Optimal decay rates for the stabilization of a string network
Mohamed Jellouli, Michel Mehrenberger

To cite this version:
Mohamed Jellouli, Michel Mehrenberger. Optimal decay rates for the stabilization of a string network. Comptes Rendus Mathématique, Elsevier Masson, 2014, 10.1016/j.crma.2014.03.023. hal-00977345

HAL Id: hal-00977345
https://hal.archives-ouvertes.fr/hal-00977345
Submitted on 11 Apr 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Optimal decay rates for the stabilization of a string network

Mohamed Jelloulia, Michel Mehrenbergerb

aDépartement de Mathématiques, Faculté des Sciences de Monastir, 5019 Monastir, Tunisie

bInstitut de Recherche Mathématique Avancée, Université de Strasbourg, 7 rue René Descartes F-67084 Strasbourg, France

Received *****; accepted after revision +++++
Presented by

Abstract

We study the decay of the energy for a degenerate network of strings\cite{1}, and obtain optimal decay rates when the lengths are all equal. We also define a classical space semi-discretization and compare the results with the exact method introduced in\cite{3,4}. To cite this article: A. Name1, A. Name2, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

1. Introduction

We recall that the dissipation condition $\partial_x u(t,0) = \alpha \partial_t u(t,0)$ at the origin of a vibrating elastic string fixed at its end point, stabilizes this string. More precisely, if $E(t)$ denotes the energy of the solution of the wave equation $\partial_t^2 u(t,x) - \partial_x^2 u(t,x) = 0$ on $(0,\ell)$ subject to the initial condition $u(0,.) = a$ and $\partial_t u(0,.) = b$, then $E(t) \leq C e^{-\gamma_\alpha t}$ where $\gamma_\alpha = \frac{1}{7} \log \left| \frac{1+\alpha}{1-\alpha} \right|$. Moreover, we remark that if $\alpha = 1$, then $E(t) = 0$, $\forall t \geq 2\ell$. Thus, the value 1 is the best choice of α that makes the system is an equilibrium state.

The situation is completely different in the case when we consider a network of strings.

The problem of stabilization of nondegenerate network of strings was studied by K. Ammari, M. Jellouli...
and M. Khenissi in [1], [2] and [3]. When the strings are coupled at a common end in a star-shaped configuration, it is proven in [2] that the solutions are not exponential stable in the energy space, in the nondegenerate case. In the particular case of two strings, which is equivalent to the pointwise stabilisation of one string, such a problem has been studied in [5]; exponential stabilization is obtained if and only if the lengths satisfy $\frac{\ell_1}{\ell_1+\ell_2} = \frac{p}{q}$, with p and q odd numbers, and the best decay rate, when fixing the total length $\ell_1 + \ell_2$ is obtained when the lengths are equal ($\ell_1 = \ell_2 = \ell$), with best decay rate $\gamma = \frac{\ln(3)}{\ell}$. Such problem has been also considered in [7], with different boundary conditions; in the degenerate case, the energy limit was identified and it was proven that the solution decays exponentially to that limit.

We consider here the case of a degenerate network of vibrating elastic strings when the pointwise feedback acts in the root of the tree (tree shaped network). Note that in the nondegenerate case, it is proven in [1] that the solutions are not exponential stable in the energy space. We calculate the limit energy $E_\infty := \lim_{t \to +\infty} E(t)$ and we show that the decrease from $E(t)$ to E_∞ is exponential, giving the best decay rate, when the lengths are equal. Finally we give numerical results in Section 3, which confirm the theoretical results.

2. E_∞ and best decay rate

Let $N \geq 3$. We consider the initial data $((a_j)_{1 \leq j \leq N}, (b_j)_{1 \leq j \leq N}) \in \mathcal{H} := \prod_{j=1}^{N} H^2(0, \ell_j) \times \prod_{j=1}^{N} H^1(0, \ell_j)$, satisfying the compatibility conditions

$$a_1'(0) = \alpha b_1(0), \quad a_1'(\ell_1) = \sum_{j=2}^{N} a_j'(0) \quad \text{and} \quad a_j(\ell_j) = 0, \quad a_1(\ell_1) = a_j(0), \quad j = 2, \ldots, N, \quad (1)$$

