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Abstract

The paper is devoted to a multimechanism (MM) model for the mechanical be-
havior of amorphous glassy polymers. A finite strain formulation through updated
lagrangian formalisms is used. In the proposed phenomenological model, three mech-
anisms are respectively associated to three physical regimes for plastic deformation.
The model was successful in describing the stress—strain behavior of glassy polymers
for different strain rates and range of temperatures. The description of the three re-
gions observed in the monotonic stress-strain curves is obtained through a coupling
matrix between the isotropic hardening variables. A modular strategy based on the
determination of the material parameters in three steps is proposed.

Key words: Multi-mechanism modeling, Deformation mechanism, Amorphous
Polymer, Finite Element

1 Introduction

Structural polymers are frequently used in engineering components. The mechanical be-
havior of glassy polymers has been the subject of considerable research. The literature is
abundant in studies devoted to experimental and numerical investigations of mechanical
behavior of these polymers. In the following, works related to semi-crystalline polymers
are not discussed. Numerous experimental studies have been carried out on polymers to
characterize their mechanical behavior in terms of temperature and strain rate sensitiv-
ity (Hope et al., 1980; Richeton et al., 2006; Prasad et al., 2009; Nasraoui et al., 2012;
Forquin et al., 2012; Cheng and Ghosh, 2013). Various models were developed and tested
to simulate these responses. Rheological models extended to three-dimensional case under
finite strain assumption have been proposed, for instance, by (Alcoutlabi and Martinez-
Vega, 2003; Anand and Ames, 2006; Dupaix and Boyce, 2007; Ames et al., 2009; Anand
et al., 2009; Srivastava et al., 2010; Shim and Mohr, 2011; Fleischhauer et al., 2012; Hel-
big and Seelig, 2012). Some of them were devoted to phenomenological modeling (Zairi
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et al., 2005b; Cheng and Ghosh, 2013) or developed within a thermodynamics framework
(Drozdov, 1999; Miehe et al., 2009; Bouvard et al., 2013). Studies devoted to constitutive
models including damage involves the works of (Zairi et al., 2005a; Hocine et al., 2011;
Zairi et al., 2011) among others. Some models are focused on predicting the mechanical
behavior of amorphous polymers for a wide range of temperatures and strain rates. A non
exhautive list of these studies includes the works of (Richeton et al., 2005; Richeton et al.,
2007). All these models have a common root in the separation of stress-strain curve into
three regimes (Stachurski, 2003): (i) initially, the deformation is nonlinear until a maxi-
mum stress, the yield stress, is reached, (ii) the stress decreases due to softening even in
absence of necking (iii) molecular orientation provides a mechanism for hardening that
predominates at large strains.

The purpose of this article is to offer a new point of view for the description of the
glassy polymer mechanical behavior. The stress strain curve is described using the so
called Multi-Mechanism (MM) approach. This class of models refers also as well to multi-
mechanism, multi—phase or multi—potential. The MM model considered in this work refers
to “multi-mechanism” due to the presence of the three regimes discussed above. The
model formulation is detailed in section 2 within a finite strain framework. Indeed, the
loading strain ranges between 10% and 150% in the following simulations. To assess the
model reliability, the proposed MM is compared in sections 3, and 4 with experimental
data of PolyCarbonate (PC) and Poly(Methyl MetAcrelate) (PMMA) respectively. The
PC and PMMA are, with PolyStyrene (PS), the more commonly used glassy polymers.
The selected tests, taken from the literature, were performed at different strain rates and
different temperatures. All the experimental results consist mainly of compressive tests
and are not concerned with necking phenomenon according to the cited references. A de-
tailed identification procedure of the material parameters is shown in section 3. In section
5, a FE (finite element) simulations of plane-strain forging experiments at 25°C, under
isothermal conditions, were performed on PC specimens as in the work of (Srivastava
et al., 2010). In that section, the material parameters are first identified using the stress-
strain curves. The prediction of the model is then compared with experiments in terms
of final forged shape.

2 Modeling

The proposed approach is based upon the investigation of multi-mechanism and multi-
criteria models. The proposed model is an extension to the use of three mechanisms
of previous “two mechanism—two criteria” models. This general framework includes the
models adopted by authors like (Sai et al., 2004) to predict the stress-strain behavior of
metals and applied for the case of polymers by (Regrain et al., 2009) to model Polyamide
6 creep behavior and account for the contribution of both amorphous and crystalline
phases. A detailed review of such approach can be found in the work of (Sai, 2011).

