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Optimization of Energy Harvesting MISO
Communication Channels

Rajeev GangulaStudent Member, IEEEDavid GesbertFellow, IEEE and Deniz GinduzsSenior Member, IEEE

Abstract—Optimization of a point-to-point (p2p) multiple-  This calls for the intelligent management of various parianse
input single-output (MISO) communication system is considered jnvolved in a communication system.
when both the transmitter (TX) and the receiver (RX) have Recently, a significant number of works have appeared

energy harvesting (EH) capabilities. The RX is interested in tudving th timal t . h for EH
feeding back the channel state information (CSI) to the TX to studying the optimal fransmission schemes tor commu-

help improve the transmission rate. The objective is to maximize Nication systems under different assumptions regardirg th
the throughput by a deadline, subject to the EH constraints atte node’s knowledge about the underlying EH process. Offline
TX and the RX. The throughput metric considered is an upper gptimization framework deals with systems in which non-
bound on the ergodic rate of MISO channel with beamforming - ¢5,,53| knowledge of the EH process is available. Within this

and limited feedback. Feedback bit allocation and transmission f K optimal t L hem re studied fr th
policies that maximize the upper bound on the ergodic rate are rame work, optimal ransmission schemes are studie

obtained. Tools from majorization theory are used to simplify P2p fading channel [4], broadcast channel [5], [6], [7] and
the formulated optimization problems. Optimal policies obtained relay channel [8], [9]. See [10] for an extensive overview.

for the modified problem outperform the naive scheme in which To the best of our know|edge, a common aspect of all

no intelligent management of energy is performed. prior works on EH communication networks is that the TX
Index Terms—Energy harvesting, Limited feedback, MISO, is assumed to have access to perfect CSI. Knowledge of
Offline optimization. the CSI at the TX is beneficial in designing the optimal

channel adaptation techniques and the TX filters in multi-
antenna systems. However, recent studies have demodstrate
that, although feedback enhances the system performance,
Powering up terminals in communication networks bfeedback resources, namely power and bandwidth, are tinite
renewable ambient energy reduces the carbon footprint arid must be spent wisely [11]. As a result, an important
the information and communication technologies, which cajuestion arises: How do the EH constraints affect the design
no longer be neglected with the exponential growth in thgf feedback enabled wireless networks?
number of communication devices. Another advantage of EHIn this paper, we study the optimization of a feedback
technology is that, it increases the autonomy of battergnabled EH MISO channel, where feedback is used to improve
run communication devices. In traditional wireless netsor the rate through array gain. The system model and the main
nodes get their energy from the power grid by always @ssumptions in this paper are given in Section Ill. In Sectio
periodically connecting to it. While it is easy to connect thév, we consider the optimization of the feedback policy unde
terminals to the grid in some networks, in others, such &H constraints at the RX, while the TX is assumed to have
sensor networks, it cannot be done once after the deploymentconstant power supply. The motivation is to address the
Therefore, in such networks a node’s lifetime, and hena, tfollowing: In the case of EH, the available energy at the RX
network lifetime, is constrained by the limited initial egg varies over time. Should the RX feedback same quality of CSI
in the battery. Providing EH capabilities to the commuri@at at all times? If so, can the CSI feedback quality be improved
nodes is an attractive solution to the network lifetime feab by using more bandwidth in the low energy scenario? In the
[2]. An EH node can scavenge energy from the environmesécond part of this paper (Section 1V), we assume that beth th
(typical sources are solar, wind, vibration, thermal,)ef8]. TX and the RX harvest energy. In this case, the transmission
With EH nodes in the network, in principle, one can guarantg@wer policy and the feedback policy are coupled, and need
perpetual lifetime without the need of replacing batteries to be jointly optimized. Results from multivariate majaiion
However, EH poses a new design challenge as the enetggory are used to devise simple algorithms. We start by
sources are typically sporadic and random. The main clgdlergiving a brief preliminary description of majorization thvg
lies in ensuring the Quality of Service (QoS) constraintthef in Section Il. Numerical results are presented in SectiomoVI
network given the random and time varying energy sourcelidate the analysis. Finally, Section VII concludes thgegr.
Notation: Boldface letters are used to denote matrices and
This work is performed within the framework of European reseamoject yectors. The transpose and conjugate transpose of mtisx
E-CROPS, funded by CHIST-ERA under the ERA-Net funding suhef the denoted byAT and AH respectively. We us€; ; to denote
FP7 XXXXXXXXXXXXXXXXXX. Part of this work has been publidhie [1]. ! 2,9
R. Gangula, D. Gesbert are with the Mobile Communications Depthe element at théth row and;-th column of matrixD, and
EURECOM, France (email: {gangula,gesbert@eurecom.fr). |8| to denote the cardinality of the st The set of integers
D. Gunduz is with the Dept. of Electrical and Electronic Engi . .
from m ton, m < n, is represented biyn : n]. The algorithm

neering, Imperial College London, UK (email: d.gunduz@imgleaic.uk). X !
XXXKXXKKIXKKXXIKHXIKKXIKKIIKKIXKKXXKKHXIKKXXKKXXKKXK with name “Algo” is represented as [output arguments]= Algo
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(input arguments). A circularly-symmetric complex Gaassi

distributed random variablg with zero mean and varianeé Harvested Harvested
is denoted byy ~ CN(0, o?). Energy T—fﬁy
Il. PRELIMINARIES Ererey Erersy
In this section, the basic notion of majorization is introdd Gt S
and some important inequalities on convex functions that ar L N e N @

used in this work are stated. The readers are referred to A !
[12], [13] for a complete reference. We start by stating the boimimimoe e
Edmundson-Madansky’s inequality. e e

