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Abstract

In this paper, we analyze the fine properties of the minimizers of the
TVL1 and the TV-G models used in image processing. We describe the
solutions of TVL1 by means of elementary morphological operations, and
we exhibit a strong constraint on the structure part and the texture part
of the data which is neccessary to obtain exact decompositions using the
TV-G model.

For the past two decades, much interest has been given in variational models
for image restoration (see [15] and references therein). In the seminal work [64]
in image denoising, Rudin, Osher and Fatemi (ROF) proposed to find, given
u € L?(R?), the function u which minimizes the energy
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Studying the above model in [57], Meyer proposed to replace the L? fidelity term
with norms which favor oscillations, so as to get a solution v which contains the
structure and the geometric features of f, and a residual f — u which contains
the oscillating patterns of f, namely the terture and possibly some noise.

This new paradigm has lead many researchers to investigate the use of vari-
ous norms for the fidelity term. To our knowledge, the first attempt to perform
numerically such decomposition was made by Vese and Osher in [69] by approx-
imating the G space proposed by Meyer (the divergence of L* vector fields)
and the corresponding norm. Another approach to deal with the TV-G model
(i.e. (1) where the square L? norm is replaced with the norm of the G space) is
proposed in [18]. Variants of this model using decompositions with three terms
(structure, texture and noise) have been investigated in [42, 43]. In [63], another
variant of this model is proposed which corresponds to the space W12, This
approach is generalized in [19, 20], where TV + H decompositions are consid-
ered, with ‘H a Hilbert space. In this context, negative Sobolev spaces have
drawn a lot of attention: see [19, 53, 50]. Two other spaces initially proposed



by Meyer are F (the dual of the Besov space B%l) investigated in [19, 41], and
F (the divergence of vector fields in BMO) studied in [52].

Yet, the search for new fidelity terms did not focus only on oscillating norms,
and Chan and Esedoglu considered in [34] the following energy
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importing in image processing a model which had been introduced in signal
processing by Alliney [5, 4] and studied by Nikolova [60, 61, 62]. In dimension
N =1, an important property of the model, highlighted in [60], is its ability to
preserve exactly some signals. In dimension N > 2, this property still holds, but
contrary to the dimension N = 1, the geometry has a strong influence on the
solutions, as studied in [34, 46, 74, 72, 59]. In particular, the link with the flat
norm used in geometric measure theory is observed in [59]. Probably, the most
remarkable property of this model, observed by Darbon in [36], is its contrast
invariance. Namely, if g is an increasing function and w is a solution for data
f, gowu is a solution associated to g o f. Such a property is fundamental in
image processing, and has been highly considered from the early years of image
processing and mathematical morphology (see below) to the axiomatic approach
to PDE’s in image processing [9, 44] and the tree of shapes studied in [58, 21]
(see also [30] and references therein).

Meanwhile, tremendous progress has been made in the understanding of the
Rudin-Osher-Fatemi (ROF) model and the total variation flow, thanks to the
work of Caselles and his collaborators [13, 12, 14, 22, 23, 8, 28], and to the work
of Allard [1, 2, 3]. Giving a rigorous meaning to the total variation flow [13, 12]
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Caselles and his coauthors have proved existence and uniqueness of a solution
for any initial data ug € L?(R?). The solution vanishes in finite time and, up
to a renormalization, it converges to a solution of the eigenvalue problem:

w=—div (1) W

The solutions of (4) are the functions which evolve at constant speed in (3) and
the functions that evolve in (1) by the multiplication of a constant. Focussing on
characteristic functions of sets which satisfy (4), the authors of [22, 23] were lead
to study the class of calibrable sets. It turns out that these sets are intimately
linked with the so-called Cheeger sets. Given a domain €2, a Cheeger set of {2 is
a solution to the problem

Per £
inf ———
ECQ |E|
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where |E| is the N-dimensional Lebesgue measure of E and Per F its perimeter
(see below). If the domain 2 is convex, ) is itself a solution to (5) if and only



if it is calibrable (see [15]). The deep results in [8, 7] and later in [29, 6] yield a
characterization of Cheeger sets in convex domains by their mean curvature, as
well as a uniqueness result for non trivial convex bodies (i.e. convex compact
sets with nonempty interior). They also describe precisely the evolution of
convex sets by the total variation flow (eq. (3)) and the Rudin-Osher-Fatemi
problem (eq. (1)). Independently, Allard has also proposed a thorough study
of the models TV+L? (p > 1) in [1, 2, 3], obtaining similar results, notably in
the case of convex sets.