The use of a finite strain formulation through updated lagrangian formalisms is needed to
model large-strain deformation of the studied amorphous polymers. The material behavior
is based on Green-Naghdi transformation of the stress-strain problem into an “equivalent
material referential”. This kind of formulation can be applied to materials with tensorial

internal variables without modifying the local evolution rules (Ladeveze, 1980). The model
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is described by:

L=FF' D=

~

(L+1')  @=(L-L") 1)

Where F is the deformation gradient, L the rate of deformation, D the stretch rate and
2 the rotation rate. The stretch rate tensor is transported into a local rotated referential:

¢=R'DR (2)

where the rotation tensor R is determined by the polar decomposition of the deformation
gradient F = RU. R and U describes respectively a pure rotation and a pure stretch
tensor. The integrated strain tensor is decomposed into both elastic and inelastic parts.
Thanks to updated lagrangian formulation, constitutive relations can be expressed as in
small strain hypothesis. Therefore dealing with the elastic strain tensor is equivalent to a
hypoelastic formulation in agreement with a Green-Naghdi stress rate. The stress measure
is here the Cauchy stress g obtained by using the conjugate stress S which results from
the material behavior integration:

g =det”' (E)RSR" (3)

Under the small deformation assumption, the total strain can be decomposed into an
elastic part and an inelastic one: € = €.+ £;,,. The elastic strain ¢ is calculated thanks to
the generalized Hooke’s law :g = A : g.; where ¢ is the Cauchy stress tensor or macroscopic

stress resulting from the material behavior integration and A is the the fourth-rank tensor

of elastic moduli. The inelastic strain ¢;, is the sum of the irreversible deformations of
the three observed mechanisms: €;, = €,1 + £v2 + €u3-

In the MM models, each mechanism [ is associated to a stress tensor g; calculated from a
stress concentration rule. Several approaches were used to obtain ¢; and strains through
different transition rules. It is assumed in the present work that the macroscopic stress
g is equal to the individual stress for the three mechanisms: ¢ = g; = g3 = g3. The
construction of a constitutive model is in general based on the definition of a yield function,
a flow potential and a hardening potential. The proposed model belongs to the MM class
model in which each mechanism has its own plastic multiplier. Each stress tensor (g1, g9
and g3) is involved in a yield function (fi, fo and f3) to define the elastic domain related
to each mechanism. Since the present study is only dedicated to polymer behavior under
monotonic loading, the kinematic hardening variables were not considered.

fi=J(g)—Ri—Rn  fa=J(g2) —Re—Roa  fas=J(g3) — Rz — Roz (4

Where J (g) = ,/1.5s : s and s is the deviatoric part of the tensor g. Ry, Rz and Ros
denotes the initial size of the elastic domain for the mechanism 1, 2 and 3 respectively.
The isotropic hardening variables (R;, R> and R3) that characterize the size change in
the elastic domain related to each yield surface are described by three internal variables
(r1, 72 and r3) respectively. In this formulation, an isotropic-isotropic coupling has been

introduced between the hardening variables to account for the interaction between the
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different mechanisms:

Ry Qu Q12 Qi3 ™
Ry | = | Q21 Qa2 Qa3 T2 (5)
R Q31 Q32 Q33 3

11, Q22 and Q33 are isotropic hardening modulus. (Q;s, I # J) are coupling parameters
that play an essential role in the polymer behavior. For example, a positive value of ()12
allows to the mechanism 2 (if active) to attenuate the mechanism 1. Increasing @12 leads
to desactivate the mechanism 1. Inversely, a negative value of (J9; allows to a premature
activation of the mechanism 2 caused by the mechanism 1. This feature can be helpful, in
the case of the studied materials, to activate the third mechanism only after the softening
stage. Previous works dealing with MM models have shown that the kinematic coupling
allows to describe several mechanical effects (i.e. rate-sensitivity, plasticity—creep interac-
tion, ratcheting, ...).