and the system of partial differential equations

$$(S) : \begin{cases}
\partial_t^2 u_j(t, x) - \partial_x^2 u_j(t, x) = 0, & t > 0, \ x \in (0, \ell_j), \ j = 1, \ldots, N, \\
 u_j(t, 0) = u_1(t, \ell_1) \quad \text{and} \quad u_j(t, \ell_j) = 0, & t \geq 0, \ j = 2, \ldots, N, \\
 \partial_x u_1(t, 0) = \alpha \partial_t u_1(t, 0), & t \geq 0 (\alpha > 0), \\
 \partial_x u_j(t, \ell_1) = \sum_{j=2}^{N} \partial_x u_j(t, 0), & t \geq 0, \\
 u_j(0, x) = a_j(x), \quad \partial_t u_j(0, x) = b_j(x), \ x \in [0, \ell_j], \ j = 1, \ldots, N.
\end{cases}$$

We define the energy of the solution of (S) by

$$E(t) = \frac{1}{2} \sum_{j=1}^{N} \|\partial_t u_j(t)\|_{L^2(0, \ell_j)}^2 + \frac{1}{2} \sum_{j=1}^{N} \|\partial_x u_j(t)\|_{L^2(0, \ell_j)}^2 \quad (2)$$

and we prove the following theorems in the case where $\ell_j = \ell, \ j = 1, \ldots, N$ (we denote by $\| \|$ the norm of $L^2(0, \ell)$):

Theorem 2.1 If $((a_j)_{1 \leq j \leq N}, (b_j)_{1 \leq j \leq N}) \in \mathcal{H}$ verify (1), then the energy limit is given by

$$E_\infty = \frac{1}{2(N-1)} \sum_{j=2}^{N} \left(\sum_{k=j+1}^{N} \left(\|a_k' - a_j'\|^2 + \|b_k - b_j\|^2 \right) \right). \quad (3)$$
Now, we denote by $\alpha_0 = \frac{2\sqrt{N-1}}{N}$, $\Delta = \frac{4(\alpha^2 N^2 - 4N + 4)}{(\alpha+1)^2}$ and $\lambda = -\frac{2(N-2) + \sqrt{\Delta}}{2N}$.

Theorem 2.2 There is a constant $C = C_N(\alpha) > 0$ such that for any initial data $((a_j)_{1 \leq j \leq N}, (b_j)_{1 \leq j \leq N}) \in \mathcal{H}$ satisfying (1) the following inequality holds

$$ 0 \leq E(t) - E_\infty \leq C \left(\|a_1\|^2 + \|b_1\|^2 + \left\| \sum_{j=2}^{N} a_j \right\|_2^2 + \left\| \sum_{j=2}^{N} b_j \right\|_2^2 \right) e^{-\gamma t}, \text{ if } \alpha \neq \alpha_0, \quad (4) $$

$$ 0 \leq E(t) - E_\infty \leq C \left(\|a_1\|^2 + \|b_1\|^2 + \left\| \sum_{j=2}^{N} a_j \right\|_2^2 + \left\| \sum_{j=2}^{N} b_j \right\|_2^2 \right) t^2 e^{-\gamma_0 t}, \text{ if } \alpha = \alpha_0, \quad (5) $$

where $\gamma = \frac{1}{\beta} \log \frac{1}{\sqrt{N}} > 0$ and $\gamma_0 = \frac{1}{\beta} \log \frac{N + 2\sqrt{N-1}}{N-1}$. The best decay rate is achieved in the sense that for all $\alpha > 0$, there exists an initial data such that (4) and (5) become an equivalence:

$$ E(t) - E_\infty \geq Ce^{-\gamma t}, \text{ or, for } \alpha = \alpha_0, E(t) - E_\infty \geq Ct^2 e^{-\gamma_0 t}, \text{ with } C > 0, $$

and $\forall \alpha \neq \alpha_0$, we have $\gamma < \gamma_0$.

Remark 1 The case $N = 2$ (with ℓ_1, ℓ_2 not necessarily of same size) can be recasted into the case $N = 1$ (with $\ell = \ell_1 + \ell_2$).

The proofs of these theorems are based on the operator of type τ developed in [3] and [4] and will be detailed in [6]. In fact we recall that

$$ E(t) = E(0) - \alpha \int_0^t |\partial_t u_1(s,0)|^2 \, ds \quad (6) $$

and that for all $t \geq 0$, $\partial_t u_1(t,0) = \left(P \circ \widetilde{P}^{-1} \right) F(t) + \frac{1}{\alpha+1} \left(L^{\ell_1}_{\beta,\ell_1} a'_1 + L^{\ell_2}_{\beta,\ell_2} b'_1 \right)$, $\beta = \frac{\alpha-1}{\alpha+1}$.

