Novel Lanthanide-Based Polymeric Chains and Corresponding Ultrafast Dynamics in Solution - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Inorganic Chemistry Année : 2011

Novel Lanthanide-Based Polymeric Chains and Corresponding Ultrafast Dynamics in Solution

Résumé

Two types of structurally related one-dimensional coordination polymers were prepared by reacting lanthanide trichloride hydrates [LnCl(3) center dot (H2O)(m)] with dibenzoyl-methane (Ph(2)acacH) and a base. Using cesium carbonate (Cs2CO3) and praseodymium, neodymium, samarium, or dysprosium salts yielded [Cs{Ln(Ph(2)acac)(4)}) (Ln = Pr (1), Nd (2), Sm (3), Dy (4)) in considerable yields. Reaction of potassium tert-butoxide (KOtBu) and the neodymium salt [NdCl3 center dot (H2O)(6)] with Ph(2)acacH resulted in [K{Nd(Ph(2)acac)(4)}](n) (5). All polymers exhibit a heterobimetallic backbone composed of alternating lanthanide and alkali metal atoms which are bridged by the Ph(2)acac ligands in a linear fashion. ESI-MS investigations on DMF solutions of 1-5 revealed a dissociation of all the five compounds upon dissolution, irrespective of the individual lanthanide and alkali metal present. Temporal profiles of changes in optical density were acquired performing pump/probe experiments with DMF solutions of 1-5 via femtosecond laser spectroscopy, highlighting a lanthanide-specific relaxation dynamic. The corresponding relaxation times ranging from seven picoseconds to a few hundred picoseconds are strongly dependent on the central lanthanide atom, indicating an intramolecular energy transfer from ligands to lanthanides. This interpretation also demands efficient intersystem crossing within one to two picoseconds from the SI to T, level of the ligands. Magnetic studies show that [Cs{Dy(Ph(2)acac)(4)}}(n) (4) has slow relaxation of the magnetization arising from the single Dy3+ ions and can be described as a single-ion single molecule magnet (SMM). Below 0.5 K, hysteresis loops of the magnetization are observed, which show weak single chain magnet (SCM) behavior.
Fichier non déposé

Dates et versions

hal-00975743 , version 1 (09-04-2014)

Identifiants

Citer

Dominique T. Thielemann, Melanie Klinger, Thomas J.A. Wolf, Yanhua Lan, Wolfgang Wernsdorfer, et al.. Novel Lanthanide-Based Polymeric Chains and Corresponding Ultrafast Dynamics in Solution. Inorganic Chemistry, 2011, 50 (23), pp.11990-12000. ⟨10.1021/ic201157m⟩. ⟨hal-00975743⟩

Collections

UGA CNRS NEEL
179 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More