According to the normality flow rule, the viscoplastic strain rates may be expressed as:

Evl = V11 &2 = V2llg  E€,3 = U313 (6)

U1, U9 and v3 are three viscoplastic multipliers and are the driving forces for the evolution
laws. They can be written using sinh rules to account for the strong nonlinearity of the
creep rate as a function of the stress

oy = dorsinh ((f/K)")  T=1,3 (7)

The McCauley-brackets () denotes the positive part: (x) = 0if x < 0 and z otherwise. K,
ny, Ky, ng, K3 and n3 are viscoplastic parameters related to the viscosity of the different
mechanisms. The evolution laws of the isotropic hardening variable are given by:

7'“1 = ’Ul(l — b]_’]"]_) 7:'2 = U2(1 - 527’2) 7"3 == U3(]~ - b3r3) (8)

It is worth noting that the evolution rules of the isotropic internal variables was intention-
ally simplified compared to the evolution rules that come from thermodynamical consid-
eration as demonstrated in the work of (Sai, 2011) in which “flow” coupling is considered
in addition to the “state” coupling (Eq. 5):

b Ry
Qu

7 =01(1 — ) (9)

) 7o = Ug(1 —

In this work, using the isotropic evolution rules Eq. 8, coupling between the three mech-
anisms results then only from Eq. 5.

The MM model is implemented into the material library ZMaT of the FE code ZSeT
(Besson et al., 1998), using a #—method solved by an implicit Newton scheme for the
local integration. The one-element simulations are shown in sections 3 and 4 using the
Green-Naghdi transformation. It is worth noting that the used experimental results are
not concerned with necking phenomenon.
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3 Application to tensile test of PC at room temperature

To assess the model reliability, the MM model is compared to tensile and relaxation stress—
strain curves for a PC at different strain rates at room temperature taken from the work of
(Zairi et al., 2005b). It is important to note that the cited authors did not notice necking
in the specimens for the reached strain level (¢ ~10%). The Young’s modulus E was
already determined in the previous work from the initial linear region of the stress—strain
curves in which a dependence of E on the strain rate was depicted. It seems therefore
necessary to use different coefficients to describe the strain rate effect for the second and
the third mechanism. The material constants are determined, in three steps, as follows.

3.1 Material parameters of the mechanism 1

The first step of the optimization procedure is devoted to the determination of the material
parameters of the mechanism 1 only. Mechanism 1 is supposed to be activated at the
beginning of the test so that Ry; = 0. Whereas, big values are assigned to the initial size of
the elastic domain for mechanisms 2 and 3 (Rg2 — 00, Rg3 — 00). The isotropic hardening
modulus ()17 and the material parameter b; allow to describe the first branch of the tensile
curve. The strain rate sensitivity is accounted for thanks to the viscosity parameters K,
ny, and vUg;. These parameters will not be modified beyond this stage. Fig. 1.a shows the
superimposition of the experimental results performed by (Zairi et al., 2005b) and the
simulation using the proposed MM model in which only the first mechanism is activated.
Figs. 1.b, ¢ and d confirm that only the mechanism 1 is active. The deformation of this
mechanism increases fastly and reaches 4% for the three considered strain rates.

3.2 Material parameters of the mechanism 2

The mechanism 2 is devoted to the modeling of the decrease in stress with increasing
deformation. The second mechanism is activated by fixing Ry to 65 MPa which corre-
sponds almost to the behavior change. The observed softening is modeled by the mean of
negative value of the isotropic hardening modulus (J92. The rate of this softening seems
to be more pronounced then the rate of hardening in the first mechanism, so that by=25.
In the contrary, the viscous part of the stress is higher than that observed for the mecha-
nism 1. This strain rate sensitivity is obtained by the material parameters K5, no and ;.
Finally, the coupling isotropic hardening modulus (012 and (Q9; are fixed to zero so that
Ry = Q1171 + Q1373 and Ry = Qo019 + (Qo3r3. The simulated curves after the activation
of the mechanism 2 (Fig. 2.a.,b,c and d) show that the deformation of the mechanism 2
is predominant and that the mechanism 1 is attenuated despite the null value of Q5.

