0 such that the arc (b1, σ(b0)) does not create a circuit in the graph Gσ,v.

Now it is necessary to examine how Gσ,v is built from Gα, the latter being a circuit
with n vertices and n arcs. Clearly two arcs are deleted, the arc (bn, σ(bn)) is one of
them, then by the choice of b1, the arc (b1, σ(bn−1)) is the other.
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α
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α

Figure 3: Deletion of two arcs in Gα

So that the graph obtained has shape given in Figure 3.
For each choice of b1 the number of vertices of the path P from σ(bn−1) to bn takes

any value from 1 to (n − 1), and all these values are obtained. Now b0 has to be chosen
such that the arc (b1, σ(b0)) does not create a circuit in the graph; hence σ(b0) must be
among the vertices of this path P . This gives a total number of choices equal to sum of
the lengths of these paths for all the possible choices of b1, that is 1 + 2 + · · · + (n − 1).

Hence the number of Lehman sequences u such that Λ(u) = β is n(n−1)
2 . ✷

The proof of Theorem 1 then follows from Propositions 1, 2 and 3.

3. From odd factorizations to even ones

In this section we show how to build On+1 from En. We express for a given odd
partition µ ⊢ n + 1, the set O(µ) as a union of sets obtained from the E(λ) for some
partitions λ ⊢ n closely related to µ. We will then use this result to determine the
number of factorisations of even permutations with k cycles, giving a new combinatorial
proof of a result of D. Zagier.

3.1. Building factorizations of even permutations

We will use transpositions, i. e. permutations of Sn with n− 2 fixed points and one
cycle of length 2; a transposition will be denoted (i, j), where i, j are the two elements
which are not fixed.

Remark 1. Let α be a permutation in Sn and let i be an integer such that 1 ≤ i ≤ n,
then α(i, n + 1) is a permutation of Sn+1 obtained from α inserting n + 1 after i in its
cyclic representation and (i, n + 1)α is a permutation of Sn+1 obtained from α inserting
n + 1 before i in its cyclic representation.

Let (α, β) be an element of En and let i, j be two integers such that 1 ≤ i ≤ n and
1 ≤ j ≤ n + 1. We define the factorization Φi,j(α, β) = (α′, β′) in On+1 in the following
way:

• Insert n + 1 in the cyclic representation of α immediately before i giving a permu-
tation α1

6



• Let β1 ∈ Sn+1 be equal to the permutation β to which is added n + 1 as a fixed
point.

• Exchange j and n + 1 in α1 and in β1 obtaining α′ and β′.

More precisely we have, using the fact that exchanging n + 1 and j is obtained by
conjugation by (j, n + 1):

α′ = (j, n + 1)(i, n + 1)α(j, n + 1), β′ = (j, n + 1)β(j, n + 1) (1)

Definition 5. Let λ be a partition of n and µ a partition of n + 1; λ is covered by µ, if
they have the same length and if λi = µi for all 1 ≤ i ≤ ℓ(µ), except for only one value
of i. This will be denoted by λ <· µ

Remark 2. When λ <· µ then for the unique k such that λk 6= µk we have µk = λk + 1.
Moreover, for a given µ the number of different λ such that λ <· µ is equal to the number
of different values taken by the µi that are larger than 1.

For instance µ = (4, 3, 3, 1) covers 2 partitions: λ = (3, 3, 3, 1) and λ = (4, 3, 2, 1).

Theorem 2. Let (α, β) be an even factorization of type λ ⊢ n. For any 1 ≤ i ≤ n and
1 ≤ j ≤ n + 1, Φi,j(α, β) is a factorization which type µ is such that λ <· µ.

Conversely let (α′, β′) ∈ O(µ) with µ ⊢ n + 1, then there exist two integers i, j and a
factorization (α, β) ∈ En such that 1 ≤ i ≤ n, 1 ≤ j ≤ n+1 and (α′, β′) = Φi,j((α, β)).
Moreover i, j, α, β are uniquely determined.