The present paper summarizes several results developed in the PhD the-
sis [38]. Our purpose is to describe as precisely as possible the solutions of
the TVL1 (eq. (2)) and the TV-G models. In particular, we relate the TVL1
model with morphological openings, and we give examples of structure-texture
decomposition using the TV-G model. Incidentally, the proposed results pro-
vide an extension of the comparison initiated by Haddad in [46] and Yin et al.
in [73] between both models. Whereas [46] emphasizes the similitudes between
the two models, we highlight fine properties of the minimizers which make the
models eventually different. An illustration is given in Figure 1. Both models
are able to separate the stripes from the clothes, but the solution provided by
the TV-G model looks more inflated than the one of the TVL1 model (which
looks flat). Our analysis gives some insight on the qualitative difference between
both results.

The first section deals with preliminaries and notations. The second one is
devoted to the TVL1 model, and it covers material published in [39]. Relying
on the deep results mentioned above (in particular [23, 8, 7]) we show the link
between TVL1 and the Cheeger problem, and we obtain a characterization of the
solutions in terms of morphological openings. This provides some insight on the
behavior of the solutions as well as a way to compute approximations of solutions
by means of classical morphological operators. Moreover it explains the good
behavior of the model for structure-texture decomposition. In the third section,
we analyze the TV-G model. After recalling the characterization of solutions, we
exhibit toy examples which predict a perfect decomposition between structure
and texture. Then we point out a limitation of the model which prevents perfect
decompositions to happen in the general case: oscillations must appear in the
texture part around the edges of the image. This phenomenon, which explains
the inflated look of the decompositions, does not affect the TVL1 model.

1 Preliminaries

1.1 Functions of bounded variations

We briefly recall some properties of functions of bounded variations and sets
of finite perimeter. We refer the reader to [11] for a comprehensive treatment
of the subject.

Definition 1. A function u € L*(R?) is said to be of bounded variation if
its distributional gradient is a vector valued Radon measure with finite total



Figure 1: Decomposition of the famous ”Barbara” image using the algorithm in
[18] (top) and TVL1 (bottom).



variation. The total variation of Du on an open set Q C R? is equal to:
Dul(@) =swp{ [ wdive/ g Cl@ R e, i<t} ©
R2

(where for v = (vi,vs) € R?, |v|? = v} +v3). When Q = R?, this quantity is
called the total variation of u, and will be denoted by [ |Du| or |u|rv.

The mapping u — |Du|(Q) is L}, .(R?) lower semi-continuous.

If F is a measurable set, we denote by |E/| the 2-dimensional Lebesgue mea-
sure of a set £ C R?, and by H!(E) its 1-dimensional Hausdorff measure in R2.
The set E is said to be of finite perimeter if (6) is finite (with Q = R?) when u
is replaced with the characteristic function 15 of F. Its perimeter is defined as
Per E = [ |D1g|.

If E C R? is a Lebesgue measurable set, and 2 € R?, the upper and lower
densities of E at x are respectively defined by:

— . |B(z, )N E| . |B(x,r) N E|
D(z,E) := hr:lj(l)lp B D(z,FE) := llgljglf B
where B(z,r) is the Euclidean closed ball with radius » > 0 and center z.
Lebesgue’s density theorem states that for any measurable set E both quantities
are equal to 1 at almost every point of of E. Hence, the set {x € R?, D(z,E) =
D(z,E) = 1} is a Lebesgue representative of F, independent of the choice of
representative for E. We shall choose this precise representative, and 0F, F
shall refer respectively to the topological boundary and interior of this repre-

sentative.