3.8 Material parameters of the mechanism 3

The most difficult task is to activate the third mechanism while decreasing stress for a high

value of Ry3. To solve this problem negative values are assigned for the coupling isotropic
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Fig. 1. Application to a Polycarbonate: (a) Experimental, after (Zairi et al., 2005b), and simu-
lated stress—strain curve if only the first mechanism is activated (Rga — o0, Rp3 — 00). Com-
parison between viscoplastic deformations of the three mechanism: (b) 1072571 (c) 1073571 (d)
1074571,

hardening modulus (J3; and (J33. Indeed, the evolution size of the third mechanism is,
according to Eq. b Ry = Q3171 + Q3212 + Q33r3. R3 will be attenuated by the negative
terms (3177 and (Q3272. On the other hand, the softening of the mechanism 2 is attenuated
by activating the coefficient ()23 whereas ()13 is kept to be zero. Material parameters
are then numerically optimized with a sequential quadratic programming (SQP) method
(Stoer, 1985). Optimization consists of minimizing the deviation between experimental
data and the simulated ones. The list of the calibrated coefficients for the MM models
is given in Tables 1 and the corresponding comparison between simulated responses and
experimental data are shown in Fig. 3.a. Figs 3.b, ¢ and d show a decrease of 30% in
the plastic deformation of the second mechanism comparing to Figs 2.b, ¢ and d. It is

Ililzll:iﬁled material parameters of the MM models, Polycarbonate (MPa, mm, s)
Mechanism 1 Ki=50 mn1=5 o1 = 10 b1 =50 Q11 = 8000
Mechanism 2 Ropo =65 Ky;=200 no=3 Vo2 = 25 by = 25 Q22 = —688.25
Mechanism 3 Rp3 =113 K3=10 n3=3 U3 = 25 b3 =5 Q33 = 3287.3
Coupling parameters Q23 = 1500 (@31 = —2600 Q32 = —2200
Unused parameters Rpyi=0 Q12=0 Q13=0 Q21 =0

worth noting that, the simulations performed by (Zairi et al., 2005b) are also in good
6
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Fig. 2. Application to a Polycarbonate: (a) Experimental, after (Zairi et al., 2005b), and sim-
ulated stress—strain curve if the mechanisms 1 and 2 are activated (Rp3 — o0). Comparison
between viscoplastic deformations of the three mechanism: (b) 1072571 (c¢) 1073571 (d) 107*s7 L.

agreement with the previous tensile tests. Moreover, two relaxation tests are used to
validate a posteriori the prediction of the proposed model. In these tests, the specimens
are submitted to a true strain rate of 1073s~! followed by stress relaxation with different
strain levels. Fig. 4 shows comparison between experiments and prediction of the two
models for the relaxation tests.

4 Application to PMMA with different temperatures

This section briefly illustrates that the proposed model can reflect the strain rate effect
and the temperature effect. Since a time-dependent model is investigated, this is allowed
by using material parameters that change as a function of temperature. To assess the
model capabilities to quantitatively describe these two effects, experimental data bases
obtained on compression tests for PMMA at different temperatures are chosen from the
work of (Nasraoui et al., 2012). The list of the identified parameters is given in Tables
2 and the corresponding predicted compression responses for applied strain rates and
temperature are shown in Fig. 5. The identification procedure is performed similarily to
that described above for each temperature.
7
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Fig. 3. Application to a Polycarbonate: (a) Experimental, after (Zairi et al., 2005b), and simu-
lated stress—strain curve if the three mechanisms are activated. Comparison between viscoplastic
deformations of the three mechanism: (b) 1072571 (¢) 1073571 (d) 1074571,

70 ‘ :
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exp 9%
—_ Zairi et al. 2005b 9% ——
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> Zairi et al. 2005b 6.5% —=—
§ 60 1
®
(O]
>
= 55+
50 : : :
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Fig. 4. Validation of the MM proposed model and comparison with two relaxation tests per-
formed by (Zairi et al., 2005b)

5 Finite element analysis of plane forging of PC

In this section, FE simulations of plane-strain forging experiments at 25°C, under isother-
mal conditions, were performed on PC specimens as in the work of (Srivastava et al., 2010).
A circular cross-section specimen having a diameter of 12.7mm is forged to “cruciform”
specimen. The final shape was imparted to the workpiece by a split-dies made of hardened

tool steel. The forging experiment was conduced under displacement control to a relative
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Fig. 5. Comparison with compression tests and simulations performed by (Nasraoui et al., 2012)
for a PMMA (é=10"1s71).