Theorem 1{12] If f is a convex function and is a random figyre 1. MISO channel with EH nodes.
variable with values in an intervak, b, then

b—pu w—a
Bl ()] < 7Ef () + B2

where is the mean ofr. P
Majorization theory formalizes the notion that the compo- [ 1T 2 *** g Lfe o o ¢ o 1o eeogl
nents of a vectorr are “less spread out” than the components ~— =
of a vectory. T T
Definition 1: Let # = [9517 . 7$n] Y = [yh . 7yn], Figure 2. Energy harvesting time frame structure.
xz,y € R" and letz(;) denote thei-th largest component of
x. Thenz is said to bemajorizedby y, denoted byr < y, if

t ,r t o ;o
f(b)7 €1C1  EH Interval €€ e ey

A. Energy Harvesting Model
: : The total observation time is divided int$ equal length EH
>rw <) v,  WElin—1 intervals. At the beginning of thie-th EH interval k € [1 : K],
lil ’Zl energy packets of sizel, e/, units arrive at the TX and the
Z 2y = Zy@' RX, respectively. At each node, this energy is first storedrin
= i—1 infinite size energy buffer, and used only for communication
Definition 2:[13, 2.A.1] Ann xn matrix D with elements purposes, i.e., TX sending data, and the RX feeding back the

d; ; is doubly stochastidf CSI. We assume that aﬂfw ¢}’ are known in advance by both
terminals. This model is suitable for an EH system in which
dij =20,  Vi,je[l:n], the amount of harvested energy can be predicted in advance
i n [10].
 dij=1,VYj€el:n] and ) di; =1, Vie[l:n].
i=1 j=1

B. Communication System Model

Each EH interval consists df data frames, each of length
T channel uses. We assume a block fading channel model. The
channel is constant duriffj channel uses of each frame, but
changes in an independent and identically distributec j.i
n " fashion from one frame to another. The time frame structire i
2im1 9 (i) 2 351 9 (Y- shown in Fig. 2. The TX had/ > 1 antennas, while the RX

Definition 3: [13, 15.A.2] LetX andY bem x n real pag 3 single antenna. The received signal in a given channel
matrices. TherX is said to bemajorizedby Y, written X < ca ig given by

Theorem 2]13, 4.A.1, 4.B.1] Fore,y € R", the following
conditions are equivalent:

o« T =Y.

o x = yD for some doubly stochastic matrip.

« For all continuous concave functiong : R — R,

Y, if X = YD, where then xn matrix D is doubly stochastic. y = hHws +n, 1)
Theorem 3:[13, 15.A4] LetX andY be m x n real
matrices. Then,X < Y if and only if whereh € CM*1 represents the vector of channel coefficients
. n from TX to the RX with i.i.d.CN(0,1) elementsaw € CM*!
Z g(xf) > Z g(ys), denotes the beamforming vector, the input symbol maxirgizin
i1 i1 the achievable ergodic rate in theth EH interval iss ~

for all continuous concave functiogs R™ — R; herez¢ and CN(0:7x), andn ~ EN(0, 1) represents the noise at the RX.

y¢ denote the-th column vector ofX andY, respectively.
C. Feedback Model

Ill. SYSTEM MODEL We assume that the RX perfectly estimates the channel

We consider a p2p MISO fading channel as shown in Fig. §tate at the beginning of each data frame, and feeds back
where both the TX and the RX harvest energy from ththe quantized CSI to the TX within the same frame. In the
environment. Each node is equipped with an individual energ-th EH interval, the frame structure is as follows: The RX

buffer, i.e., a rechargeable battery, that can store thalljoc in 7, channel uses sends the CSI through a feedback channel
harvested energy. (uplink) which is modeled as an additive white Gaussianeois



(AWGN) channel. In the remaining’ — 7, channel uses,

TX sends data to the RX (downlink) exploiting the obtained K

CSI. The feedback model represents the Time-Division Duple  max Z Ry, (5a)
(TDD) system in which uplink and downlink use the same 7% =

band in a time-sharing fashion, but the communication de- l l

vices are not self-calibrated, and hence, induce non-iazab s.t. LZ%’ < Z er, Viell: K|, (5b)
effects [14], [15]. In the above model, although the feedétbac i=1 i=1

overhead incurs a cost in the downlink bandwidth, a similar

l l
trade-off in the resource allocation between the CSI feekiba LT pi<) e, Vie[1: K], (5¢)
quality and uplink data rate also arise in a Frequency-iigis i=1 i=1
Duplex (FDD) system [15]. Hence, the analytical results 7 € 10,T), pr >0, andgy > 0,Vk € [1: K].
obtained in this paper are applicable in general settingd, a (5d)
for instance, can pe used to ad'dress the trade-off betwekn €8¢ constraints (5b) and (5¢) guarantee ¢nergy neutrality
quality and effective data rate in an FDD system. of the system, i.e., at each node, energy consumed can not be