Proof : Considering the first part of the theorem, let σ = αβ and Φi,j((α, β)) =
(α′, β′). It is easy to check that α′ is an (n+1)-cycle, since (i, n+1)α is an (n+1)-cycle,
and conjugation does not modify the cyclic type. For the same reason β′ is an n-cycle,
which fixed point is j. The type of Φi,j(α, β) is the cyclic type of the permutation
(j, n + 1)(i, n + 1)αβ(j, n + 1) but, since conjugation does not modify the cyclic type of
a permutation, this is also the cyclic type of σ′ = (i, n + 1)αβ. But from Remark 1 this
last permutation is obtained from αβ inserting n + 1 before i in its cycle, showing that
its cyclic type is a partition µ covering λ.

We now prove the converse. Let (α′, β′) ∈ O(µ) and let j be the point fixed by β′.
Consider the formula giving α′ in (1):

α′ = (j, n + 1)(i, n + 1)α(j, n + 1)

We get α′(j) = n + 1 if i = j, and α′(j) = i if j 6= i; this allows to determine uniquely i
from α′−1(j). We then obtain (α, β) by equation (1). Since n+1 is a fixed point in both
α and β, these two permutations may be considered as elements of Sn.

✷
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3.2. Permutations with a given number of cycles

We are now able to give a combinatorial proof of the following result due to D. Zagier
(see [18], application 3 of Theorem 1.)

Corollary 1. Let n, k be two integers such that 1 ≤ k ≤ n and n − k is even. The
probability that the product of two n-cycles of Sn (taken randomly) has k cycles is equal
to the probability that an odd permutation of Sn+1 has k cycles.

Proof : We compute the number en,k of factorizations (α, β) ∈ En such that αβ has
k cycles, for that we consider first the number of elements (α′, β′) in On+1 such that α′β′

has the same number k of cycles. By Theorem 1, this number is equal to 2(n− 1)! times
the number of elements of Sn+1 with k cycles. That is:

2(n − 1)!sn+1,k

where sn,p is the unsigned Stirling number of the first kind.
By Theorem 2, for any factorization of (α, β) ∈ En we obtain by Φi,j , n(n+1) different

factorizations (α′, β′) ∈ On+1. For all of them, α′β′ has k cycles, and any element of
On+1 with k cycles is obtained in this way. Hence:

en,k =
2(n − 1)!sn+1,k

n(n + 1)

Since the number of elements of En is (n − 1)!2, the probability for the product of two
n-cycles of Sn (taken randomly) has k cycles is:

en,k

(n − 1)!2
=

2sn+1,k

(n + 1)!

Now the number off odd permutations in Sn+1 is (n+1)!
2 and sn+1,k of them have k

cycles, proving the result. ✷

4. Permutations in which two given elements are in the same cycle

In this section we consider the following question conjectured by M. Bóna and solved
by R. Stanley [16]; Proposition 5 below was obtained in collaboration with Valentin Feray
and Amarpreet Rattan.

Definition 6. A factorization (α, β) into two large cycles of Sn for n ≥ 2 is said to be
connecting if 1 and 2 are in the same cycle of αβ.

Let pn be the number of connecting factorizations of En and qn be the number of those
in On. It is easy to compute qn:

Proposition 4. The number of connecting factorizations in On is given by:

qn = (n − 2)!

(

n!

2
+ (−1)n(n − 2)!

)

(2)
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Proof : We first begin by computing the numbers an and bn of even and odd per-
mutations of Sn such that 1 and 2 are in the same cycle. Any even permutation of Sn

is obtained either from an even one in Sn−1 adding n as a fixed point or from an odd
one in Sn−1 adding n inside a cycle. Since this last operation can be done in n− 1 ways,
and since a similar statement holds for odd permutations of Sn we have for n ≥ 3:

an = an−1 + (n − 1)bn−1, bn = bn−1 + (n − 1)an−1

the difference of these two numbers is equal to:

an − bn = (2 − n)(an−1 − bn−1)

Multiplication by the transposition (1, 2) is a bijection between permutations in Sn

where 1 and 2 are in the same cycle and those where they are not, hence giving;

an + bn =
n!

2

Each odd permutation with 1 and 2 in the same cycle gives 2(n − 2)! connecting
factorizations in On hence:

qn = 2(n − 2)!bn = 2(n − 2)!

(

n!

4
+

(−1)n(n − 2)!

2

)

✷

We again find results for even factorizations using our result for odd ones.

