E. Audusse and B. Perthame, Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies, Proc. Roy. Soc. Edinburgh Sect. A, pp.253-265, 2005.

C. Bardos, A. Y. Le-roux, and J. Nédélec, First order quasilinear equations with boundary conditions, Communications in Partial Differential Equations, vol.2, issue.33, pp.1017-1034, 1979.
DOI : 10.1090/S0025-5718-1977-0478651-3

F. Bouchut, Non linear stability of finite volume methods for hyperbolic conservation laws and well balanced schemes for sources, 2004.

G. Q. Chen, C. D. Levermore, and T. P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Communications on Pure and Applied Mathematics, vol.44, issue.6, pp.47-787, 1994.
DOI : 10.1002/cpa.3160470602

C. M. Dafermos, Hyperbolic conservation laws in continuum physics, 2010.

A. Dalibard, Kinetic Formulation for a Parabolic Conservation Law. Application to Homogenization, SIAM Journal on Mathematical Analysis, vol.39, issue.3, pp.891-915, 2007.
DOI : 10.1137/060662770

R. J. Diperna, Measure-valued solutions to conservation laws, Archive for Rational Mechanics and Analysis, vol.2, issue.3, pp.223-270, 1985.
DOI : 10.1007/BF00752112

F. Golse, P. L. Lions, B. Perthame, and R. Sentis, Regularity of the moments of the solution of a Transport Equation, Journal of Functional Analysis, vol.76, issue.1, pp.110-125, 1988.
DOI : 10.1016/0022-1236(88)90051-1

F. James, Convergence Results for Some Conservation Laws with a Reflux Boundary Condition and a Relaxation Term Arising in Chemical Engineering, SIAM Journal on Mathematical Analysis, vol.29, issue.5, pp.1200-1223, 1998.
DOI : 10.1137/S003614109630793X

S. Jin and Z. P. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications on Pure and Applied Mathematics, vol.54, issue.3, pp.235-276, 1995.
DOI : 10.1002/cpa.3160480303

S. N. Kru?kov, FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES, Mathematics of the USSR-Sbornik, vol.10, issue.2, pp.81-228, 1970.
DOI : 10.1070/SM1970v010n02ABEH002156

F. Murat, Compacité par compensation, Ann. Scuola Norm, Sup. Pisa Cl. Sci, vol.5, issue.4, pp.489-507, 1978.

R. , N. Chapman, &. Hall, and /. Monogr, Recent results on hyperbolic relaxation problems, in Analysis of systems of conservation laws, Surv. Pure Appl. Math, vol.99, pp.128-198, 1997.

R. Natalini and A. Terracina, CONVERGENCE OF A RELAXATION APPROXIMATION TO A BOUNDARY VALUE PROBLEM FOR CONSERVATION LAWS, Communications in Partial Differential Equations, vol.10, issue.7-8, pp.1235-1252, 2001.
DOI : 10.1006/jdeq.1998.3584

B. Perthame, Kinetic formulation of conservation laws, of Oxford Lecture Series in Mathematics and its Applications, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01146188

M. Tournus, An asymptotic study to explain the role of active transport in models with countercurrent exchangers, SeMA Journal: Boletín de la Sociedad Española de Matemática Aplicada Modèles d'´ echanges ioniques dans le rein: théorie, analyse asymptotique et applications numériques, pp.19-35, 2012.
DOI : 10.1007/BF03322608

URL : https://hal.archives-ouvertes.fr/hal-00640034

M. Tournus, A. Edwards, N. Seguin, and B. Perthame, Analysis of a simplified model of the urine concentration mechanism, Network Heterogeneous Media, pp.989-1018, 2012.

M. Tournus, N. Seguin, B. Perthame, S. R. Thomas, and A. Edwards, A model of calcium transport along the rat nephron, AJP: Renal Physiology, vol.305, issue.7, pp.305-979, 2013.
DOI : 10.1152/ajprenal.00696.2012

URL : https://hal.archives-ouvertes.fr/hal-00871608

A. E. Tzavaras, Relative Entropy in Hyperbolic Relaxation, Communications in Mathematical Sciences, vol.3, issue.2, pp.119-132, 2005.
DOI : 10.4310/CMS.2005.v3.n2.a2

S. Y. Zhang and Y. G. Wang, Well-Posedness and Asymptotics for Initial Boundary Value Problems of Linear Relaxation Systems in One Space Variable, Zeitschrift f??r Analysis und ihre Anwendungen, vol.23, pp.607-630, 2004.
DOI : 10.4171/ZAA/1213