In the k-th EH interval, quantization of the channel statghore than the energy harvested till that time. Also note that
is performed using a codeboa; known at both the TX 7 impacts the achievable rafe, in each EH interval.
and RX. The receiver uses Random Vector QuantizationComing up with simple algorithms to solve the optimization
(RVQ). The codebook consists 8f -dimensional unit vectors proplem is desirable in EH networks as the nodes may not have
Cr = {f1,..., fan. }, Whereby, is the number of bits used the computational and energy resources for running complex
for quantization. The RX chooses the beamforming vectgptimization algorithms. However, the ergodic rate exsi@s
according tow;, = arg max |h"f|", where h 2 ﬁ used in the above optimization problem is not in closed form
d offers little insight into the convexity of the problem
hich is required to reduce the complexity of optimization.
This motivates the use of convex bounds on (4) as the
objective function in the following optimization problems
Solving these modified problems provides an upper bound on
™ D ) the throughput. Since the constraints in the original are th
Ry = (1 - ?) Ejnj2u, |loge [ 1+ =5 [[RI vk ||, modified optimization problems are the same, the solution fo
(t-7%) the modified problem is also feasible in the original prohlem
2) ; . : natt
. 2 ) and if used in evaluating the exact rate expression in (4), we
wherev;, = |hHwy|”. Note thaty,, and||h||? are independent

i obtain a lower bound on the throughput. In some settings, we
[16]. By using the AWGN feedback channel model, they,q, that the bounds used are very close to the ergodic rate.
number of feedback bits, can be related to the energy used Before tackling the above problem, first, we consider a

by the RX, g, and the number of channel usgsas follows: special case in which only the RX harvests energy. Later, the

We assume that the Iefnegc'fh of the EH interval is very lar
compared to the channel coherence time (i.ds very large).
As a result, the achievable ergodic rate in kAth EH interval
is given by

e general case with both the TX and the RX harvesting energy
b, = 71 log2 <1 + 2) R (3) is studied.
TkO
where o2 is the noise variance in the uplink. For analytical IV. EH RECEIVER
tractability, we neglect the practical constraint thatshould In this setting, the RX harvests energy from the environ-

be an integer. Using the ergodic rate expression given in [¥ent, whereas the TX is connected to the power grid so that
Equation (27)] and (3), the ergodic raf&, = R (px,qx,7x) it has a fixed power supply at all times. Therefore, there are

is found to be no EH constraints at the TX, and constraints (5c) can be
M1 ignored. However, there is now a constraint on the average
_ Tk transmission power at each data frame of thth EH interval
Rp=(1——=)logye | e’ E —
g ( T) 52 ( ; 1 () i.e., pr < p,Vk. The expected valuey, is given by [16], [17]
! M
p N M P . — _ obk b
/ (1 - Vk)IV[71> ’C 76(,};)EM+1 (Pk) duk) Elvg] =1-2%p (2 k, U 1) ; (6)
Vi Vi
vi=0 () where S (z,y) denotes the beta function. Using the quantiza-
Tk Tk tion error bound in [17, Lemma 6], (6) can be boundet as
where p = (52), N = (14 :25)", and B, () £ [ ] (6)
floo e~ ®tx~"dt is the n-th order exponential integral. Elvy] <vi 21— <M]\2 1) 2;’,‘"’1' (7)
Applying Jensen’s inequality on (2), substituting (7) a), (
D. Optimization Problem and using the fact thdk ||k||> = M, an upper bound on the

The prOblem _Of maximizing the sum throthpm by the endlThis bound is universal in the sense that it applies to anypit quanti-
of the K-th EH interval can be formulated as zation of an isotropically distributed vector, not necetydimited to RVQ.



ergodic rateRY £ R" (py, qx, 7% is Obtained as As the objective function is monotonic ig; and pg,
. the constraint in (15b) must be satisfied with equality for
u pM M—-1 q \ VT I = K, and the first constraint in (15¢) must be satisfied with
R = trlogy | 1+ tr 1- M (1 + ) '’ equality, i.e.,pr = p,Vk, otherwise, we can always increase
) qx,pr, and hence, the objective function, without violating
any constraints. Now it remains to optimize over the vagabl

02

wheret;, £ (1 — Z¢).
We now illustrate the tightness of the upper bound. AFSUC
plying the Jensen’s inequality on (2} — Ri can be lower

and .
The feasible set is represented as

bounded as 3 = {q, T|qn, 7. satisfy (15b), (15dyk}, (16)
Ry — Ry, >ty logy <1+ ]t)kMV]j> - whereq = [q1,...,qx] andT = [r1,...,7k]. To show that
F (9) the above problem is a convex optimization problem, we make
t By logy (1 4+ P || E[”k]) ) use of the following lemma.
b Lemma 1:If the function f (z,¢) : RZ — Ry is concave,
Since (2) is a concave function of andv; € [0,1], applying and g(y,z) : RZ — Ry is concave and monotonically
Theorem 1 on (2), we have increasing in each argument, then the functiofr,y,t) =
(1-%)g (l_y%, fl(_’”;)) is concavey (z,y) € R3¢ € [0,T).

