Admittance of the SU(2) and SU(4) Anderson quantum RC circuits

Abstract : We study the Anderson model as a description of the quantum RC circuit for spin-1/2 electrons and a single level connected to a single lead. Our analysis relies on the Fermi liquid nature of the ground state which fixes the form of the low energy effective model. The constants of this effective model are extracted from a numerical solution of the Bethe ansatz equations for the Anderson model. They allow us to compute the charge relaxation resistance Rq in different parameter regimes. In the Kondo region, the peak in Rq as a function of the magnetic field is recovered and proven to be in quantitative agreement with previous numerical renormalization group results. In the valence-fluctuation region, the peak in Rq is shown to persist, with a maximum value of h/2e^2, and an analytical expression is obtained using perturbation theory. We extend our analysis to the SU(4) Anderson model where we also derive the existence of a giant peak in the charge relaxation resistance.
Type de document :
Article dans une revue
Physical Review B : Condensed matter and materials physics, American Physical Society, 2013, pp.88, 045302. 〈10.1103/PhysRevB.88.045302〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00972588
Contributeur : Christophe Mora <>
Soumis le : jeudi 3 avril 2014 - 16:59:12
Dernière modification le : mercredi 29 novembre 2017 - 16:37:26

Identifiants

Collections

Citation

Michele Filippone, Karyn Le Hur, Christophe Mora. Admittance of the SU(2) and SU(4) Anderson quantum RC circuits. Physical Review B : Condensed matter and materials physics, American Physical Society, 2013, pp.88, 045302. 〈10.1103/PhysRevB.88.045302〉. 〈hal-00972588〉

Partager

Métriques

Consultations de la notice

151