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A SIMPLE DERIVATION OF BV BOUNDS FOR INHOMOGENEOUS
RELAXATION SYSTEMS ∗

BENOÎT PERTHAME † , NICOLAS SEGUIN ‡ , AND MAGALI TOURNUS §

Abstract. We consider relaxation systems of transport equations with heterogeneous source
terms and with boundary conditions, which limits are scalar conservation laws. Classical bounds fail
in this context and in particular BV estimates. They are the most standard and simplest way to
prove compactness and convergence.

We provide a novel and simple method to obtain partial BV regularity and strong compactness
in this framework. The standard notion of entropy is not convenient either and we also indicate
another, but closely related, notion. We give two examples motivated by renal flows which consist
of 2 by 2 and 3 by 3 relaxation systems with 2-velocities but the method is more general.

Key words. Hyperbolic relaxation; spatial heterogeneity; entropy condition; boundary condi-
tions; strong compactness.

Subject classifications. 35L03, 35L60, 35B40, 35Q92

1. Introduction
The usual framework of hyperbolic relaxation [4, 13, 3] concerns the convergence

of a general hyperbolic system with stiff source terms toward a conservation law,
when the relaxation parameter ǫ goes to zero. More specifically, Jin and Xin [10]
introduced a 2×2 linear hyperbolic system with stiff source term that approximates
any given conservation law. The problem of interest is to prove the convergence of the
microscopic quantities depending on ǫ toward the macroscopic quantities. A problem
entering the framework of hyperbolic relaxation is motivated by very simplified models
of kidney physiology [18, 19, 17] and fits the Jin and Xin framework with two major
differences, boundary conditions, and spatial dependence of the source term. The
type of boundary condition and the spatial dependence constitute the main novelty
of the present study.

The system represents two solute concentrations uǫ(x,t) and vǫ(x,t) and is writ-
ten, for t≥ 0 and x∈ [0,L],







































∂uǫ

∂t
(x,t)+

∂uǫ

∂x
(x,t)=

1

ǫ

[

h(vǫ(x,t),x))−uǫ(x,t)
]

,

∂vǫ

∂t
(x,t)−

∂vǫ

∂x
(x,t)=

1

ǫ

[

uǫ(x,t)−h(vǫ(x,t),x))
]

,

uǫ(0,t)=u0, vǫ(L,t)=αuǫ(L,t), α∈ (0,1),

uǫ(x,0)=u0(x)> 0, vǫ(x,0)= v0(x)> 0.

(1.1)
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2 A simple detour for BV bounds in relaxations systems

The question of interest here is to understand the behavior of uǫ and vǫ when ǫ

vanishes. Another question, addressed in [16], is to explain the urine concentration
mechanism due to the ‘pumps’, on the cell membranes, represented by the nonlinearity
h(v,x).

We make the following hypotheses

h(0,x)=0, 1<β≤
∂h

∂v
(v,x)≤µ, (1.2)

sup
v

∫ L

0

|
∂h

∂x
(v,x)|dx≤C, h(.,x) is not locally affine. (1.3)

Here C, β and µ are positive constants. Also, we use the following bounds on the
initial data

u0, v0∈L∞(0,L),
d

dx
u0∈L1(0,L),

d

dx
v0∈L1(0,L), (1.4)

and, the well-prepared initial data condition

u0(x)=h(v0(x),x), x∈ [0,L]. (1.5)

It is simple and standard to find the formal limit as ǫ vanishes. Adding the two
equations of (1.1), we find the conservation law

∂[uǫ+vǫ](x,t)

∂t
+

∂[uǫ−vǫ](x,t)

∂x
=0. (1.6)

We expect that, in the limit, the idendity holds

u(x,t)=h(v(x,t),x)

and this identifies the limiting quasi-linear conservation law

∂[h(v(x,t),x)+v(x,t)]

∂t
+

∂[h(v(x,t),x)−v(x,t)]

∂x
=0, (1.7)

and the boundary conditions on ρ(x,t)=h(v(x,t),x)+v(x,t), namely ρ(0,t)=u0+
h−1(u0,0) and ρ(L,t) is free, can be identified via the standard argument of Bardos-
Le Roux and Nédélec, [2], using the adapted Kružkov entropies that we introduce in
Section 3.