Ry >ty EHth log, (1 + ]Zi |h||2> E[v] (10)
k Proof: The proof is similar to that of showing the

Now using (10),R}’ — R, can be upper bounded as perspective of a concave function is concave. See Appendix.
[ ]
R} — Ry <ty log, (1 + ];kMu};) — Proposition 1: The objective function of the optimization
k (11) problem (15) is concave.
t1 Ejn 2 logy (1 + Pk ||h||2) B[] _Proof: See Appendix. o _ ]
tk Since the objective function in (15) is concave and the

Since bothlimy, o v = 1 and limy, o, E[vx] = 1 [16], constraints are linear, it has a unique maximizer [18]. gsire
and using (9) and (11), we have, concavity of the objective function, we show that the optima
energy allocation vector is the most majorized feasiblegne
bk + peM vector.
tk + pi ||h||2 ' Proposition 2: The global optimum of (15) is obtained at
(12) (q*,7*), whereq* < q,V(q,T) € §, and7; is the solution

ARk £ bhm RZ — Rk =t EHth 10g2

k—>00

Further, for all feasible, in the low power regime, of the following equation
lim ARy, =0, 13 ORy; _ )
Jim AR; (13) &%%wfaﬁepm. 17)

and in the high power regime, Proof: Consider the following equivalent form of (15),

p;}iEE)o ARy, =ty (10g2 M — Ejjp 2 logy ||h|\2) 1) where the optimization is performed in two steps.
< IOgQMfEHth 10g2||h”2. m(?‘Xﬂ(q) S't'v((LT) 657 (18)

From the above analysis, it can be seen that when the RX has -~ . .

enough harvested energy to send large number of feedbﬁkereu(@ is obtained by

bits, in the low power regime the bound is tight, and in the U(q) = max U (g, 7T) St.V(q, 7)€ F. (29)
high power regime the difference is bounded by a constant. T

For example, it is0.1958 for M/ = 4, and also note that SincelU is a concave function over the convex ggtthe

lim s o0 logy M — Ej 2 log, [|R][2 = 0. function U (g) is concave, where the domain tfis the set
Using (8) as the objective function, the modified optimizag = {q| (¢,7) € 3} [18, 3.2.5].U = 3 | R¥ is continuous,
tion problem can be written as follows, differentiable and concave im, € [0,7). Furthermore, for
K givengy, R} approachesog, (1 + p) and0, ast, approaches
max U = Z RY (15a) 0 andT, respectively. Therefore, the unique maximizer of (19)
Pk Tk Pt lies in [0,T"), and it is obtained at
l l
ou OR}:
) r : — | = =0, Vkell: K. 20
st Lz%g§gwepKL (15b) Sl = ol =0 VR e 11 K] (20)
pe <p, andp, >0, Vke [1: K], (15¢c) From above, as; is only a function ofgy,

7 €10,T), and ¢, >0, Vke[l: K], (15d)

K
: . _ U(q) =Y R 21
wherep is the power constraint at the transmitter. (a) kZ:1 k (21)



, o Input : EH intervalsK'; Harvested energye; }
Output: Energy allocatioro*, Energy band indices
—+— SNR 20 dB
or )l 8:{30731,...B|3‘}
= st /1 initialization
g By :=0;
T 4
|5 L fori=1:K do
5 3 ] for k=K:—1:(t;_1+1)do
z ko e
£ ] () of = =5 ——, le{Bii1+1,....k}
A | if S0 or <Y e, l=1,... K then
B; = k;
% 10 20 30 40 50 60 70 80 Save{o{, s, OZ}
Energy allocated in the k—th EH interval (q;) break:
end
Figure 3. Optimal number of channel uses for sending feedback. end
if B; == K then
where Y £ R (q) = R"(gs.7f (). Using (21) and e‘n dbreak’
Theorem 2,U(g¢*) > U(q),Yq € §F. Finding the optimal
; B : end
energy allocation vectag* under the EH constraints turns ou

be a well known problem, and the algorithm to constiicis Algorithm 1: Optimal Energy Allocation (OEA) algorithm

given in various works [19]-[21]. The proof that the algbnit

ponstruct_s the most majonzed feasible energy vect_or STYNsend feedback in this interval. Therefore, without loss mif-0
in [21]. Since the optimal energy allocation vectorgis, the

: . . mality we only consider EH profiles wheeé > 0. Otherwise,

ng"_“"}'g 'S _o?_tame? t?]y (1|7)' thm tailored to thi ki if there is an EH profile such thaf, = 0,k € [1: m—1], then
. bne (iscr;]plmphod te'la gor bmf a O(;e. fg |521W0_T_m Sk =0,k € [1:m —1] due to the constraints in (5c). In these
given next, while the details can be found in [19]-21]. ‘Fhe intervals the RX simply accumulates the harvested energy, a

is no closed form expression for the solution of (17), hence L ' .
) . ’ ithout loss of optimality we can have a new EH profile with
we resort to numerical methods to obtaih. Fig. 3 shows the ¢ P y P

X . ) el =el ,,_,Vie[l: K—m+1],andé] =Y ;" | e} and
behavior ofr;; as a function of the allocated energy. &=l | Vie[2: K —m+ 1] for further analysis.

The ergodic rate upper bound in (8) is not concave, but
A. Optimal Energy Allocation concave in each variable given the other variables are fixed.

From Definition 1, we can see that the components of tJ@ ©Ptain a simple algorithm and an upper bound on the
most majorized energy vector are "less spread out" than ughput, we follow a similar approach as in the previous
other feasible energy vector. Therefore, the algorithmeress SECtion, and use a concave upper bound on (8) as the objective
tially try to make the energy vector as equalized as possibfEnction for throughput optimization. _ _
This is done by spreading the energy to future intervals, 1S bound is obtained by using a hypothetical system in
however, note that energy arriving in later intervals carbe which t.he.transmlssmn power iswatt h'QheT than the agtual
spread to earlier intervals due to the EH constraints. The GfAnSmission power of the system, whichyig/t;.. Plugging
timal Energy Allocation (OEA) algorithm, given in Algorith L 'SI into the upper bound n (®), a new upper bouh =
1, divides the EH intervals int8| energy bands whose indices" (Pk+ @& Tk) on the ergodic rate is obtained:
form the setS = { By, B1,... Bjs| {, whereB; < B;,Vi < j, b 26\ Jfr
By =0, and Bg|{ = K. The z’l—tr‘1}energy band contains the Ry.” =t log, (1 + (1 + tk) tk) ’ (22)

