L. Elena and R. Schiestel, Turbulence modeling of rotating confined flows, International Journal of Heat and Fluid Flow, vol.17, issue.3, pp.283-289, 1996.
DOI : 10.1016/0142-727X(96)00032-X

J. Daily and R. Nece, Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks, Journal of Basic Engineering, vol.82, issue.1, pp.217-232, 1960.
DOI : 10.1115/1.3662532

J. Pellé, H. , and S. , Heat transfer measurements in an opened rotor???stator system air-gap, Experimental Thermal and Fluid Science, vol.31, issue.3, pp.165-180, 2007.
DOI : 10.1016/j.expthermflusci.2006.03.018

H. Andersson and M. Lygren, LES of open rotor???stator flow, International Journal of Heat and Fluid Flow, vol.27, issue.4, pp.551-557, 2006.
DOI : 10.1016/j.ijheatfluidflow.2006.02.030

S. Haddadi and S. Poncet, Turbulence Modeling of Torsional Couette Flows, International Journal of Rotating Machinery, vol.86, issue.3, 2008.
DOI : 10.1016/S0065-2156(08)70266-7

URL : https://hal.archives-ouvertes.fr/hal-00356495

G. Batchelor, NOTE ON A CLASS OF SOLUTIONS OF THE NAVIER-STOKES EQUATIONS REPRESENTING STEADY ROTATIONALLY-SYMMETRIC FLOW, The Quarterly Journal of Mechanics and Applied Mathematics, vol.4, issue.1, pp.29-41, 1951.
DOI : 10.1093/qjmam/4.1.29

S. Poncet, M. Chauve, and R. Schiestel, Batchelor versus Stewartson flow structures in a rotor-stator cavity with throughflow, Physics of Fluids, vol.17, issue.7, p.17, 2005.
DOI : 10.1063/1.1964791

URL : https://hal.archives-ouvertes.fr/hal-00014543

K. Stewartson, On the flow between two rotating coaxial disks, Proc. Camb, pp.333-341, 1953.
DOI : 10.1002/zamm.19400200502

J. Brady and L. Durlofsky, On rotating disk flow, Journal of Fluid Mechanics, vol.14, issue.-1, pp.363-94, 1987.
DOI : 10.1063/1.1693752

J. Owen, R. , and R. , Flow and Heat Transfer in Rotating-Disc Systems, Proceedings of the 1992 International Symposium on Heat Transfer in Turbomachinery, 1989.
DOI : 10.1615/ICHMT.1994.IntSympHetatTransTurb.140

F. Kreith, E. Doughman, and H. Kozlowski, Mass and Heat Transfer From an Enclosed Rotating Disk With and Without Source Flow, Journal of Heat Transfer, vol.85, issue.2, pp.153-163, 1963.
DOI : 10.1115/1.3686038

J. Daily, W. Ernst, and V. Asbedian, Enclosed rotating disks with superposed throughflow, Tech. Rep, vol.64, 1964.

S. Poncet, R. Schiestel, C. , and M. , Centrifugal flow in a rotorstator cavity, J. Fluid Eng, vol.127, issue.4, pp.687-694, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00014545

P. Childs, Rotating Flow, 2011.

R. Da-soghe, B. Facchini, L. Innocenti, and M. Micio, Some Improvements in a Gas Turbine Stator-Rotor Systems Core-Swirl Ratio Correlation, International Journal of Rotating Machinery, vol.111, issue.3, 2012.
DOI : 10.1243/09576509JPE461

J. Owen, C. Haynes, and F. Bayley, Heat Transfer from an Air-Cooled Rotating Disk, Proc. Roy. Soc. A, 336, pp.453-473, 1974.
DOI : 10.1098/rspa.1974.0029

N. Gao and D. Ewing, Investigation of the effect of confinement on the heat transfer to round impinging jets exiting a long pipe, International Journal of Heat and Fluid Flow, vol.27, issue.1, pp.33-41, 2006.
DOI : 10.1016/j.ijheatfluidflow.2005.06.002

O. Sara, J. Erkmen, S. Yapici, C. Opur, and M. , Electrochemical mass transfer between an impinging jet and a rotating disk in a confined system, 2008.