Following the framework of [15], we rely on the results of [16] for a gener-
alization of the Gauss-Green theorem. Let Q@ C R? be an open subset, and for
p € [1,+oa],

X,(Q) :={z € L™®(Q,R?), divz € LP(Q)}. (7)

If 2 € X,(Q) and w € LIY(Q) N BV(Q) with p~! + ¢~ = 1, we define the
functional (z, Dw) : C°(Q) — R by the formula:

((z, Dw), ) := —/ we div zdr — / wz - Vpdz. (8)
Q Q
In fact, (2, Dw) is a Radon measure in €2, and for all Borel set B C {2

[ e < [ 1w < el [ 1Dul (9)

Moreover, if w € L9(Q) N W, [, (z, Dw) = [, z - Vwdaz.
The following theorem is proved in [16]:

Theorem 1. Let Q C R? be a bounded open set with Lipschitz boundary. Let
u € BV(Q) N LYQ) and z € X,(Q). Then there exists a function [z - V] €
L>2(09) such that ||[z - VY| L 00) < [|2]| Lo (,r2), and

/udivzdm+/(z,Du)=/ [z - v udH? .
Q Q o9



When Q = R? we have the following formula [16], for z € X,(R?) and
w € LY(R?) N BV(R?):

/ wdivzdw—i—/ (z, Dw) = 0. (10)
R? R?

Using the above integration by parts, it is possible to describe the subdif-
ferential 9| - |7y of the total variation. This is done in particular in [13, 15] in
order to define the meaning of the total variation flow. Let p € L>(R?), then
p € 9| - |7y (u) if and only if there exists z € L>°(R?,R?) such that

Iz]lo <1, p=—divz and / —div z(x)u(z)dz = / | D). (11)
R2

In view of (10), the last equality may be rewritten [o.(z, Du) = [ |Dul.

1.2 The G-space

Yves Meyer introduced the G-space in [57] while studying the ROF problem,
so as to model oscillating patterns like textures. Several variants of the definition
have been used in the literature (see [17] for a definition on a bounded domain),
we adopt the one in [51].

Definition 2. A function f € L*(R?) belongs to G if and only if there exists a
vector field g € L>°(R?,R?) such that divg = f. The G-norm is defined as:

Ifllc := inf {{lgll, f=divg,ge L>®([R*R?)}. (12)

In fact, this infimum is a minimum, i.e. there exists g € L>°(R? R?) such that
divg = f and ||g9]lec = | flla- In that case we say that g is adapted to v.

The G-norm can alternatively be written in a ”dual” form (see [47, 51]),

Jao fu
I fllc = sup .
weBvE2)\{0} J |Dul

(13)

The G-norm defines a coarser topology than the L? norm. More precisely, it is
proved in [47, 51] that || f|l¢ < ﬁ”f”g for all f € L?(R?). The main motivation
for introducing the G-norm is indeed that it does not penalize oscillating pat-
terns. For instance, as explained in [57], if f(z1,22) = 1jo,1)2 (21, 22) cos (N7z1),
then || f|l¢ = . More generally,

Proposition 1 ([47], Corollary 3.4). Let Q = [0,1]?, f € L?*(R?) and p €
L>®(R?) such that [, p(x)de =0, for all k € Z*. Then, ||f(-)u(N-)|lc — 0
when N — +o00.

Following the method used in [15] to characterize the subdifferential of the
total variation, we may compute the subdifferential of the G-norm by ob-
serving that it is the support function of the closed convex set A = {u €
L*(R?), [ |Dv| < 1}. Thus, given p € L*(R?), u € G,

p € |- |le(u) if and only if /|Dp| <1and / p@)u(@)de = |ulle.  (14)
RZ



1.3 Mathematical morphology

Mathematical morphology is a theory of image analysis initiated by Math-
eron and Serra in the 1960’s. Its main focus is the contrast-invariance in image
processing, and the consequence is that morphological operators can be equiv-
alently seen as operators on functions (images) or on sets (their level-sets). For
instance, some of the most famous morphological operators are respectively the
erosion and dilation: for X C R?,

E.X = {xERQ,B(x,r) cX}, DX={y eR*3IrcE, yc B(z,7)},
(15)
where r > 0 and B(x,r) is the Euclidean closed ball with radius r. These

operators on sets are associated with functional operators:

