P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, vol.45, issue.11, p.845, 2008.
DOI : 10.1038/nmat2297

C. Largeot, C. Portet, J. Chmiola, P. Taberna, Y. Gogotsi et al., Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor, Journal of the American Chemical Society, vol.130, issue.9, p.2730, 2008.
DOI : 10.1021/ja7106178

J. B. Goodenough and K. Park, The Li-Ion Rechargeable Battery: A Perspective, Journal of the American Chemical Society, vol.135, issue.4, p.1167, 2013.
DOI : 10.1021/ja3091438

Y. F. Yuan, X. H. Xia, J. B. Wu, J. L. Yang, Y. B. Chen et al., Nickel foam-supported porous Ni(OH)2/NiOOH composite film as advanced pseudocapacitor material, Electrochimica Acta, vol.56, issue.6, p.2627, 2011.
DOI : 10.1016/j.electacta.2010.12.001

O. Ghodbane, F. Ataherian, N. Wu, and F. Favier, In situ crystallographic investigations of charge storage mechanisms in MnO2-based electrochemical capacitors, Journal of Power Sources, vol.206, p.454, 2012.
DOI : 10.1016/j.jpowsour.2012.01.103

URL : https://hal.archives-ouvertes.fr/hal-00734842

T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Crosnier et al., Crystalline MnO[sub 2] as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors, Journal of The Electrochemical Society, vol.153, issue.12, p.2171, 2006.
DOI : 10.1149/1.2352197

A. Ghosh, E. J. Ra, M. Jin, H. Jeong, T. H. Kim et al., High Pseudocapacitance from Ultrathin V2O5 Films Electrodeposited on Self-Standing Carbon-Nanofiber Paper, Advanced Functional Materials, vol.467, issue.13, p.2541, 2011.
DOI : 10.1002/adfm.201002603

T. Brezesinski, J. Wang, S. H. Tolbert, and B. Dunn, Ordered mesoporous ??-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors, Nature Materials, vol.15, issue.2, p.146, 2010.
DOI : 10.1038/nmat2612

M. D. Stoller and R. S. Ruoff, Best practice methods for determining an electrode material's performance for ultracapacitors, Energy & Environmental Science, vol.153, issue.10, p.1294, 2010.
DOI : 10.1039/c0ee00074d

Y. Gogotsi and P. Simon, True Performance Metrics in Electrochemical Energy Storage, Science, vol.334, issue.6058, p.917, 2012.
DOI : 10.1126/science.1213003

URL : https://hal.archives-ouvertes.fr/hal-00714212

B. Reichman and A. J. Bard, Electrochromism at Niobium Pentoxide Electrodes in Aqueous and Acetonitrile Solutions, Journal of The Electrochemical Society, vol.127, issue.1, p.241, 1980.
DOI : 10.1149/1.2129628

R. Kodama, Y. Terada, I. Nakai, S. Komaba, and N. Kumagai, Electrochemical and In Situ XAFS-XRD Investigation of Nb[sub 2]O[sub 5] for Rechargeable Lithium Batteries, Journal of The Electrochemical Society, vol.153, issue.3, p.583, 2006.
DOI : 10.1149/1.2163788

N. Kumagai, Y. Koishikawa, S. Komada, and N. Koshiba, Thermodynamics and Kinetics of Lithium Intercalation into Nb[sub 2]O[sub 5] Electrodes for a 2 V Rechargeable Lithium Battery, Journal of The Electrochemical Society, vol.146, issue.9, p.3203, 1999.
DOI : 10.1149/1.1392455

J. W. Kim, V. Augustyn, and B. Dunn, The Effect of Crystallinity on the Rapid Pseudocapacitive Response of Nb2O5, Advanced Energy Materials, vol.188, issue.1, p.141, 2012.
DOI : 10.1002/aenm.201100494

V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance, Nature Materials, vol.116, issue.6, p.518, 2013.
DOI : 10.1038/nmat3601

URL : https://hal.archives-ouvertes.fr/hal-01159902

N. Q. Zhang, Z. M. Liu, T. Y. Yang, C. L. Liao, Z. J. Wang et al., Facile preparation of nanocrystalline Li4Ti5O12 and its high electrochemical performance as anode material for lithium-ion batteries, Electrochemistry Communications, vol.13, issue.6, p.654, 2011.
DOI : 10.1016/j.elecom.2011.03.038

M. Morcrette, Y. Chabre, G. Vaughan, G. Amatucci, J. Leriche et al., In situ X-ray diffraction techniques as a powerful tool to study battery electrode materials, Electrochimica Acta, vol.47, issue.19, p.3137, 2002.
DOI : 10.1016/S0013-4686(02)00233-5