Y. Minagawa and S. Obi, Development of turbulent impinging jet on a rotating disk, International Journal of Heat and Fluid Flow, vol.25, issue.5, pp.759-766, 2004.
DOI : 10.1016/j.ijheatfluidflow.2004.05.013

C. Popiel and L. Boguslawski, Local Heat Transfer From a Rotating Disk in an Impinging Round Jet, Journal of Heat Transfer, vol.108, issue.2, pp.357-364, 1986.
DOI : 10.1115/1.3246929

Y. Chen, W. Lee, and S. Wu, Heat (mass) transfer between an impinging jet and a rotating disk, Heat and Mass Transfer, vol.34, issue.2-3, pp.195-201, 1998.
DOI : 10.1007/s002310050249

J. Pellé, H. , and S. , Heat transfer study in a rotor???stator system air-gap with an axial inflow, Applied Thermal Engineering, vol.29, issue.8-9, pp.8-9, 2009.
DOI : 10.1016/j.applthermaleng.2008.07.014

S. Harmand, J. Pellé, S. Poncet, and I. Shevchuk, Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet, International Journal of Thermal Sciences, vol.67, pp.1-30, 2013.
DOI : 10.1016/j.ijthermalsci.2012.11.009

URL : https://hal.archives-ouvertes.fr/hal-00975626

B. Launder, S. Poncet, and E. Serre, Laminar, Transitional, and Turbulent Flows in Rotor-Stator Cavities, Annual Review of Fluid Mechanics, vol.42, issue.1, pp.229-248, 2010.
DOI : 10.1146/annurev-fluid-121108-145514

URL : https://hal.archives-ouvertes.fr/hal-00678846

I. Shevchuk, Convective heat and mass transfer in rotating disk systems, 2009.
DOI : 10.1007/978-3-642-00718-7

N. Nguyen, J. Pellé, S. Harmand, and S. Poncet, PIV measurements of an air jet impinging on an open rotor-stator system, Experiments in Fluids, vol.16, issue.3, pp.53-401412, 2012.
DOI : 10.1007/s00348-012-1298-0

URL : https://hal.archives-ouvertes.fr/hal-00822034

J. Kompenhans, M. Raffel, S. Wereley, and C. Willert, Particle image velocimetry: a practical guide; with 42 tables, 2007.

J. Westerweel, Efficient detection of spurious vectors in particle image velocimetry data, Experiments in Fluids, vol.16, issue.3-4, pp.236-247, 1994.
DOI : 10.1007/BF00206543

H. Coleman and W. Steele, Engineering application of experimental uncertainty analysis, AIAA Journal, vol.33, issue.10, pp.1888-1896, 1995.
DOI : 10.2514/3.12742

J. Pellé, H. , and S. , Convective Heat Transfer in a Rotor Stator System Air Gap With Multiple Suctions of Fluid Through the Stator, Journal of Heat Transfer, vol.133, issue.7, p.71707, 2011.
DOI : 10.1115/1.4003606

L. Dorfman and N. Kemmer, Hydrodynamic resistance and the heat loss of rotating solids, 1963.

S. Poncet, ´ ecoulements de type rotor-stator soumisàsoumisà un flux: de BatcheloràBatchelorà Stewartson, 2005.

S. Poncet, S. Haddadi, and S. Viazzo, Numerical modeling of fluid flow and heat transfer in a narrow Taylor???Couette???Poiseuille system, International Journal of Heat and Fluid Flow, vol.32, issue.1, pp.128-144, 2011.
DOI : 10.1016/j.ijheatfluidflow.2010.08.003

URL : https://hal.archives-ouvertes.fr/hal-00678877

S. Poncet and R. Schiestel, Numerical modeling of heat transfer and fluid flow in rotor???stator cavities with throughflow, International Journal of Heat and Mass Transfer, vol.50, issue.7-8, pp.7-8, 2007.
DOI : 10.1016/j.ijheatmasstransfer.2006.08.028

URL : https://hal.archives-ouvertes.fr/hal-00170271

B. Launder and D. Tselepidakis, Application of a new second-moment closure to turbulent channel flow rotating in orthogonal mode, International Journal of Heat and Fluid Flow, vol.15, issue.1, pp.2-10, 1994.
DOI : 10.1016/0142-727X(94)90025-6

R. Da-soghe, B. Facchini, L. Innocenti, A. Andreini, and S. Poncet, Numerical Benchmark of Turbulence Modeling in Gas Turbine Rotor-Stator System, Volume 7: Turbomachinery, Parts A, B, and C, pp.2010-22627, 2010.
DOI : 10.1115/GT2010-22627

P. E. Smirnov and F. R. Menter, Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart???Shur Correction Term, Proceedings of ASME TurboExpo, pp.2008-50480, 2008.
DOI : 10.1115/1.3070573

