Feedback control of coherent spin states using weak nondestructive measurements

Abstract : We consider the decoherence of a pseudo-spin ensemble under collective random rotations, and study, both theoretically and experimentally, how a nondestructive measurement combined with real-time feedback correction can protect the state against such a decoherence process. We theoretically characterize the feedback efficiency with different parameters --- coherence, entropy, fidelity --- and show that a maximum efficiency is reached in the weak measurement regime, when the projection of the state induced by the measurement is negligible. This article presents in detail the experimental results published in [Phys. Rev. Lett. \textbf{110}, 210503 (2013)], where the feedback scheme stabilizes coherent spin states of trapped ultra-cold atoms, and nondestructively probed with a dispersive optical detection. In addition, we study the influence of several parameters, such as atom number and rotation angle, on the performance of the method. We analyze the various decoherence sources limiting the feedback efficiency and propose how to mitigate their effect. The results demonstrate the potential of the method for the real-time coherent control of atom interferometers.
Liste complète des métadonnées
Contributeur : Thomas Vanderbruggen <>
Soumis le : lundi 19 mai 2014 - 16:23:11
Dernière modification le : jeudi 21 mars 2019 - 14:25:07
Document(s) archivé(s) le : lundi 10 avril 2017 - 23:48:23


Fichiers produits par l'(les) auteur(s)



T. Vanderbruggen, R. Kohlhaas, A. Bertoldi, E. Cantin, A. Landragin, et al.. Feedback control of coherent spin states using weak nondestructive measurements. Physical Review A, American Physical Society, 2014, 89 (6), pp.063619. 〈10.1103/PhysRevA.89.063619〉. 〈hal-00974536v2〉



Consultations de la notice


Téléchargements de fichiers