Vu € RE| vz € R?, Eu(z)= inf w(x+r), Dpulx)= sup u(x+r).
yeB(0,r) yeB(0,r)
(16)
As a matter of fact, it is equivalent to apply each functional operator to a
function f or to apply the corresponding set operator on the upper level-sets of
f, Fr = {z € R?, f(z) > t}, to obtain sets U; for t € R and then reconstruct u
by the formula:

Vo € R?, w(x) =sup{t € R, x € U;}. (17)

From dilations and erosions, two other basic operators are constructed: openings
(defined as D, o E,.) and closings (defined as F, o D,.). The corresponding set
operators may be written as: for X C R2,

0,X = U{B(x’r>7 B(x,r) C X}, C.X = (U{B(z,r), B(z,r) C XC})C7
(18)

where X¢ = R?\ X.

Standard references about mathematical morphology are the book by Math-
eron [55] and those by Serra [65, 66]. From the fundamental axioms estab-
lished by Matheron and Serra, and the basic operations such as erosions, dila-
tions, openings and closings, mathematical morphology has grown into a well-
established theory from which derive algorithms for image denoising [35, 70],
segmentation [25, 26], texture analysis [68, 48], etc.

2 A geometric characterization of solutions for
TVL1 model

2.1 A geometric equivalence property

Given f € L'(R?), the TVL1 model consists in solving the variational prob-

lem
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Existence of a solution follows from the direct method of the calculus of
variations. Since the problem is not strictly convex, Problem (Py(f)) may have
more than one solution.

Following the fruitful approach of [32, 7] for the study of the Rudin-Osher-
Fatemi problem, Chan and Esedoglu have observed in [34] (see also [37]) that
the energy in (PA(f)) may be written as a sum of energies for the level sets of
U,

“+o0
/|Du|+)\/\f—u| :/ Per U, + AU, AF|dt, (19)
— 00

where U; = {x € R? u(x) >t} denotes the t-upper level set of u and F; = {x €
R2, u(x) >t} is the t-upper level set of F.

This consequence of the coarea formula has lead several authors (see [34, 37,
74, 1, 39]) to study the connection between (Py(f)) and the geometric problem

inf PerU 4+ AMUAF| (GA(F))
UCR?

where F' C R? is a measurable set such that £L2(F) < 400 or L2(R?\ F') < +oo0.
In fact, applying the general method detailed in [33], one may show that
u € LY(R?) is a solution to (Px(f)) if and only if for all t € R, its level set Uy
is a solution to G\(F}), where Fy = {x € R? u(x) > t}.
Instead of solving (Px(f)), one may study the solutions of Gy(F;) for all
t € R, and then reconstruct u by the formula:

u(z) =sup {t € R, = € Uy}, (20)

as done in [74, 1, 59, 39].

2.2 TVL1 Geometric Measure Theory

A remarkable property of Problem (Gx(F)) is the fact that its solutions
have smooth boundary. This was derived by Allard in [1], and independently in
[39, 38] by the present author with coauthors by applying results from [10].

Proposition 2. Let F C R?, and let U € R? be a solution of Gy(F). Then OU
is a OV hypersurface. Its curvature & s defined H'-almost everywhere and for

B —
H'-almost every x € F (resp. x € (R*\ F)), k(z) = =\ (resp. +)\). Moreover
for H'-a.e. x € OU, |k(x)| < .

An interpretation of Proposition 2 is that as soon as U drifts away from
OF, it is made of arcs of circles with radius %

The enlightening example of the union of two discs is studied in [3, 31] (see
Figure 2). It is shown that for two discs that are sufficiently close to each other,
the solution is either the two disc, the empty set or the figure obtained by joining
the discs with arcs of radius %, depending on the value of .



Figure 2: Two discs interact

with arcs of circles of radius
1

A

In contrast with the above example, some sets F' do not evolve when solving
Ga(F) for large values of A, and then suddenly vanish when A is below a certain
threshold Ap. This is for instance the case of a single disc, as studied in [34].
As we observed in [39], such sets are necessarily Cheeger in themselves.