P. R. Spalart and M. L. Shur, On the sensitization of turbulence models to rotation and curvature, Aerospace Science and Technology, vol.1, issue.5, pp.297-302, 1997.
DOI : 10.1016/S1270-9638(97)90051-1

R. Manceau, R. Perrin, M. Hadziabdic, P. Fourment, and S. Benhamadouche, Turbulent jet impinging onto a rotating disc: a collaborative evaluation of RANS models, Proceedings of the Sixth International Symposium On Turbulence, Heat and Mass Transfer, 2009.
DOI : 10.1615/ICHMT.2009.TurbulHeatMassTransf.1390

URL : https://hal.archives-ouvertes.fr/hal-00524548

M. Had?-ziabdi´cziabdi´c and K. Hanjali´chanjali´c, Vortical structures and heat transfer in a round impinging jet, J. Fluid Mech, vol.596, pp.221-260, 2008.

S. Cheah, H. Iacovides, D. Jackson, H. Ji, and B. Launder, Experimental investigation of enclosed rotor-stator disk flows, Experimental Thermal and Fluid Science, vol.9, issue.4, pp.445-455, 1994.
DOI : 10.1016/0894-1777(94)90022-1

J. Lumley, Computational Modeling of Turbulent Flows, Adv. Appl. Mech, vol.18, pp.123-176, 1978.
DOI : 10.1016/S0065-2156(08)70266-7

W. C. Reynolds, Towards A Structure-Based Turbulence Model, Studies in Turbulence, 1991.
DOI : 10.1007/978-1-4612-2792-2_5

V. Katti and S. Prabhu, Experimental study and theoretical analysis of local heat transfer distribution between smooth flat surface and impinging air jet from a circular straight pipe nozzle, International Journal of Heat and Mass Transfer, vol.51, issue.17-18, pp.17-18, 2008.
DOI : 10.1016/j.ijheatmasstransfer.2007.12.024

N. Zuckerman and N. Lior, Jet impingement heat transfer: Physics, correlations, and numerical modeling " . Advances in Heat Transfer, pp.565-631, 2006.

M. Wen and K. Jang, An impingement cooling on a flat surface by using circular jet with longitudinal swirling strips, International Journal of Heat and Mass Transfer, vol.46, issue.24, pp.4657-4667, 2003.
DOI : 10.1016/S0017-9310(03)00302-8

A. A. Tawfek, Heat transfer and pressure distributions of an impinging jet on a flat surface, Heat and Mass Transfer, vol.32, issue.1-2, pp.49-54, 1996.
DOI : 10.1007/s002310050090

@. Fig, Distribution of the local Nusselt number as a function of the local Reynolds number Re r = Re × (r/R ext ) 2 for Re = 5

@. Fig, Axial profiles of the mean radial and tangential velocity components and the corresponding Reynolds stress tensor components at r/R ext = 0.56 and Re = 1.04 × 10 6 in a shrouded rotor-stator cavity of aspect ratio G = 0.036: (a) C w = 0, ) C w = 9881. Comparisons between the present RSM (straight lines), a low-Reynolds number k ? ? model (dashed lines) and the LDV measurements (symbols) of Poncet, 1976.

@. Fig, 5: Streamline patterns obtained by the RSM, from (a) Test case 1 to (i) Test case 9

@. Fig, Streamline patterns obtained by the k ? ? SST, for Test cases (a) 4, (b) 5 and (c) 6

@. Fig, Normalized velocity vectors in the plane (x, y) for Test cases 1 (a,b) and 7 (c,d), in two planes, near the rotor

@. Fig, Radial variation of the core-swirl ratio ? for the 9 test cases: (a) test case 1 . . . (i) test case 9. Comparisons between the experiments (symbols), the RSM (solid black lines), the k-? SST model

@. Fig, Radial variation of the averaged mean radial velocity V r /V for Test case 5 and three axial positions: one near the rotor (z/e = 0.23), at mid-gap (z/e = 0.53) and one close to the stator (z/e = 0.84) Comparisons between the experiments (symbols), the RSM (dashed lines), the k ? ? SST (solid lines), the LDA measurements of Mingawa and Obi

@. Fig, 10: Maps of the turbulence kinetic energy k normalized by its maximum value for Test Case 4 (a,b), 5 (c,d) and 6 (e,f) obtained by the RSM (a,c,e) and the k ? ? SSt model (b,d,f)

@. Fig, Radial variation of three components of the Reynolds stress tensor for Test case 5 and at three axial positions: one near the rotor (z/e = 0.23), at mid-gap (z/e = 0.53) and one close to the stator (z/e = 0.84) Comparisons between the experiments (symbols), p.the RSM