In a first step, we evaluate the characteristic elements of \widetilde{P}^{-1} and we prove that $\widetilde{P}^{-1} \equiv (n, \delta)$, where $n : n(j) = 2(j - 1)\ell$, $j \geq 1$ and in the case $\alpha \neq \alpha_0$

$$ \delta : \delta(j) = a(\beta) \lambda j^{-2} + b(\beta) j^{-2}, \quad j \geq 2 $$

with $\mu = -\frac{2(N-2) - \sqrt{\Delta}}{2N}$, $a(\beta) = \frac{1}{N} \frac{(1-\lambda)(\beta-\lambda)}{\lambda+1}$ and $b(\beta) = -\frac{1}{N} \frac{(1-\mu)(\beta-\mu)}{\lambda+1}$. In the case $\alpha = \alpha_0$,

$$ \delta(j) = \left[\delta(2) + \left(\frac{1}{\lambda_0} \delta(3) - \delta(2) \right) (j - 2) \right] \lambda_0^{-2}, \quad \forall j \geq 2. $$

In the second stage we calculate $\int_0^{2n\ell} |\partial_t u_1(s,0)|^2 \, ds$, what will allow to find E_∞:

$$ E_\infty = \frac{1}{2} \sum_{j=2}^{N} (\|a'_j\|^2 + \|b'_j\|^2) - \frac{1}{4(N-1)} \left(\left\| \sum_{j=2}^{N} (a'_j - b_j) \right\|^2 + \left\| \sum_{j=2}^{N} (a'_j + b_j) \right\|^2 \right) $$

$$ = \frac{1}{2(N-1)} \sum_{j=2}^{N} \sum_{k=j+1}^{N} \left((a'_k - a'_j)^2 + (b'_k - b'_j)^2 \right). $$

In the end, we estimate the difference $E(t = 2n\ell) - E_\infty$ and we show the inequality (4) and (5).

1. $\sqrt{\Delta} = i\sqrt{-\Delta}$ if $\Delta < 0$. Note that, $\Delta < 0$ (resp. $\Delta = 0$) if and only if $\alpha \in [0, \alpha_0]$ (resp. $\alpha = \alpha_0$)
3. Semi-discretization and numerical results

Let \(N_j, j = 1, \ldots, d \) be positive integers. We define \(h = (h_1, \ldots, h_d) \), with \(h_j = \frac{\ell_j}{N_j}, j = 1, \ldots, d \). We suppose that \(\alpha > 0 \) and consider the following classical finite difference space semi-discretization of (S):

\[
\begin{align*}
 u_{j,k}^0(t) - u_{j,k+1}(t) &= 0, \quad k = 1, \ldots, N_j - 1, \quad j = 1, \ldots, d, \\
 u_{1,1}(t) - u_{1,0}(t) &= \alpha u_{1,0}(t), \\
 u_{1,N_j}(t) - u_{1,N_j-1}(t) &= \sum_{j=2}^d u_{j,1}(t) - u_{j,0}(t), \\
 u_{1,N_j}(t) &= u_{j,0}(t) \quad \text{and} \quad u_{1,N_j}(t) = 0, \quad j = 2, \ldots, d, \\
 u_{j,0}(t) &= u_{j,0}, \quad u_{j,0}(t) = u_{j,k}, \quad j = 1, \ldots, d, \quad k = 0, \ldots, N_j, \quad t \in (0, \infty),
\end{align*}
\]

where the initial conditions satisfy for \(s = 0, 1, \) the compatibility conditions

\[
u_{1,1} = u_{1,0} = \frac{\sum_{j=2}^d u_{j,1} + u_{1,N_j-1}}{\sum_{j=1}^{N_j-1}} \quad \text{and} \quad u_{k,N_k} = 0, \quad k = 2, \ldots, d.
\]