Proposition 3. Let F C R? be a nonempty set such that there exists Ap > 0
such that

e F is a solution of G\(F) for A > A,
e () is a solution of Gx\(F) for A < Ap.

Then, A\p = Pf;f, and F is Cheeger in itself, i.e. it is a solution of the problem

. PerU

e o (€
Moreover, the solution to Gx(F) for X\ # Ap is unique, and both () and F are
solutions to Gy, (F).

As we shall see below, the connection between the TVL1 problem and the
Cheeger problem is in fact very deep, just as it is for the ROF problem (see for
instance [23, 7, 27]).

In the particular case where F is convex, Per(UNF) < Per U for all U C R?
with finite perimeter. Hence we may assume that the solution U C F, and
Problem (G, (F)) is then equivalent to

. _ /
(}IglgrPeIU A F. (GA(F)

This family of problems is precisely the one that appears naturally in the study
of both the Cheeger problem and the ROF problem when the input is f = 1p
with F' convex. The characterization of the solutions to these problems by their
curvature and ratio perimeter/area is given in [7], and the link between the
curvature of a convex set and its invariance by openings in [13]. It is used
in [8] (and independently in [49]) to characterize the solutions of the Cheeger
problem: if F' is a convex set, the solution to Problem (C(F)) is given by the
morphological opening O/« F = (J{B(x, /\i),x € F and B(x,%) C F} for
PerO«F _ 1

[O1/x«F| 7 A*°

Concatenating these results, we observed in [39]:

some value \* characterized by

Theorem 2 (Solution for convex data). Let F' C R? be a nonempty bounded
convex set, and let \* > 0 defined above. The set of solutions to Gx(F') is



o {O1/)\F} for X > X",
o {0,01))-F} for X =X* (where Oy )\« F is the Cheeger set of F),
o {0} for A < A*.

2.3 Link with Mathematical Morphology

The fact that TVL1 is a morphological filter (i.e. contrast invariant and
idempotent) is a consequence of the geometric equivalence property. It was first
noticed in [36], and several related properties were independently observed in
[74].

Proposition 4 ([36, 74]). Let f € L*(R?), u € BV(R?).

e Forall T € R%, u(- — 1) is a solution to Px(f(- — 7)) if and only if u is a
solution to Px(f)

e For all Lipschitz homomorphism g : R — R, gow is a solution to Px(go f)
if and only if u is a solution to Px(f).

The second point of Proposition 4 not only means that the filter is invariant
by contrast change, but also that it is self-dual (choosing g = —Id). All these
axioms of mathematical morphology (see [65, 44]) satisfied by the model strongly
advocate for its use in image processing.

The main interest of Theorem 2 is that it gives the explicit form of the mor-
phological operator involved (at least when the level sets of f are convex). Since
A > A" is equivalent to Ple(g?lélF < ), the solution to TVL1 amounts in this case
to a morphological opening, and a ”thresholding” on the ratio perimeter/area
of the result: if it is greater than A, the level set should be replaced with () (see
Section 2.4). The theorem also highlights the importance of the scale of objects
in the behavior the model.

The notion of scale is intrinsically linked with the development of mathemati-
cal morphology. In order to measure the petrographic distribution of oolites and
chlorite cement in Lorraine iron ores (see [56]) Matheron and Serra have intro-
duced operations like erosions, dilations and openings and defined the concept
of granulometry that allows to discriminate objects by their size (see [54, 45]).
Since then, the use of mathematical morphology and granulometries has spread
to various areas of image processing especially in the study of textures in general
[67] (an example is shown in Figure 3).

Definition 3. A granulometry is a family of openings {v,.} depending on a

positive parameter p, that are decreasing functions with respect to p: ps = pp >

0= Yy < Yy The cumulative size distribution of a set ' is p+— 1 — hl*l‘,fl.

Its derivative is called the granulometric spectrum of F': *ﬁ%hyﬂ'

10



Granulometry

2 0 6 8 W 16 18 20

10
radius r

Granulometric spectrum

0 12 14 16 18 20
radius r

Granulometry

2 4 6 8 10 12 w16 1B 2
radius r

Granulometric spectrum

Figure 3: Examples of granulometries. The granulometric spectrum indicates
the characteristic scales of the image.