Proposition 5. The number of odd connecting factorizations in Sn+1 and that of the
even ones in Sn are related by:

qn+1 = (n + 2)(n − 1)pn + 2(n − 1)!2 (3)

Proof : We divide the set of connecting odd factorizations (α′, β′) in Sn+1 into three
subsets Xn+1, Yn+1 and Zn+1 according to the value of the fixed point j of β′. Those in
Xn+1, Yn+1 have j = 1 and j = 2 respectively, and those in Zn+1 are such that j > 2.

We use Theorem 2 to compute the number zn+1 of elements in Zn+1. Each factor-
ization (α′, β′) in this set is equal to a Φi,j(α, β) such that (α, β) is a connecting even
factorization in En, and j = 3 ≤ j ≤ n + 1. This gives n − 1 possible values for j and
since there are n possible values for i we have:

zn+1 = n(n − 1)pn.

The computation of the numbers xn+1, yn+1 (which are equal by symmetry) of ele-
ments in Xn+1 and Yn+1 is more intricate. Notice that if (α′, β′) = Φi,j(α, β) is such
that β′(1) = 1 then j = 1 and (α, β) is not necessarily connecting.

Nevertheless we can obtain an inductive formula for xn+1. We have for (α′, β′) ∈
Xn+1:

α′β′ = (1, n + 1)(i, n + 1)αβ(1, n + 1)

for a given i. In order that (α′, β′) be connecting we must have one of the two following
conditions:

9



• i = 2

• i 6= 2 and (α, β) is such that i and 2 are in the same cycle of αβ.

If i = 2, any factorization in En will give a connecting factorization, the number of
such is (n − 1)!2.

If i 6= 2, we have to choose a factorization such that i and 2 are in the same cycle
of α′β′, and the number of such factorizations is pn by symmetry. Since there are n − 1
possible choices for i this gives xn+1 = (n − 1)!2 + (n − 1)pn.

Hence using xn+1 = yn+1 we get:

qn+1 = xn+1 + yn+1 + zn+1 = 2(n − 1)!2 + 2(n − 1)pn + n(n − 1)pn.

✷

Corollary 2. Taking two n-cycles at random the probability that their product contains
1 and 2 in the same cycle is 1

2 if n is odd and 1
2 − 2

(n+2)(n−1) if n is even.

Proof : From the two Propositions above we get:

(n + 2)(n − 1)pn =
(n − 1)!2

2

(

n2 + n − 2(−1)n − 4
)

Since n2 + n − 2(−1)n − 4 = (n + 2)(n − 1) − 2((−1)n + 1) we obtain:

pn =
(n − 1)!2

2

(

1 − 2
(−1)n + 1

(n + 2)(n + 1)

)

The probability we are seeking for is pn

(n−1)!2 completing the proof.
✷

5. A formula for the number of elements of E(λ)

We have proved in Section 2 that the number of factorizations of an odd permutation
of Sn into two large cycles depends only on n. For an even permutation σ this number de-
pends on the conjugacy class of σ which is determined by a partition λ = (λ1, λ2 . . . , λm)
of n. A formula was given for these numbers by G. Boccara (in [3] Corollary 4.8), we
give a new proof of this formula here based on Theorem 2.

We give first some notation for such a partition and introduce the function P (λ)
which is central in this enumeration.

• Let I be the set of indexes of the elements of λ namely: I = {1, 2, . . . ,m}.

• For any subset X of I, denote sX(λ) the sum of the parts of λ whose indexes are
in X :

sX(λ) =
∑

i∈X

λi

10



• The number P (λ) is the sum given below, where |X| is the number of elements of
X:

P (λ) =
∑

X⊆I

(−1)sX(λ)+|X|sX(λ)!(n − sX(λ))! (4)

Let cλ denotes the number of permutations of cyclic type λ and eλ the number of
elements in E(λ).

Theorem 3. For any even partition λ:

eλ =
cλP (λ)

n(n + 1)
(5)

5.1. Some properties of the function P (λ)

In order to prove this Theorem we need to prove some properties of the function
P (λ).