C. Portet, P. Taberna, P. Simon, and C. Laberty-robert, Modification of Al current collector surface by sol???gel deposit for carbon???carbon supercapacitor applications, Electrochimica Acta, vol.49, issue.6, p.905, 2004.
DOI : 10.1016/j.electacta.2003.09.043

R. Kodama, Y. Terada, I. Nakai, S. Komaba, and N. Kumagai, Electrochemical and In Situ XAFS-XRD Investigation of Nb[sub 2]O[sub 5] for Rechargeable Lithium Batteries, Journal of The Electrochemical Society, vol.153, issue.3, p.583, 2006.
DOI : 10.1149/1.2163788

A. A. Lubimtsev, P. R. Kent, B. G. Sumpterac, and P. Ganesh, Understanding the origin of high-rate intercalation pseudocapacitance in Nb2O5 crystals, Journal of Materials Chemistry A, vol.113, issue.47, p.14951, 2013.
DOI : 10.1039/c3ta13316h

A. J. Bard and L. R. Faulkner, Electrochemical Methods: fundamentals and applications, 2001.

H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm et al., (Anatase). 2. Voltammetry on Nanoporous Films, The Journal of Physical Chemistry B, vol.101, issue.39, p.7717, 1997.
DOI : 10.1021/jp970490q

J. Come, P. Taberna, S. Hamelet, C. Masquelier, and P. Simon, Electrochemical Kinetic Study of LiFePO4 Using Cavity Microelectrode, Journal of The Electrochemical Society, vol.158, issue.10, p.1090, 2011.
DOI : 10.1149/1.3619791

A. Krause, P. Kossyrev, M. Oljaca, S. Passerini, M. Winter et al., Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black, Journal of Power Sources, vol.196, issue.20, p.8836, 2011.
DOI : 10.1016/j.jpowsour.2011.06.019

A. Balducci, U. Bardi, S. Caporali, M. Mastragostino, and F. Soavi, Ionic liquids for hybrid supercapacitors, Electrochemistry Communications, vol.6, issue.6, p.566, 2004.
DOI : 10.1016/j.elecom.2004.04.005

T. E. Rufford, D. Hulicova-jurcakova, E. Fiset, Z. Zhu, and G. Lu, Double-layer capacitance of waste coffee ground activated carbons in an organic electrolyte, Electrochemistry Communications, vol.11, issue.5, p.974, 2009.
DOI : 10.1016/j.elecom.2009.02.038

P. Taberna, C. Portet, and P. Simon, Electrode surface treatment and electrochemical impedance spectroscopy study on carbon/carbon supercapacitors, Applied Physics A, vol.45, issue.98, p.639, 2006.
DOI : 10.1007/s00339-005-3404-0

C. Largeot, P. L. Taberna, Y. Gogotsi, and P. Simon, Microporous Carbon-Based Electrical Double Layer Capacitor Operating at High Temperature in Ionic Liquid Electrolyte, Electrochemical and Solid-State Letters, vol.14, issue.12, p.174, 2011.
DOI : 10.1149/2.013112esl

J. Chmiola, C. Largeot, P. Taberna, P. Simon, and Y. Gogotsi, Desolvation of Ions in Subnanometer Pores and Its Effect on Capacitance and Double-Layer Theory, Angewandte Chemie International Edition, vol.201, issue.18, p.3392, 2008.
DOI : 10.1002/anie.200704894

M. Toupin, T. Brousse, and D. Belanger, Electrode Used in Aqueous Electrochemical Capacitor, Chemistry of Materials, vol.16, issue.16, p.3184, 2004.
DOI : 10.1021/cm049649j

S. Boukhalfa, K. Evanoff, and G. Yushin, Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes, Energy & Environmental Science, vol.150, issue.3, p.6872, 2012.
DOI : 10.1002/adfm.201102573

J. P. Zheng, High Energy Density Electrochemical Capacitors Without Consumption of Electrolyte, Journal of The Electrochemical Society, vol.156, issue.7, p.500, 2009.
DOI : 10.1149/1.3121564

J. Chmiola, G. Yushin, R. Dash, and Y. Gogotsi, Effect of pore size and surface area of carbide derived carbons on specific capacitance, Journal of Power Sources, vol.158, issue.1, p.765, 2006.
DOI : 10.1016/j.jpowsour.2005.09.008

M. Olivares-marín, J. A. Fernández, M. J. Lázaro, C. Fernández-gonzález, A. Macías-garcía et al., Cherry stones as precursor of activated carbons for supercapacitors, Materials Chemistry and Physics, vol.114, issue.1, p.323, 2009.
DOI : 10.1016/j.matchemphys.2008.09.010