The solution of (7) can be written in the form \(V(t) = \exp(tA)\phi \), where \(V = (U, U')^t \)

\[
U = (u_{1,0}, u_{1,1}, \ldots, u_{1,N_1-1}, u_{2,1}, \ldots, u_{2,N_2-1}, \ldots, u_{d,1}, \ldots, u_{d,N_d-1}) \in \mathbb{R}^M
\]

and \(\phi \in \mathbb{R}^{2M} \). The semi-discrete energy is defined by

\[
E_{h,\phi}(t) = \frac{1}{2} \sum_{j=1}^d \sum_{k=1}^{N_j-1} \left(\sum_{j=1}^{N_j-1} \left| u_{j,k}(t) \right|^2 + \sum_{k=0}^{N_j-1} \left| u_{j,k+1}(t) - u_{j,k}(t) \right|^2 \right),
\]

and is decreasing as it satisfies \(E_{h,\phi}(t) = -\alpha \left| u_{1,0}(t) \right|^2 \). The following proposition identifies the limit of the discrete energy, which may not be zero, as in the continuous case.

Proposition 3.1 For \(\phi \in \mathbb{R}^{2M} \), we can write \(\phi = \phi_1 + \phi_2 \) where \(\phi_1 \) belongs to the space \(\Lambda_1 \) of eigenvectors relative to the eigenvalues \(\lambda \) of \(A \), with \(\Re(\lambda) = 0 \) and \(\phi_2 \) belongs to the space \(\Lambda_2 \) of generalized eigenvectors relative to the eigenvalues \(\lambda \) of \(A \), with \(\Re(\lambda) < 0 \). We then have

\[
E_{h,\phi,\infty} := \lim_{t \to \infty} E_{h,\phi}(t) = E_{h,\phi_1}(0),
\]

and this value does not depend on \(\alpha > 0 \).

Sketch of the proof We first prove that for \(\phi_1 \in \Lambda_1 \subset \mathbb{C}^{2M} \), we have \(\phi_{1,M+1} = 0 \), that no eigenvalue of \(A \) can have positive real part and that generalized eigenvectors with eigenvalue of zero real part are necessarily eigenvectors, using the fact that the energy is decreasing and nonnegative. We then use the decomposition and estimates
Figure 1. $E(t) - E_\infty$ vs time (exact and semi-discrete case) for $\alpha \in \{0.9, 1, \alpha_{opt}\}$ (left) and different initial conditions (right).

$$\leq 2d \sqrt{E_{h,\phi_1}(t)} \sqrt{E_{h,\phi_2}(t)},$$

where $w_{1,j,k}$ (resp. $w_{2,j,k}$) is the solution corresponding to the initial condition ϕ_1 (resp. ϕ_2). We know that $E_{h,\phi_1}(t) = E_{h,\phi_1}(0)$, thus we get (9) since $E_{h,\phi_2}(t)$, being a finite sum and product of terms tending to zero, as $t \to +\infty$, also tends to zero. This limit does not depend on α, since the only equation where α is present is

$$\alpha \lambda \phi_{\lambda,M+1} = 0 = \frac{1}{b_1}(\phi_{\lambda,M+2} - \phi_{\lambda,M+1}),$$

for each λ; $\Re(\lambda) = 0$.

Numerical results. Finally we give some exact and semi-discrete results for the energy. We take $d = 3$, initial condition $u_0^1(x) = 0$, $j = 1, 3$, $u_0^2(x) = \sin^2(\pi x / \ell_2)$ and $u_1^j(x) = 0$, $j = 1, 2, 3$. $\ell_j = 1$ and $N_j = N$, $j = 1, 2, 3$. We see on Figure 1 (left) the time evolution of $E(t) - E_\infty$ for $\alpha = 1$ (exact, $N = 100, 400$) and for $\alpha = \alpha_{opt}$, 0.9 (exact). On Figure 1 (right), we plot the time evolution of $E(t) - E_\infty$ (exact, $N = 100, 400$) taking as before $u_2^2(x) = \sin^2(\pi x)$ (sin) but also $u_2^2(x) = \sin^2(8\pi x)$ (sin8), in the case $\alpha = \alpha_{opt}$. The results are conform with Theorem 2.2: taking $\alpha = \alpha_{opt}$ leads to the best growth rate with asymptotic behaviour of the form $Ct^2 \exp(-\gamma t)$. We also note that the semi-discrete scheme is able to reproduce the behaviour of the exact scheme until the discretization error dominates, which is higher by taking a higher mode (Figure 1, right). The semi discrete energy seems to converge to a discretization dependent limit, which is coherent with Proposition 3.1.

References