The justification poses particular difficulties due to the boundary condition and
x-dependent flux.

One difficulty is that, in order to justify the above limit, an entropy identity is
needed for two reasons. Firstly to prove that equilibrium is reached [20]. Secondly,
because at the limit ǫ=0, a quasi-linear equation arises, shocks can be produced.
Therefore, an entropy formulation is needed to define uniquely the solutions. When
applied to this conservation equation, usual convex entropies as both in [5] or Kruz̃kov
[11], contain a term with a derivative of h with respect to x. When the regularity of h
is limited to BV, hx is a measure and the weak entropy formulation is not well defined.
One of our goal is to present a convenient notion of entropy with x-dependent relax-
ation in order to get rid of this problem. We use an entropy formulation introduced
in [1] and adapted to scalar conservation laws with spatial heterogeneities.
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Another difficulty is that, in order to prove the validity of the limit, strong com-
pactness is also needed. Several methods have been developed in this goal. Uniform
bounds in the space of functions with bounded variation (BV in short) is the strongest
method and the most standard. Such bounds are proved in [14] for a similar system
with boundary conditions in the homogeneous case; the result is extended with a
source term in [21]. More elaborate tools are the compensated compactness method
[12] or the kinetic formulation and averaging lemmas [8, 15] (in particular extending
the measure valued solutions of DiPerna [7]). These methods are weaker, because
they give only convergence but no bounds, and thus apply to more general situations
than BV bounds. Because of the spatial x-dependence of h, the BV framework is not
available as today for (1.1). Whereas time BV estimates follow immediately from the
equations, compactness in the spatial direction cannot be obtained in this way. We
propose a new method to prove spatial compactness. It does not use BV bounds on
each component, but gives BV bounds in x for a single quantity and can be applied
to spatially heterogeneous systems. We are going to prove that
Proposition 1.1. We make assumptions (1.2), (1.3), (1.4), (1.5) and fix a time T .
We have
(i) uǫ and vǫ are uniformly bounded in L∞([0,L]× [0,T ]),
(ii) ∂

∂t
uǫ,

∂
∂t
vǫ and ∂

∂x
[uǫ−vǫ] are bounded in L∞([0,T ];L1(0,L)),

(iii) there exists v∈L∞([0,L]× [0,T ]) such that

uǫ(x,t)−→
ǫ→0

h(v(x,t),x), vǫ(x,t)−→
ǫ→0

v(x,t), a.e. (1.8)

(iv) the equation (1.7) is satisfied and entropy inequalities hold, see section 3.
However it is not correct that ∂

∂x
uǫ and ∂

∂x
vǫ are separately bounded in

L∞([0,T ];L1(0,L)).

2. L∞ bound
We first prove uniform estimates. Unlike the homogeneous case, L∞ bounds are

not always true and the most general existence theory is in L1, see [6]. Here we build
particular sub and supersolutions of (1.1) which are uniformly bounded in ǫ.
Lemma 2.1. The solution of (1.1) satisfies the uniform estimate

‖uǫ‖L∞([0,L]×[0,T ])≤K(β,u0,u
0,v0), ‖vǫ‖L∞([0,L]×[0,T ])≤K(β,u0,u

0,v0). (2.1)

Proof. To obtain an L∞ bound on the time-dependent solution, we follow the
approach of [1] and use the comparison principle with appropriate supersolution.
Indeed, because of the x−dependence of h, constant functions are not super-solution
of the stationary problem. We introduce the stationary version of (1.1)



























dUǫ

dx
(x)=

1

ǫ

[

h(Vǫ(x),x))−Uǫ(x)
]

,

−
dVǫ

dx
(x)=

1

ǫ

[

Uǫ(x)−h(Vǫ(x),x))
]

,

Uǫ(0)=U0> 0, Vǫ(L)=αUǫ(L).