EH intervals with indices: € [B;_; + 1 : B;]. Moreover, the .
optimal allocated energy values in each EH interval beloggi wheret; 2 1 — Zeandfy &M — (M —1)(1+ Tff;z(P e
to the i-th energy band are equal, and denotedafly. The e now illustrate the tightness of the upper bound in (22) in
energy vectorg™ obtained by[g”,§,] = OEA(K, {¢;/L}), the low and high power regimes. For all feasibig p, and
has the following properties: qr, We can see that < ¢, < 1 and1 < f;, < M. Consider

Z;LB-,IJA e 9
Y=gf, = —— = i L Dyl t 123
(P1) ¢ = 4y = Ty Yk € [Bioi +1: B)] R~ RY =ty log, ( it tefr JrPkfk) ~ e log, (1)
tk + prfi
(23)

(P2) The entrie@(*i) are strictly monotonic, i.eqa) < qz‘z) <
e < gy
s Note that (23) is decreasing jm. for fixed 7, andg;. Since
Tk, fr are bounded, for fixed;, and ¢, in the low power

regime
In this section, we consider the general case where both the lm R™ — RY — t, log, [ 1+ I
TX and the RX harvest energy. Note that if the TX is silent in 0 K k= k1082 th
k-th interval, i.e.,p; = 0, there is no incentive for the RX to < log, (1+ M),

V. EH TRANSMITTER AND RECEIVER

(24)



and in the high power regime, is only a sum power constraint at the TX and the RX, i.e., the
. ub _ pu _ <05 constraints in (26b), (26¢) has to be satisfied for dnfy K. In
p;}l—r)noo Ry k i logy(tk) < 0.5 (29) this case, by Jensen’s inequality, the uniform power atlona

From the above analysis, it can be seen that, (23) decreasedtghe TX and the RX is optimal. However, due to the EH
the power is increased, and it is bounded by a constant in fgstraints, this may not be feasible. Using this intuitior

high power regime. By using (22), the modified throughpf@n see that the optimal policy tries to equalize the powers a
maximization problem is formulated as much as possible, while satisfying the EH constraints. Next

we consider the case in which the EH profiles at the TX and

_ b the RX are similar, and show that the optimization problem is
pmax =) R (263) ¢ onsiderably simplified.
k=1
l l
st L;% = ;e;,w €ll: K, (26b) A. Similar EH Profiles
! L, The EH profiles are similar in the sense that the most
LT pi <) el Vel K], (26¢) majorized feasible vectors obtained from the EH profiles of
=1 =1 the TX and RX,p* and ¢*, have the same structure, i.e., if
T € [0,T), pr 20, g 20, andVk € [1: K]. 1« — ¢ Vi € [m : n], theng’ = ¢,¥i € [m : n] for some

(26d) constantsc;, c; > 0. We now give a formal definition.
Since the objective function is monotonic ip and py, the Definition 4: By using the OEA algorithm, letq*,S,] =
constraints in (26b) and (26¢) must be satisfied with equaliODEA(K, {e/L}) and [p*,8;] = OEA(K,{e!/LT}). EH
for | = K, otherwise, we can always increagg,px, and profiles at the TX and the RX are said to &imilar if 8, = 8.
hence the objective function, without violating any coastts. From Section Il, we can see that the definition of majoriza-
The feasible set is represented as tion for the vector case does not directly extend to the matri

-~ . case. If OEA algorithm is used at the TX and RX separately,
3 =A(P.a.7) [Pk, ar, 7 salisfy (26b), (26¢) and (26djk}, get the most individually majorized power vectors, which

where p = [p1,...,px], @ = |q,--.-,95] and 7 = in general may not be the optimal solution of (27). However,
[T1,..., TK]- we now show that if the EH profiles are similar, the above
Proposition 3: The objective function in the optimization mentioned approach is indeed optimal.
problem (26) is concave. Proposition 4:If the EH profiles at the TX and the RX are
Proof: See Appendix. B similar then(q*, p*, 7*) is the global optimum of (26), where

Since the objective function in (26) is concave and the cog* < q,p* < p, V(q,p,7) € J, and7; is the solution of
straints are linear, it has a uniqgue maximizer [18]. Conside

the following equivalent form of (26), where the optimizati ORYY —0, Vke[l: K] (31)
is performed in two steps. or, (PhaiTi) T B
max U (p,q) stV (p,q,7) €3, (27) Proof: See Appendix. [

wherell; (p,q) is obtained by

U (p,q) = max Uy (p,q,7) SLY(p,g,m) €. (28) B Different EH Profiles

Unfortunately, we could not find a simple algorithm to solve
. ) . e -~ (26) in a general setting where the EH profiles are not similar
Ffsn glz ';'] c;?nc_a\g P 'tr;%g? gegc?n;néc()ﬁ ’sq) d‘if(fz ’rgr’]g;bele"; 4N (30). if one variable is fixed, optimizing over the otheriva
ool _0 ILC:1F kth ¢ " dan. Rub able has airectional or staircase water-fillinginterpretation
concave i © [(27 +)- )“;ngror“‘;f; or gvey anddi. i (4], 119, however, the difficulty lies in the fact that theie
repsp ectivel gl'Qherefé)rke the Uni uekmae(ﬁ)mizer of (28) o o closed form expression fdt:’. Nonetheless, based on the
i P! 0 Ty. diti 'bt ed q ” convexity of the objective function, some properties of the
les in [0, T), and it is obtained as optimal solution are given below.
Uy OR Lemma 2:Under the optimal policy, the transmission power

Tmh " o, pr, and the energy used to send the feedbagckare non-
1:K].