Lemma 1. If λ has length 1 we have:

P ((n)) = 2n! if n is odd, and P ((n)) = 0 otherwise. (6)

Let λ ⊢ n be an even partition with at least one part equal to 1, and let λ′ ⊢ n − 1 be
the partition obtained from it deleting one of these parts. Then:

P (λ) = (n + 1)P (λ′) (7)

Proof : For λ = (n) the sum giving P (λ) reduces to two elements with X = ∅ and
X = I, for each of these we have: s∅(λ) = 0 and sI(λ) = n giving (6).

To prove (7) we notice that the sum giving P (λ) have twice the number of terms than
that giving P (λ′). Each X giving the term u′

X = (−1)sX(λ′)+|X|sX(λ′)!(n− 1− sX(λ′))!
in P (λ′) gives the two terms uX = sX(λ′)!(n − sX(λ′))! and vX = (sX(λ′) + 1)!(n −
sX(λ′) − 1)! in P (λ′) with the same sign as u′

X . These two terms sum up to:

ux + vx = sX(λ′)!(n − 1 − sX(λ′))!(n − sX(λ′) + sX(λ′) + 1) = (n + 1)u′
X .

Hence ending the proof. ✷

Lemma 2. Let µ ⊢ (n + 1) be an odd partition of length m, where all the m parts are
strictly greater than 1. Let for 1 ≤ i ≤ m, λ(i) be the sequence obtained from µ deleting
one element in part i. Then for any non empty X strictly included in {1, 2, . . . ,m} we
have

m
∑

i=1

(−1)si
X µis

i
X !(n − si

X)! = 0 (8)

where si
X =

∑

j∈X λ
(i)
j .

11



Proof : Let p = sX(µ), since λ
(i)
i = µi − 1 and λ

(i)
j = µj for i 6= j we have:

si
X =

{

p if i /∈ X
(p − 1) if i ∈ X

Hence

∑m
i=1(−1)si

X µis
i
X !(n − si

X)! =
∑

i/∈X(−1)si
X µis

i
X !(n − si

X)! +
∑

i∈X(−1)si
X µis

i
X !(n − si

X)!

= (−1)p
(

p!(n − p)!
∑

i/∈X µi − (p − 1)!(n − p + 1)!
∑

i∈X µi

)

But since p =
∑

j∈X µj we have
∑

j /∈X µj = n + 1 − p and the result. ✷

Proposition 6. Let µ be an odd partition of n + 1 then:

∑

λ<· µ

cλu(λ, µ)P (λ) = 2 n!cµ (9)

Proof : We distinguish two cases:

• If µ has no part of length 1. Then we use Lemma 2 and add equations (8) multiplied
by (−1)|X| for all subsets X of I = {1, 2, . . . ,m}. For X = I we have for all i:
si

X = n and |X| + si
X = n + m, which is even. For X = ∅ we have si

X = 0 and
|X| + si

X = 0, hence we get (since
∑m

i=1 µi = n + 1):

∑

X⊂I

m
∑

i=1

(−1)si
X+|X|µis

i
X !(n − si

X)! = 2(n + 1)!

Reordering any sequence λ(i) we obtain a partition λ such that λ <· µ. Moreover
for a given λ such that λ <· µ, the number of the sequences λ(j) which give λ after
reordering it, is equal to ni, the number of occurrences of µi in µ (where i is the
index such that λi = µi − 1).

Hence reversing the order of the two sums in the equation above we obtain:

∑

λ<· µ

niµiP (λ) = 2(n + 1)!

Multiplying by cµ we get

∑

λ<· µ

cµniµiP (λ) = 2cµ(n + 1)!

Since µ and λ <· µ differ only by 1 in position i we have:

niµicµ = (n + 1)u(λ, µ)cλ

and the result.
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• If µ has k parts equal to 1 then we procced by induction. Above we have proved
k = 0. Let µ be a a partition with k parts equal to 1. Let µ′ be obtained from µ
deleting one part equal to 1. By the induction hypothesis we have

∑

λ′<· µ′

cλ′u(λ′, µ′)P (λ′) = 2(n − 1)!cµ′

But there are as many partitions λ′ such that λ′ <· µ′ as those λ such that λ <· µ
each of those λ′ is obtained from a λ deleting one part equal to 1. For these we
have cλ′ = cλ k

n . Moreover cµ′ =
cµ k
n+1 and u(λ′, µ′) = u(λ, µ).

