Fast and accurate computation of layer heat potentials

Jing-Rebecca Li 1 Leslie Greengard
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, ENSTA ParisTech UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : We discuss the numerical evaluation of single and double layer heat potentials in two dimensions on stationary and moving boundaries. One of the principal difficulties in designing high order methods concerns the local behavior of the heat kernel, which is both weakly singular in time and rapidly decaying in space. We show that standard quadrature schemes suffer from a poorly recognized form of inaccuracy, which we refer to as “geometrically-induced stiffness”, but that rules based on product integration of the full heat kernel in time are robust. When combined with previously developed fast algorithms for the evolution of the “history part” of layer potentials, diffusion processes in complex, moving geometries can be computed accurately and in nearly optimal time.
Type de document :
Article dans une revue
SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2009
Liste complète des métadonnées

https://hal-ensta.archives-ouvertes.fr/hal-00975973
Contributeur : Aurélien Arnoux <>
Soumis le : mercredi 9 avril 2014 - 14:05:24
Dernière modification le : jeudi 9 février 2017 - 15:28:13

Identifiants

  • HAL Id : hal-00975973, version 1

Collections

Citation

Jing-Rebecca Li, Leslie Greengard. Fast and accurate computation of layer heat potentials. SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2009. 〈hal-00975973〉

Partager

Métriques

Consultations de la notice

132