As 77 is only a function ofg, andpy, (27) can be written as decreasing irk, vk € | | _ o
X Lemma 3:Under the optimal policy, at the time instants at
YO Pub x which R"* changes, the energy buffer of either the TX or the
Pacon th= I;Rk SLVE, (e, ax) €3, (30) RX is emptied.
o B The proofs of the above lemmas are given in Appendix.
where Rp:> £ R (py,, k) = R (pr, qi, 77 (Pk; r))- '
In order to g_et an ms_lght On_hOW the opt_lm_al SOI_Utlon of 215 this section, with slight abuse of terminology we use thenge RX
(27) may look like, consider a simple scenario in which thef@wer and RX energy interchangeably.

Sincell, is a concave function over the convex 3gthe func-

=0, Vke[l:K]. (29)
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Figure 5. Ergodic rate with only an EH RX, and = 4.
VI. NUMERICAL RESULTS

We start by considering the case in which the RX harvests

energy, while the TX has a constant power supply. We assume o OEA o

that the RX is equipped with a solar EH device. Following ol ° nge:fxm o

[22], solar irradiance data is taken from the database tegor =% bitrounding| @ o

in [23]. Each EH interval is of duratiot = 1 hour,T' = 200 sl T oo co660s

ms, resulting inL = 18000 frames. The harvested power from a h >ooooo

the irradiance data can be calculatedias,., = I[Watt/m?] x EE EEEE

Area[m?] x p, wherep is the efficiency of the harvester. A g S

hypothetical solar panel of variable area is assumed. Tée ar S T

of the panel is adjusted such that we have the EH profile shown P

in Fig. 4 at the RX. In Fig. 4, the harvested power to noise i P

ratio (HPN) in each EH intervak’; is shown. , j e
0 5 10 15 20

Using this EH profile, throughput of different feedback
policies is shown in Fig. 5. In Fig. 5, OEA represents the
proposed policy in which the energy vector is obtained Bgure 6. Feedback load at downlink SNR 1df dB, M = 4.
using the OEA algorithm, and then the optimal time span
of feedbackr; is obtained by solving (20). In the greedy
scheme, the consumed energy is equal to the harvested engéngyallocated energy is equal to the harvested energy in that
in that interval, i.e.,qx = ¢},/L, and then optimization is interval, i.e., at the TXp, = ¢}, /LT, at the RXq; = ¢}, /L,
performed only overrg, given g,. The performance of the and then optimization is performed only ove, given py
above policies when the feedback bits are rounded to thaedg,. The difference in throughput between the greedy and
largest previous integer is also shown. We can see that tBEA is small when the average HPN is low, and it increases
proposed approach outperforms the greedy policyl loydB with the HPN. In contrast to the OEA scheme, using the
at a rate oft bits/s/Hz. Also the rate loss due to bit rounding igreedy approach with the solar EH profile results in some EH
negligible. In Fig. 6, feedback bit allocation is shown foet intervals being allocated zero energy, and therefore doés n
above mentioned policies for a downlink SNR1#fdB. From scale by increasing the harvester area. This particularsh
Fig. 6, we can see that with the proposed strategy, feedbdhbk greedy policy’s throughput in the high HPN regime as the
bit allocation is equalized as much as possible. multiplexing gain (pre-log factor) is reduced.

We now consider the case in which both the TX and the Finally, we consider a case with non-similar EH profiles,
RX harvest energy, with similar EH profiles. The same EMhere the EH profiles are generated independently at the TX
profile in Fig. 4 is separately used at both the RX and the TAnd the RX, and they are i.i.d. with exponential distribatio
hence the EH profiles are similar. In Fig. 7, the throughp&H profiles are verified so that they are not similar according
of different schemes is shown at various mean HPN valuestat Definition 4. Similarly to Fig. 7, in Fig. 8, the mean
the TX. The mean HPN at the TX is varied by increasing thdPN at the TX is varied by multiplying the EH profile by
harvester area at the TX, i.e., the EH profile is multiplied by constant, while keeping the same shape. Since we could
a positive number (area), while keeping the same shape ad find a simple algorithm in this case, CVX solver is used
efficiency. In Fig. 7, OEA represents the proposed policy o solve the optimization problem [18], and is denoted as
which the energy vector at the TX and the RX is obtained VX in Fig. 8. As we can see, the heuristic of using the
using the OEA algorithm, and then the optimal time span @EA approach performs quite well even in the non-similar
feedbackr; is obtained by solving (29). In the greedy schemé&H profile scenario. The energy allocation at the TX and the