(2.2)

We are going to prove that there exists a smooth super solution (Uǫ,Vǫ) of the
stationary problem (2.2), and a constant K(U0,β)> 0 such that

0≤Uǫ(x)≤K(U0,β), 0≤Vǫ≤K(U0,β). (2.3)
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This concludes the proof of Lemma 2.1 because a solution of (2.2) where U0≥u0, is a
super-solution of (1.1), and the comparison principle gives 0≤uǫ≤Uǫ and 0≤ vǫ≤Vǫ.

Because it has been proved in [18] that (2.2) admits a unique solution which lies
in BV([0,L]× [0,T ]) (fixed point argument for the existence and contraction for the
uniqueness), it remains to prove that a solution of (2.2) with U0≥u0 is uniformly
bounded in ǫ.

Adding the two lines of (2.2), we obtain a quantity which does not depend on x,

Uǫ(x)−Vǫ(x)=:Kǫ. (2.4)

Using the boundary values, we find uniform bounds on Kǫ

Kǫ=U0−Vǫ(0)≤U0 Kǫ=Uǫ(L)−Vǫ(L)= (1−α)Uǫ(L)≥ 0, (2.5)

and thus

0≤Kǫ≤U0, Uǫ(L)≤
U0

1−α
. (2.6)

Hence, we just have to prove that Uǫ is uniformly bounded in L∞, knowing that U0

and Uǫ(L) are uniformly bounded in R. For that, we use the maximum principle
assuming C1 regularity (one can easily justify it for a regularized function h(v,x) and
pass to the limit). Indeed, if Uǫ reaches its maximal value on the boundary, the result
follows from (2.6). If Uǫ reaches its maximal value at x0 ∈]0,L[, then,

0=
dUǫ

dx
(x0)=

1

ǫ

(

h(Uǫ(x0)−Kǫ,x0)−Uǫ(x0)
)

, (2.7)

and thus by assumption (1.2),

Uǫ(x0)=h(Uǫ(x0)−Kǫ,x0)≥βUǫ(x0)−βKǫ. (2.8)

Finally, (2.3) is proved because the above inequality gives

Uǫ(x0)≤
β

β−1
Kǫ. (2.9)

3. Adapted (heterogeneous) entropies
As explained in the introduction, entropies are useful to derive additional bounds

and to characterize the limit as ǫ vanishes, see [9, 4, 20]. We are going to use specific
entropies adapted to spatial dependence.

We recall the usual approach which is to define
Definition 3.1 (Entropy pair). We call an entropy pair for the system (1.1) a

couple of functions (S,Σ) in BV
(

[0,1],C(R)
)

which satisfy

(i)S(.,x) and Σ(.,x)are convex, (ii)
∂S

∂u
(h(v,x),x)=

∂Σ

∂v
(v,x). (3.1)

For such entropy pairs, it is immediate to check that

∂

∂t
[S(uǫ,x)+Σ(vǫ,x) ]+

∂

∂x
[S(uǫ,x)−Σ(vǫ,x) ]

=
1

ǫ

(∂S

∂v
(uǫ,x)−

∂Σ

∂v
(vǫ,x)

)(

h(vǫ,x)−uǫ

)

+
∂S

∂x
(uǫ,x)−

∂Σ

∂x
(vǫ,x).
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Now, using (3.1)(ii), we can write

∂

∂t
[S(uǫ,x)+Σ(vǫ,x) ]+

∂

∂x
[S(uǫ,x)−Σ(vǫ,x) ]

=
1

ǫ

(∂S

∂v
(uǫ,x)−

∂S

∂v
(h(vε,x),x)

)(

h(vǫ,x)−uǫ

)

+
∂S

∂x
(uǫ,x)−

∂Σ

∂x
(vǫ,x)

≤
∂S

∂x
(uǫ,x)−

∂Σ

∂x
(vǫ,x),

because S is convex with respect to its first variable and thus
∂S

∂v
is non decreasing

with respect to its first variable.

