Evaluation of CryoSat-2 for height retrieval over the Himalayan range
Amaury Dehecq, Noel Gourmelen, Andrew Shepherd, Robert Cullen, Emmanuel Trouvé

To cite this version:
Amaury Dehecq, Noel Gourmelen, Andrew Shepherd, Robert Cullen, Emmanuel Trouvé. Evaluation of CryoSat-2 for height retrieval over the Himalayan range. CryoSat-2 third user workshop, Mar 2013, Dresden, Germany. hal-00973393

HAL Id: hal-00973393
https://hal.archives-ouvertes.fr/hal-00973393
Submitted on 4 Apr 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
EVALUATION OF CRYOSAT-2 FOR HEIGHT RETRIEVAL OVER THE HIMALAYAN RANGE

Amaury Dehecq1,2, Noel Gourmelen1, Andrew Shepherd3, Robert Cullen4, and Emmanuel Trouve2

1Institut de Physique du Globe de Strasbourg, 5 rue Rene Descartes - F-67084 Strasbourg cedex, FRANCE, Email:amaury.dehecq@unistra.fr

2Laboratoire d’Informatique, Systemes, Traitement de l’Information et de la Connaissance, Universite de Savoie, FRANCE

3School of Earth and Environment, University of Leeds, UNITED KINGDOM

4ESTEC, Keplerlaan 1 Postbus 299 2200 AG Noordwijk The Netherlands

ABSTRACT

Here we present the first results of quality assessment of height retrieval by CryoSat-2 over the snow and ice covered Karakoram region. Using L1b data and an a-priori DEM, we simulate the successive areas tracked by CryoSat in SARin mode in February 2012. We find that the closed-loop control is mainly tracking at altitude of mountains peaks and crests not allowing the recording of echoes returning from glacial valleys. When glacial valleys are imaged, waveforms show significant backscatter energy and coherent heights. We also note that successive bursts image slightly different regions which may impact on the quality of the retrieved SARIN product.

Key words: CryoSat-2, Himalaya.

1. INTRODUCTION

Climate warming over the 20th century has caused drastic changes in mountain glaciers globally, and of the Himalayan glaciers in particular. The stakes are high; mountain glaciers are the largest contributor to the increase in the mass of the world’s oceans, and the Himalayas play a key role in the hydrology of the region, impacting on the economy, food safety and flood risk to a large population. Partial monitoring of the Himalayan glaciers has revealed a mixed picture; while many of the Himalayan glaciers are retreating, in some cases locally stable or advancing glaciers in this region have also been observed. Recent controversies around the future of the Himalayan glaciers, fuelled by projections reproduced in the 2007 Intergovernmental Panel on Climate Change report, have highlighted our limited knowledge of the evolution of Himalayan glaciers, and our limited understanding of the relationship between climate change and Himalayan glaciers change.

In its interferometric mode, CryoSat-2 is designed to enable the retrieval of elevation over steep sloping terrain. If successful over mountain glaciers, height retrieval by CryoSat-2 could provide an invaluable dataset for the assessment of ice mass balance of the Earth’s mountain glaciers.

2. OBJECTIVES AND METHOD

CryoSat-2 SARin mode has a 120 m range window which is small compared to the high denivelation in Himalaya; inside a CryoSat-2 footprint, the surface altitude can vary by up to 3000 m. Here we estimate the regions effectively tracked by CryoSat-2.

In order to estimate the portion of the ground imaged by CryoSat-2, we:

- Compute CryoSat range window from L1b window delay and geophysical range corrections
• Simulate the range of regularly spaced points on the surface using an a-priori Digital Elevation Model (DEM) and the satellite position recorded in the L1b data

• Compute the intersection of the two to determine the regions tracked by CryoSat

Figure 1 summarizes the method.

We used the ESA delivered baseline B level 1B and 2 data for February 2012 over the region of Karakoram (74E, 34,5N to 78E, 37N). The DEM used is based on SRTM, filled and corrected from the best alternatives sources as e.g ASTER GDEM with spatial resolution of 3”.

3. RESULTS

Figure 2 shows the tracked areas for a subregion covered by some important glaciers.

The first important result is that on the descending (left side) track and parts of the ascending track, the range window lies at the altitude of mountains peaks and crests. As a result we miss most of the glacierized areas. A second consequence is that echoes returning from this altitude come from very dispersed scatterers and thus we have very weak and uncoherent echoes (figure 3(c)), which is the reason why the retracking fail and most L2 data are useless.

Moreover, analysis of the repeat track of the 10th of February 2013 show that over mountainous region, the tracking process might fluctuate randomly implying that the tracked regions are different from one year to another (cf figure . This makes year to year comparison difficult. Nevertheless, some valleys are imaged and waveforms show significant backscatter energy and coherent heights (cf figures 3(a) & 4). In the North-South valley, the tracked region is constrained to the bottom of the valley leading to a coherent and strong echo, constrasting with echoes from mountains peaks. On the East-West glacial valley, there are a few points with good height estimate compared to SRTM. Waveforms show several peaks probably returning from different scatterers on the glacier (figure 3(b)).

4. DISCUSSION

The problem of not tracking the regions of interest is really inherent to the way CryoSat works. In SARin mode, SIRAL indeed send a 40MHz burst between each measurement burst to track the surface with an alpha-beta tracker (the so-called closed-loop control). A more flexible loop control would significantly increase the area of interest covered by CryoSat-2 over mountainous regions and improve the quality of echoes.
5. CONCLUSIONS

We’ve shown that the closed-loop control is missing most glacial valley, rather tracking at altitude of mountains peaks and crests, resulting in dispersed scatterer and weak echoes. Some valleys are successfully im-
Figure 5. Regions tracked by CryoSat-2 for 2 successive pulses

aged and waveforms show significant backscatter energy and coherent heights. At last, taking into account abrupt changes in the window delay during the multi-looking process could allow getting every valuable information in the waveforms.

ACKNOWLEDGMENTS

This work is supported by the Dragon3 program, a partnership between ESA and NRSCC, by the French National Center for Earth Observation (CNES) and the Assemblee des Pays de Savoie.

REFERENCES