EH interval index (Time of Day) [hrs]
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8 ‘ ‘ ‘ ‘ and having infinite size energy buffers. Numerical resuitsis
o +g’i}’;‘b0“”d v ) that the proposed policies not only outperform the greedy
A OEA policies, but also achieve the performances which are quite
i close to the upper bound. We believe that our work sheds
85l light on the design of feedback enabled multi-antenna syste
2 when the nodes depend on EH devices for their energy.
PR
§u3, APPENDIX
g A. Proof of Lemma 1
il Let X; = [.’El Y1 tl]T , Xo = [.’1?2 Y2 tQ}T, we have
i hOAX] + (1—A) X>)
ol ‘ ‘ ‘ ‘ o
° Average HPN per dat?aframe atthel‘IEJX [dB] * = @g )\yl + (1 — )\) 92’ f (.’b, t)
S} O
Figure 8. Ergodic rate for non-similar EH profilesf = 4. (;) o ()\yl F (1 =Ny AM1+(1-=N) fg)
= 99 )
) ) (32)
RX are shown in Fig. 9 for the above mentioned policies at = Qg (9191 + 623/27 o1/ + ®2f2>
an average per frame HPN 6f5 dB at the TX. Different O Oaz Oa1 Oy

from Fig. 7, in Fig. 8 the rate scaling with average HPNis ' (v1 fi) o (42 fo
same for both the greedy and the OEA policy. For the greedy — 19 o1’ o + 029 as’ ag
policy, the allocated energy in an EH interval scales with th =M (X1)+ (1= A h(Xs),
increasing mean HPN, in contrast to the solar EH profile, for N

which the allocated energy is zero in some intervals. where 7 = Az + (1

)\)1‘2, f £ )\tl + 17)\)t2,
(xg,tg), @1 é )\(
= 01 + 603, o3

H
|
>
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=
|
-
]
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@ - |

VIlI. CONCLUSION
as £ (1—£). Here

We have studied the prOblem of feedback deSign with El‘(‘b) follows from the fact thaf (.’L‘,t) is concave, ang (y’ Z)
constraints in a p2p MISO channel when both the TX and the is monotonica"y increasing in each argument’
RX harvest energy. Since the exact expressions of throdghgy) follows from the fact thal% + % =1, andg(y,z) is
are complicated, concave upper bounds have been used in concave.
the optimization problems. We have first considered the case
in which only the RX harvests energy, and optimized thg proof of Proposition 1
feedback policy. Later, the general case in which both the

TX and the RX harvest energy is analyzed. We have show\?v%Rﬁap\sgducmg the ergodic rate bound in (8) with= P, vk,

that, if EH profiles are similar, the optimization problermca Py

be considerably simplified. We note the result obtained in R (qi, 7)) = ti log, (1 + tk) ) (33)
Proposition 4 is general, and for example, can be used in a .
network setting in which a concave utility is to be maximizehere ¢, = 1— 2, f, = (M - M —1(1+ %)Wfi).

in the presence of EH nodes with similar harvesting profil&Zinceb, in (3) is concave ing;, andy, it can be easily seen



—T

that 27% — (14 -2.)"" is convex, and hencef, is Applying (39) fori = 1, and remembering tha, = 0, we

TRO?2
concave. Using Lemma 1 with(y, z) = log, (1 + z) and f5, t B, B, K
we can see thaf} is concave. Since the objective function qu = ZZqui,j <V. (40)
in (15) is the summation oR?}'’s, it is also concave. =1 =1 i=1

By (P1) and (P2) in Section IV-Ag} = q&) + L;, where
C. Proof of Proposition 3
L1:O ViG[llBl],

First, we show thay (y,z) = logy (1+ (1+y)2),(y,2) € , (41)
R? is concave fory > 0,z > 1. The Hessian of is given by Li>0 Vie[Bi+1:K]J.
1 9 From (40) and (41)
—z 1
, SN adig+ > Y Lidig <V (42)
where 3 = log, 2 (1+ (1 +y)z)” > 0. Consideru™Ju = j=1i=1 j=1i=B1+1
—5 (cz2z2+b2(1+y)2 —2ab>, where w = [a8]" € Using the fact thatD is doubly stochastic and by (P1),
R2. It can be easily seen that™Ju < 0 for ab < Big() = V1, and we have
0. For ab > 0, since z(1+y) > 1, uTJu = B K
f% {(az —b(1+y)* +2ab(z(1+y) — 1)] < 0. As Hes- Z Z Lid; ; <0. (43)
sian is negative semidefinite(y, z) is concave. Reproducing j=1i=B;+1
the ergodic rate bound in (22), we have From (41) and (43), we get
Rgb = t; log, (1 + (1 + ZZ’“) {’“) , (35) di;=0, Yie[Bi+1:K]|, Vjel[l:B]. (44)
k) tk _ _ _
wheret,, and f, are as defined before. As D is doubly stochastic, using (P1) and (44),
By following the similar steps in Proposition ¥; can be A, & . L
shown to be concave. Using Lemma 1 wijty, z) and f;, a4 = un) Zdi,j =qn=¢,Vic€[l:B]. (45)
we can see thaR’ is concave. Since the objective function =t =l
in (26) is the summation oR¥’s, it is also concave. SinceD is doubly stochastic, using (44), we get
By K B
D. Proof of Proposition 4 >3 dij=B1, > dij=1Vj€[l:B]. (46)
First, (p*, ¢*) is shown to be the solution of (30) and then ' '~ =l
7* is obtained by (31). Before solving (30), we prove that We can rewrite (46) as
K Bl K B1 B1 Bl K
(p*,q") =arg max Y g (pr, ar) DD A= Y di+Y, Do dig (D)
N (36) i=1j=1 i=1 j=1 i=1 j=B1+1
St.VE, (pr, qr) € j,g €, from which it follows that
where is the set of all continuous concave functions. As (30) i XK: d =0 (48)
is a special case of (36]p*, g*) is also the solution of (30). ~ b
Before starting, we note that the notations and properties e
of the OEA algorithm discussed in Section IV-A are use@nd hence,
throughout the pTroof. By contra}rdiction, let us assume thertet di;=0, Yie[l:B] Vi€ [Bi+1:K]. (49)
exists a[p” ¢T]" # [p*T ¢*"] and(p,q) be the solution . _
of (36). Then, by Theorem 3 we have, Then applying (39) for = 2,
5T 6717 < [T gT17. v z 37 B> By K
P q] =[pq'],V(aed @37) Soodi= Y Y gdi; <V (50)
Since(p*, ¢*) € J, by (37) and Definition 3, j=Bitl j=Bitli=1
T By (P1) and (P2), we havg' = q&) + L;, where
""" = [p" "] D. (38)
Li<0 Vie[l:Bl],
By the feasibility constraint in (26b), Li=0 Vie[B;+1: By, (51)
B; B; L; >0 ViE[BQ+1:K].
Z G =Vi= Z e/ L (9 From (50) and (51),