Table 2
Identified material parameter (MPa, mm, s), PMMA different temperatures.

T E | Ky | Ky | Roa | ba| Roz| b3 | Qa| Qaz | Q32 | Qu
298K | 2400 | 230 | 148 | 55 10 | 185 -6 -32 | 1544 | -1506 | 500

323K | 1600 | 150 | 100 | 37 | 30| 95 -9 -95 | 500 -10 | 100

373K | 1200 | 70 | 15 | 40 | 47 | 48 -10 | -70 | 500 | -1000 | 30

VT ny nyg | Kz | ng | b1 | Q33| Q31 | Ror | Q2 | Q13 | Qa1
10 26 | 175 | 36 5 | 310 | -1230 0 0 849 0

die-displacement of 4.6mm under displacement rate of 0.02mm /s before the removal of the
die at the same absolute rate. Because of the symmetries of the problem, the FE modeling
considers only one quarter of the geometry. The plane strain workpiece mesh includes 612
eight nodes elements (C2D8) whereas the die is modeled as a rigid body (Fig. 3.b). The
lubrication conditions lead to consider the contact between the die and the workpiece
as frictionless. The identification strategy of material parameters is quite different of the
procedure described in the previous sections. Comparing to the PC investigated in sec-
tion 3, a very large strain level is reached so that the hardening mechanisms is extremely
pronounced. Accordingly, after some preliminary simulation of the stress-strain curves in
which the hardening was underestimated, a new component was added to the isotropic
variable Ro. This additional component is characterized by two coefficient @), and b,<0.
Moreover, the kinematic hardening is not taken into account even if loading-unloading
stages are considered. The comparison between the simulated and experimental stress-
strain behavior is shown in Fig. 6.a. The identified material parameter are displayed in
Tab. 3. Fig. 6.d compares the numerically-predicted and experimentally shape taken from
the work of (Srivastava et al., 2010) for the studied temperatures after the die removal.
A contour plot of the maximal component of the strain tensor at the end of the loading
stage is given in Fig. 6.c. Whereas the obtained shape after the die removal is compared
successfully in Fig. 6.d with simulation and experiments performed by (Srivastava et al.,
2010).
9
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Fig. 6. FE simulation of plane-strain cruciform forging of PC. (a) experimental and simulated
stress-strain curves, (b) Quarter symmetry of the FE mesh. (¢) Contour plot of the maximal
eigenstrain at the end of the loading stage. (d) Comparison between experimentally deformed
shape and FE prediction. Experiments are taken from (Srivastava et al., 2010).

Table 3
Identified material parameters of the MM models, PC used in the FE simulation of the cruciform
forging (MPa, mm, s). Norton law is used for the flow rule. The coupling parameters are fixed
to zero.

Mechanism 1 Ry =15.5 Ky =145 n=7 b =995 Q11 =2079
Mechanism 2 ROQ =70 KQ =13 Nno = 7 bQ =43 QQQ = —249

Mechanism 3 Ry3 = 58 Ks=17 n3=7 b3=9.92 (@33 = 2063
Additive parameters @5 =33. by = —5.61

6 Conclusion

In this paper, a phenomenological MM model was proposed to describe the mechanical
behavior of the amorphous glassy polymers for various strain rates and range of temper-
atures. The material parameters were calibrated by comparison with experimental data
bases taken from the literature. The drawback of this model is the elevated number of
material parameters. Nevertheless, it has been shown that these parameters can be split
into three groups and can be determined separately according to a modular procedure.
The obtained results are very promising and encouraging to explore mechanical behavior
in other experimental data bases. In particular cyclic nonlinear behavior of a glassy poly-

mer can be investigated by considering coupling between kinematic hardening variables to
10



account for ratcheting phenomenon encountered in the PMMA. On the other hand qual-
itative experimental observations are needed to check the level of the individual strain of
each mechanism predicted by the MM model.

The proposed MM model is implemented in the FE element code Zebulon (Besson et al.,
1998). In the present state, it is possible to use it as the constitutive equations in the FE
method to analyze inelastic behaviors of components made of glassy polymers submitted
to multi-axial loadings under different temperatures.
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