Giving:
∑

λ′<· µ′

cλ k

n
u(λ, µ)P (λ′) =

cµ k

n + 1
2(n − 1)!

Then by Lemma 1, we have (n + 1)P (λ′) = P (λ) and the result.

✷

5.2. Proof of Theorem 3

Let λ be an even partition of n and let µ be such that λ <· µ, where µk = λk +1 then
we denote by u(λ, µ) the sum of the parts of size λk in λ, that is

u(λ, µ) = iλk
λk

where ip denotes the number of λj equal to p. Then we will use the following Lemma
giving an elementary proof of a formula allowing to compute the eλ = |E(λ)| due to V.
Feray and E. Vassilieva [7]. This lemma may be considered as a Corollary of Theorem 2.

Lemma 3. Let µ be an odd partition of n + 1 then:

2cµ(n − 1)! = (n + 1)
∑

λ<· µ

u(λ, µ)eλ (10)

Where cµ is the number of permutations with cyclic type µ and the range of the sum in
the right hand side consists of all the partitions λ covered by µ.

Proof : The left hand side of the above equality is the number of factorizations (α′, β′)
in On+1 such that α′β′ has cyclic type µ. By Theorem 2, each of such factorization is
the image by some Φi,j of a factorization (α, β) in En, such that the cyclic type of αβ is
a partition λ covered by µ.

Conversly let λ be a partition covered by µ such that λk+1 = µk and let (α, β) ∈ E(λ).
Then Φi,j(α, β) ∈ O(µ) if and only if i belongs to a cycle of length λk in the permutation
αβ. Since there are u(λ, µ) elements in {1, 2, . . . , n} belonging to a cycle of length λk

of αβ the number of possible values for i is u(λ, µ) and the number of possible values
for j is n + 1. Hence the number of factorization in O(µ) obtained as a Φi,j(α, β) for
(α, β) ∈ E(µ) is (n + 1)u(λ, µ)aλ proving the result. ✷
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Consider equations (10) for all µ ⊢ (n + 1) of length m. For m = 1 there is only one
equation allowing to obtain for n odd:

e(n) =
2(n − 1)!2

n + 1
.

For a given m > 1 each partition µ = (µ1, µ2, . . . µm) of length m gives an equation:

(n + 1)
∑

λ<· µ

u(λ, µ)eλ = 2cµ(n − 1)!.

In this equation all the partitions λ appearing in the sum, except one of them, contain
the same number of highest parts equal to µ1. Using induction on the value of the highest
part λ1 of λ, this proves that these equations enable to obtain uniquely the eλ for the
even partitions λ of length m.

Now let us compare with what we obtained for P (λ) in Proposition 6:

∑

λ<· µ

cλu(λ, µ)P (λ) = 2 n!cµ

This clearly shows that the cλP (λ)
n(n+1) satisfy the same set of equations as the eλ. Since this

set of equations has a unique solution this shows

cλP (λ)

n(n + 1)
= eλ

✷

The following result may be useful for the computation of eλ when some of the λi are
equal to 1.

Remark 3. Let λ be an even partition of length m with k > 0 parts equal to 1, let λ′ be
obtained from λ deleting a part of size 1, then the following relation allows to compute
eλ inductively:

eλ = eλ′

n(n − 1)

k

Proof : Notice that from any factorization (α′, β′) in E(λ′) one builds n − 1 fac-
torizations in E(λ) inserting n before an i in the cycle of β′ and after that element i
in the cycle of α′. The factorizations (α, β) obtained in this way are such that n is a
fixed point of αβ. Moreover any factorization (α, β) of cyclic type λ and such that n is
a fixed point of αβ can be obtained in that way. This proves that the number of these
factorizations is equal to (n − 1)eλ′ . Now given k integers 1 ≤ i1, i2, . . . , ik ≤ n, the
number of factorizations (α, β) in E(λ) such that i1, i2, . . . , ik are fixed points of αβ is
independent of i1, i2, . . . , ik giving :

(

n − 1

k − 1

)

eλ =

(

n

k

)

(n − 1)eλ′

and the result follows from :
(

n
k

)

= n
k

(

n−1
k−1

)

.
✷
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