Incremental inconsistency detection with low memory overhead

Jean-Rémy Falleri 1 Xavier Blanc 2 Reda Bendraou 3 Marcos Aurélio Almeida da Silva 3 Cédric Teyton 2
1 Progress
LaBRI - Laboratoire Bordelais de Recherche en Informatique
3 MoVe - Modélisation et Vérification
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : Ensuring models’ consistency is a key concern when using a model-based development approach. Therefore, model inconsistency detection has received significant attention over the last years. To be useful, inconsistency detection has to be sound, efficient, and scalable. Incremental detection is one way to achieve efficiency in the presence of large models. In most of the existing approaches, incrementalization is carried out at the expense of the memory consumption that becomes proportional to the model size and the number of consistency rules. In this paper, we propose a new incremental inconsistency detection approach that only consumes a small and model size-independent amount of memory. It will therefore scale better to projects using large models and many consistency rules.
Type de document :
Article dans une revue
Software: Practice and Experience, Wiley, 2014, 44 (5), pp.621-641. <10.1002/spe.2171>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00975337
Contributeur : Jean-Rémy Falleri <>
Soumis le : mardi 8 avril 2014 - 14:21:01
Dernière modification le : mercredi 25 novembre 2015 - 01:03:32

Identifiants

Collections

Citation

Jean-Rémy Falleri, Xavier Blanc, Reda Bendraou, Marcos Aurélio Almeida da Silva, Cédric Teyton. Incremental inconsistency detection with low memory overhead. Software: Practice and Experience, Wiley, 2014, 44 (5), pp.621-641. <10.1002/spe.2171>. <hal-00975337>

Partager

Métriques

Consultations de la notice

216