The shortcoming of Definition 3.1 is that the above right hand side is not always
well defined for uǫ and vǫ BV functions. Indeed, being given S(u,x), we compute

Σ(v,x)=

∫ v

0

S′

u

(

h(v̄,x),x
)

dv̄

and the expression for the x-derivative

∂Σ

∂x
(v,x)=

∫ v

0

[

S′′

uu

(

h(v̄,x),x
)

hx(v̄,x)+ · · ·
]

dv̄

does not make intrinsic sense.
However, this entropy inequality is enough to prove that equilibrium is reached.

Because the expressions
∂S

∂x
(uǫ,x) and

∂Σ

∂x
(vǫ,x) are bounded thanks to our assump-

tions on h, we may choose

S(u)=
u2

2
, Σ(v,x)=

∫ v

0

h(v̄,x)dv̄,

and using the entropy dissipation, with assumption (1.3), we find after integration of
equality (3) in (x,t), that for all T > 0 for some constant C(T ) which does not depend
on ε, it holds

1

ǫ

∫ T

0

∫ L

0

∣

∣uǫ(x,t)−h(vǫ(x,t),x)
∣

∣dxdt≤C(T ).

Therefore, we arrive at the conclusion
Proposition 3.2. For uǫ and vǫ solutions of (1.1), we have the convergence

uǫ−h(vǫ,x) −→
ǫ−→0

0, L2
(

[0,L]× [0,T ]
)

. (3.2)

This convergence result toward equilibrium is an intermediate step in the proof of
Proposition 1.1.

We wish to go further and avoid the two terms containing x-derivatives. For this
goal, we define adapted (heterogeneous) entropies by imposing more restrictions on
the spatial dependence of the entropy pair.

Definition 3.3 (An adapted (heterogeneous) entropy family). The pair of con-
tinuous functions (S,Σ), is an adapted (heterogeneous) entropy for the system (1.1)
if it satisfies the conditions of Definition 3.1 and if

−
∂S

∂x
(h(v,x),x)+

∂Σ

∂x
(v,x)=0, ∀v≥ 0. (3.3)
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An example of such a family of entropies parametrized by p∈R are the adapted
Kružkov entropies

Sp(u,x)= |u−h(kp(x),x)|, Σp(v,x)= |v−kp(x)|, (3.4)

where (kp)p∈R is the family of stationary solutions of the limit equation (1.7), which
is equivalent to say

h(kp(x),x)−kp(x)=p.

With this choice of an entropy pair, the above entropy inequality then reduces to

∂

∂t
[Sp(uǫ,x)+Σp(vǫ,x) ]+

∂

∂x
[Sp(uǫ,x)−Σp(vǫ,x) ]≤ 0.

As a consequence, thanks to the strong compactness proven in next part, in the
limit ε→0, the quasilinear conservation law (1.7) comes with the family of adapted
Kružkov entropies. Indeed, if we define

ρ(x,t) :=h(v(x,t),x)+v(x,t), A(ρ,t) :=h(v(x,t),x)−v(x,t), (3.5)

then, as in [1] and because h is increasing, the following entropy inequality holds in
the sense of distributions

∂

∂t

∣

∣

∣
ρ(x,t)−

(

kp(x)+h(kp(x),x)
)∣

∣

∣
+

∂

∂x

∣

∣

∣
A(ρ,x)−A

(

kp(x)+h(kp(x),x),x
)∣

∣

∣
≤ 0.

(3.6)

4. BV bounds
For well prepared initial conditions (1.5), we present here our method to prove

BV bounds for appropriate quantities and strong compactness for uǫ and vǫ, that are
points (ii), (iii) of Proposition 1.1.
1st step. A bound on the time derivative at t=0. Our first statement is

∫ L

0

|
∂uǫ

∂t
(x,0)|dx≤K1(u

0),

∫ L

0

|
∂vǫ

∂t
(x,0)|dx≤K2(v

0). (4.1)

Indeed, because initial conditions are at equilibrium, we have
∂vǫ

∂t
(x,0)−

∂vǫ

∂x
(x,0)=0.