J. C. Lytle, J. W. Long, K. A. Pettigrew, R. M. Stroud, and D. R. Rolison, The importance of combining disorder with order for Li-ion insertion into cryogenically prepared nanoscopic ruthenia, Journal of Materials Chemistry, vol.108, issue.153, p.1292, 2007.
DOI : 10.1039/b614433k

B. E. Conway, Transition from ???Supercapacitor??? to ???Battery??? Behavior in Electrochemical Energy Storage, Journal of The Electrochemical Society, vol.138, issue.6, p.1539, 1991.
DOI : 10.1149/1.2085829

B. E. Conway and W. G. Pell, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices, Journal of Solid State Electrochemistry, vol.7, issue.9, p.637, 2003.
DOI : 10.1007/s10008-003-0395-7

M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima et al., Electrode, Journal of the American Chemical Society, vol.129, issue.23, p.7444, 2007.
DOI : 10.1021/ja0681927

T. J. Patey, R. Buchel, M. Nakayama, and P. Novak, Electrochemistry of LiMn2O4 nanoparticles made by flame spray pyrolysis, Physical Chemistry Chemical Physics, vol.90, issue.19, p.3756, 2009.
DOI : 10.1016/j.jpowsour.2008.09.091

J. Wang, J. Polleux, J. Lim, and B. Dunn, (Anatase) Nanoparticles, The Journal of Physical Chemistry C, vol.111, issue.40, p.14925, 2007.
DOI : 10.1021/jp074464w

M. Sathiya, A. S. Prakash, K. Ramesha, J. Tarascon, and A. K. Shukla, -Anchored Carbon Nanotubes for Enhanced Electrochemical Energy Storage, Journal of the American Chemical Society, vol.133, issue.40, p.16291, 2011.
DOI : 10.1021/ja207285b

URL : https://hal.archives-ouvertes.fr/hal-00845846

N. A. Chernova, M. Roppolo, A. C. Dillon, and M. S. Whittingham, Layered vanadium and molybdenum oxides: batteries and electrochromics, Journal of Materials Chemistry, vol.516, issue.88, p.2526, 2009.
DOI : 10.1039/b819629j

A. G. Dylla, G. Henkelman, and K. J. Stevenson, (B) Architectures, Accounts of Chemical Research, vol.46, issue.5, p.1104, 2013.
DOI : 10.1021/ar300176y

S. Ardizzone, G. Fregonara, and S. Trasatti, ???Inner??? and ???outer??? active surface of RuO2 electrodes, Electrochimica Acta, vol.35, issue.1, p.263, 1990.
DOI : 10.1016/0013-4686(90)85068-X

D. R. Rolison, J. W. Long, J. C. Lytle, A. E. Fischer, C. P. Rhodes et al., Multifunctional 3D nanoarchitectures for energy storage and conversion, Chem. Soc. Rev., vol.480, issue.1, p.226, 2009.
DOI : 10.1039/B801151F

M. B. Sassin, S. G. Greenbaum, P. E. Stallworth, A. N. Mansour, B. P. Hahn et al., Achieving electrochemical capacitor functionality from nanoscale LiMn2O4 coatings on 3-D carbon nanoarchitectures, Journal of Materials Chemistry A, vol.36, issue.82, p.2431, 2013.
DOI : 10.1039/c2nr34044e

I. Kim, J. Kim, B. Cho, Y. Lee, and K. Kim, Synthesis and Electrochemical Characterization of Vanadium Oxide on Carbon Nanotube Film Substrate for Pseudocapacitor Applications, Journal of The Electrochemical Society, vol.153, issue.6, p.989, 2006.
DOI : 10.1149/1.2188307

L. Hu, W. Chen, X. Xie, N. Liu, Y. Yang et al., ???Carbon Nanotube???Textile Nanostructures for Wearable Pseudocapacitors with High Mass Loading, ACS Nano, vol.5, issue.11, p.8904, 2011.
DOI : 10.1021/nn203085j

C. Hu, K. Chang, M. Lin, and Y. Wu, for Next Generation Supercapacitors, Nano Letters, vol.6, issue.12, p.2690, 2006.
DOI : 10.1021/nl061576a

Z. Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen et al., High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites, Advanced Materials, vol.153, issue.6, p.791, 2011.
DOI : 10.1002/adma.201003658

B. Park, C. D. Lokhande, H. Park, K. Jung, and O. Joo, Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes???effect of film thickness, Journal of Power Sources, vol.134, issue.1, p.148, 2004.
DOI : 10.1016/j.jpowsour.2004.02.027