j=Bi_1+1 j=Bi-1+1
B K B: K
whereB;’s are the energy band indices as explained in Section i Z Lid; ; + ZZ Z q{z)dij < V. (52)

IV-A. j=B141 i=1 j=B1+1 i=1
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Since D is doubly stochastic, by (P1), we obtainThe functionR“® with variablesp,q,~ can be written as,

(B2 —Bl)qz‘z) = Vs, and using (49) and (51) in (52), we 1 p
get RUb (pvan) = t10g2 (1 + ( + 2) f) 5 (62)
B K t t
< . . T
47324-1 iiBZJrl de@,] > OyL'L > O (53) Where f é M _ (M _ 1) (1 + 71‘1-2) Al—l, t é 1 _ % and
Imme 0 < 7 < T. The second order partial derivative Bf* (p, g, 7)
From (51) and (53) it can be concluded that is given by,
di’jzo, Vi € [BQ+1K], VJe [Bl+1BQ] (54) aQRub %ﬁ;
. . . . = ~ (63)
As D is doubly stochastic, using (P1) together with (49) and Ipdq (1 + f/t+pf/t2)?

54), we have . . . . . u
(54) Since f is monotonic ing, (63) is positive. Asasp—% > 0, by

R . 52: J Vi€ Bytl: By, (55) the definition of derivative,
4 =q i = d2) = 45, Vj € [Bi+1: By,
’ @ i=B1+1 ’ @ ’ Rub (pa q, T) + Rub (p + 5? q + a, T) >
ub ub
Again, sinceD is doubly stochastic, using (49) and (54), R®(p+06,q,7)+ R (pg+a,7), 6,0 >(g4)
B2 K Since (64) holds for alb < 7 < T, we have
Z Zdi"j = B2 o Bl’ pDub Hub
i=B1+1 j=1 (56) R (pa Q) +R (q +9d,q+ a) > (65)
D, R (p+6,9) + R (p,q+a),
di;=1,¥je[B +1:By). o ,
i:;H N i€l 2 where R is obtained by,
We can rewrite (56) as R" (p,q) = max R* (p,q,7). (66)

B K B B B K H H
2 2 2 2 Finally, using (61) and (65) we can see that the newly
Z Zdi»j = Z Z dij + Z Z dij-  constructed policy strictly increases the objective.

i=B1+1 j=1 i=B1+1j=B:1+1 i=B1+1 j=B2+1

(57)
From (57) we can see that F. Proof of Lemma 3
By K Let us assume that the transmission rates in khih
Y dy=o, (58) and thek + 1-th intervals are different, i.e R" (p, qi) #
=Bt j=Bat1 RY (pry1,qr+1)- Before thek+1-th interval, the energy in the

buffers of TX and the RX aré\, £ - er —L 3" ¢, and
A2 Zle el—LT Zle p;, respectively. W.l.0.s, we assume

d;;=0,Yie[B1+1:By] andVj e [Bo+1:K|. (59) thatA, <A,;. We can construct another feasible policy

and hence,

Continuing this approach foi = 3, ...,(|8| — 1), we get Pk =Pk + 0, Pkt1 = P41 — 9, 67)
g = g*. Since the EH profiles are similar, replacigdpy p and e = Qe + 0, Gie1 = Qra1 — O,
. P o .
e by e’ /T in the above proof, we reach the similar conclusm\r}vhere(S is chosen such that < A, and g, < Gesr. NOW,

a - ~ * ~ ~mT * * T .
for p, i.e., p = p*. Therefore,p” ¢*]" = [p** ¢""] . (67) can be written as

Pr = apk + (1 — @) prt1, Pr+1 = (1 — ) pr + apry1,
E. Proof of Lemma 2 . -
, _ Gx = agr + (1 — @) grr1, Grev1 = (1 — @) g + i,
Assume that at least one of thg, ¢; is not monotonically (68)
increasing ink. Without loss of generality (w.l.0.s) we considefwherea = 1 — §/ (gx+1 — qx). Using Jensen’s inequality
the cases in whichy > pri1,qx > qrer1 andpr < pry1, g > k1 ol

gr+1- In the case opyx > prr1,9r > qr+1, WE can construct Z Sub [~ o~ Z Bub
a new feasible policy. B By 0) > 2 B 1y 45) (69)
) j=k j=k

Pk = Pry1 = %7 which concludes the proof.
G+ g (60)
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