We multiply this equality by sign
( ∂

∂t
vǫ

)

(x,0) and integrate over [0,L] to get

∫ L

0

∣

∣

∣

∂vǫ

∂t
(x,0)

∣

∣

∣
dx=

∫ L

0

∣

∣

∣

∂vǫ

∂x
(x,0)

∣

∣

∣
dx≤K2(v

0), (4.2)

and the above inequality follows from assumption (1.4). This gives the first inequality
of estimates (4.1). The same argument applies for uǫ.
2nd step. The time BV estimate. To prove (2.1), we differentiate each line

of (1.1) with respect to time and we multiply it respectively by sign
( ∂

∂t
uǫ

)

and

sign
( ∂

∂t
vǫ

)

and integrate in x. Adding the two lines, we obtain

d

dt

∫ L

0

[ |
∂

∂t
uǫ|+ |

∂

∂t
vǫ| ](x,t)dx≤|

∂

∂t
u0|−|

∂

∂t
uǫ(L,t)|+ |

∂

∂t
vǫ(L,t)|−|

∂

∂t
vǫ(0,t)|

=−
1

2
|
∂

∂t
uǫ(L,t)|−|

∂

∂t
vǫ(0,t)|≤ 0,

(4.3)
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which implies, using estimate (4.1),

∫ L

0

[ |
∂

∂t
uǫ|+ |

∂

∂t
vǫ| ](x,t)dx≤

∫ L

0

[ |
∂

∂t
uǫ|+ |

∂

∂t
vǫ| ](x,0)dx≤K1(u

0)+K2(v
0). (4.4)

3rd step. BV bound in x. We complete the proof Proposition 1.1 (ii). Because
of space dependence of h we cannot apply the same arguments for x-derivatives and
build a single BV quantity. We add the two lines of (1.1) and obtain

( ∂

∂x
(uǫ−vǫ)

)

(x,t)=−
( ∂

∂t
(uǫ+vǫ)

)

(x,t).

Using (2.1), we thus conclude that for all t≥ 0

∫ L

0

∣

∣

∣

∂

∂x
(uǫ−vǫ)

∣

∣

∣
(x,t)dx≤K1(u

0)+K2(v
0).

4th step. Compactness.

Therefore we can conclude that
(

uǫ−vǫ

)

is compact in L1
(

[0,L]× [0,T ]
)

. Now,

thanks to Proposition (3.2),
(

h(vǫ, .)−uǫ

)

is compact in L1
(

[0,L]× [0,T ]
)

. A combi-

nation of these two last compact embeddings gives us that

h(vǫ, .)−vǫ is compact in L1
(

[0,L]× [0,T ]
)

. (4.5)

Therefore, there is a function Q∈L∞(0,L) such that, after extraction of a subse-
quence,

h(vǫ, .)−vǫ −→
ǫ−→0

Q(x),

and because v 7→h(v,x)−v is one-to-one, thanks to assumptions (1.2). In the same
way, we conclude that the sequence vǫ converges. Gathering the informations above,
Proposition 1.1 (iii) is proved.

Then we can pass to the limit and obtain the last statement, Proposition 1.1 (iv).

5. Extension to a more specific relaxation system
The method we have developed so far can be extended to a more realistic problem

arising in kidney physiology that motivated this study. The system introduced and
studied in [18] is written, for t≥ 0 and x∈ [0,L],















































∂C1
ǫ

∂t
(x,t)+

∂C1
ǫ

∂x
(x,t)=

1

3ǫ

[

C2
ǫ (x,t)+h(C3

ǫ (x,t),x))−2C1
ǫ (x,t)

]

,

∂C2
ǫ

∂t
(x,t)+

∂C2
ǫ

∂x
(x,t)=

1

3ǫ

[

C1
ǫ (x,t)+h(C3

ǫ (x,t),x))−2C2
ǫ (x,t)

]

,

∂C3
ǫ

∂t
(x,t)−

∂C3
ǫ

∂x
(x,t)=

1

3ǫ

[

C1
ǫ (x,t)+C2

ǫ (x,t)−2h(C3
ǫ (x,t),x))

]

,

C1
ǫ (0,t)=C1

0 , C2
ǫ (0,t)=C2

0 , C3
ǫ (L,t)=C2

ǫ (L,t), t> 0,

(5.1)

Again, we want to prove uniform BV bounds for a small parameter ǫ, which measures
the ratio between ionic exchanges and flow along the tubules.
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We make the same assumptions (1.2) (the condition 1<β≤
∂h

∂v
(v,x) can be re-

laxed to 1≤
∂h

∂v
(v,x)) and (1.3) and same hypotheses on the initial conditions, namely

they belong to BV and are at equilibrium which means

C1=C2=h(C3,x).

