Skip to Main content Skip to Navigation
Journal articles

Quantification of mass transfers and mineralogical transformations in a thrust fault (Monte Perdido thrust unit, southern Pyrenees, Spain)

Abstract : In fold-and-thrust belts, shortening is mainly accommodated by thrust faults which are preferential zones for recrystallisation and mass transfer. This study focuses on a detachment fault related to the emplacement of the Monte Perdido thrust unit in the southern Pyrenees. The studied fault zone consists of a 10 m thick intensively foliated phyllonite developed within the Millaris marls, of Eocene age. The lithological homogeneity of the hanging wall and footwall allows us to compare the Millaris marls outside the fault zone with the highly deformed marls located in the fault zone and to quantify the chemical, mineralogical and volumetric changes related to deformation processes along the fault. The Millaris marls are composed of detrital quartz, illite, chlorite, minor albite and pyrite, in a micritic calcite matrix. In the fault zone, the cleavage planes are marked by clay minerals and calcite ± chlorite veins attest to fluid-mineral interactions during deformation. The mineral proportions in all samples from both the fault zone and Millaris marls have been quantified by two methods: (1) X-ray diffraction and Rietveld refinement, and (2) bulk chemical analyses as well as microprobe analyses to calculate modal composition. The excellent agreement between the results of these two methods allows us to estimate mineralogical variations using a modification of the Gresens' equation. During fault activation, up to 45 wt% of calcite was lost while the amounts of quartz and chlorite remained unchanged. Illite content remained constant to slightly enriched. The mineralogical variations were coupled with a significant volume loss (up to 45%) mostly due to the dissolution of micritic calcite grains. Deformation was accompanied by pressure solution and phyllosilicates recrystallisation. These processes accommodated slip along the fault. They required fluids as catalyst, but they did not necessitate major chemical transfers.
Document type :
Journal articles
Complete list of metadata
Contributor : Vincent Trincal Connect in order to contact the contributor
Submitted on : Wednesday, April 9, 2014 - 5:28:28 PM
Last modification on : Thursday, January 13, 2022 - 11:58:04 AM

Links full text



Vincent Trincal, Delphine Charpentier, Martine Buatier, B. Grobety, Brice Lacroix, et al.. Quantification of mass transfers and mineralogical transformations in a thrust fault (Monte Perdido thrust unit, southern Pyrenees, Spain). Marine and Petroleum Geology, Elsevier, 2014, Fluid-rock-tectonics interactions in basins and orogens, 55, pp.160-175. ⟨10.1016/j.marpetgeo.2013.12.016⟩. ⟨hal-00976361⟩



Les métriques sont temporairement indisponibles