Following (3.5), the conservative quantity ρ and the flux B are defined by

ρ(x,t) :=2h(C3(x,t),x)+C3(x,t), B(ρ,t) :=2h(C3(x,t),x)−C3(x,t). (5.2)

For p∈R, we define uniquely the steady state kp as

B(kp(x),x)=p. (5.3)

Theorem 5.1 (Limit ε→0). The functions Ci
ǫ, i=1, 2, 3 converge almost every-

where to bounded functions Ci and the quantity ρ(x,t) is an entropy solution to



































∂

∂t
ρ(x,t)+

∂

∂x
B(ρ(x,t),x)=0, t> 0, x∈ [0,L],

ρ(0,t)=C1
0 +C2

0 +h−1
(C1

0 +C2
0

2
,0
)

, t> 0,

ρ(x,0)=ρ0(x), ρ0(x) :=C0(x)+2h(C0(x),x), x∈ [0,L].

(5.4)

The entropy formulation of the conservation law, for adapted (heterogeneous) en-
tropies is written, following [1] again,

∂

∂t

∣

∣

∣
ρ(x,t)−

(

2kp(x)+h(kp(x),x)
)∣

∣

∣
+

∂

∂x

∣

∣

∣
B(ρ,x)−B

(

2kp(x)+h(kp(x),x),x
)∣

∣

∣
≤ 0.

This family of inequalities is enough to prove uniqueness as in [14] (see [17] for details).
The boundary conditions are understood in the following sense

Boundary condition at x=0. For all kp such that kp(0)+2h(kp(0),0)∈

I
(

ρ(0,t),h−1
(C1

0 +C2
0

2
,0
)

+C1
0 +C2

0

)

, we have

sign
(

ρ(0,t)−h−1(
C1

0 +C2
0

2
,0)−C1

0 −C2
0

)

(

B(ρ(0,t),0)− [2h(kp(0),0)−kp(0)]
)

≤ 0,

(5.5)

Boundary condition at x=L. For all kp such that kp(L)+2h(kp(L),L)∈

I
(

ρ(L,t),2wL+h−1(wL,L)
)

, we have

sign
(

ρ(L,t)−2wL−h−1(wL,L)
)(

B(ρ(L,t),L)− [2h(kp(L),L)−kp(L)]
)

≥ 0, (5.6)

where wL(t) := lim
ε−→0

C1
ε (L,t), and where I(a,b) denotes the interval

(min(a,b),max(a,b)).
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Following the arguments we gave for the 2×2 system, and that we do not repeat,
we can prove BV bounds in several steps
(i) C1

ǫ , C
2
ǫ and C3

ǫ are bounded in L∞((0,∞)×(0,L)),
(ii) C2

ǫ (x,t)+h(C3
ǫ (x,t),x))−2C1

ǫ (x,t)−→
ǫ→0

0, C1
ǫ (x,t)+h(C3

ǫ (x,t),x))−2C2
ǫ (x,t)−→

ǫ→0

0 in L2((0,∞)×(0,L)),

(iii)
∂C1

ǫ

∂t
,

∂C2

ǫ

∂t
,

∂C3

ǫ

∂t
are bounded in L∞

(

(0,∞;L1(0,L)
)

,

(iv)
∂C1

ǫ

∂x
+

∂C2

ǫ

∂x
+

∂C3

ǫ

∂x
is bounded in L∞

(

(0,∞;L1(0,L)
)

.

These statements prove the convergence result in Theorem 5.1.
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