Recently, a similar approach was introduced by Vixie et al. (see [71]) in
order to classify shapes using TVLI. Introducing (among other signatures) the

shape signature sgp : A — |U|*I£|F| where U, is a solution to G\ (F), they plot

A+ sp(5), and they show that this curve gives information about the scales of
the object F'. In particular, they notice the importance of the jumps of sp and
they propose to examine the derivative A — %5 F(%)

This is precisely the philosophy of granulometries and granulometric spectra,
and Theorem 2 shows that the examined quantities are in fact almost the same.

2.4 An Algorithm using the Fast Level Set Transform

In order to numerically compare the solutions of TVL1 with the result of
openings, we have built an algorithm which is based on the Fast Level Set
Transform (FLST) introduced in [58]. A shape is defined as the union of a
connected component of an upper or lower set together with its holes. Monasse
and Guichard have proved in [58] that, in the discrete framework, shapes have a
tree structure for the inclusion relation (which was extended in [21] by Ballester
et al. to the continuous case), and they have proposed a fast algorithm to
compute it. More detail about the tree of shapes can be found in the book by
Caselles an Monasse [30].

We only sketch the principle of our algorithm, and we refer the reader to
[39] for more detail.

11



From Theorem 2 (which only deals with convex sets) and the self-duality
of the model, we infer that the result of TVL1 is similar to a closing in locally
concave parts. The example of the two discs (see Figure 2) is also in favor of such
a behavior. A good compromise between openings with radius 1/\ in convex
regions and closings in concave parts is given by the alternate sequential filter
(ASF). This filter consists, given a small value 7¢, in performing alternatively an
opening and a closing of radius nry until nrg > 1/A. When ¢ is small enough,
the operator is much more symmetric than a single opening-closing step, and
starting with either an opening or a closing makes little difference.

The openings and closings are computed for all level sets simultaneously
by using their formulation for functions. Then, the ”thresholding” on the ra-
tio perimeter/area is adapted by testing whether the energy of the connected
component is less than the energy of the empty set (this variation of energy is
denoted by AE). The advantage of using the fast level set transform is that the
procedure is automatically self-dual and that it allows to deal with all similar
level sets at a time. The algorithm is summarized in Figure 4.

A visual comparison with a gradient descent is given in Figure 5. The result
are quite similar but since the coarea formula does not hold for the discretized
isotropic total variation, the latter yields a blurry image. We have also compared
our procedure with the graph-cut algorithm by Darbon and Sigelle [37]. The
total variation is then an anisotropic total variation. It is proved in [38] by
relying on results from [24], that Theorem 2 holds for crystalline anisotropic
total variations when replacing balls with the Wulff shape (see [38] for more
details). Here, the openings with balls are replaced with openings with squares
of side 2/\. The similarity between the exact result [37] and the result of the
FLST-based algorithm is striking.

3 The TVG model

Observing the behavior of the G-norm for oscillating functions, Y. Meyer
proposed to use the G space to model textures, decomposing an image f €
L?(R?) into a structure (or cartoon) part u and a texture part v = f — u using
the following variational problem:

it [ 1Dul+ Al = ule (Q:(£))

u€BV (R

The existence of a solution follows from the direct method of the calculus of
variations. The solution to Qx(f) is not necessarily unique (see [47]). Kinder-
mann, Osher and Xu have characterized the optimality of solutions for Q,(f)
in [51]. Using the subdifferential of the G-norm derived in (14), we may obtain
the same result straightforwardly, writing 0 € 9| - |rv (u) + A9 - |la(f — u).

12



Algorithm FLST-based TVLI1

Inputs: Image f
Parameters: Fidelity parameter A
Output: Approximate solution u

Perform Alternate Sequential Filter: a := ASF(f)
Compute the Level Set Transform: T := FLST(a)
for all shape s of the tree T' do

Remove the children ¢ of s such that V; = V.

if (AE < 0) then

Remove s.

end if
end for
Reconstruct u := FLST~Y(T).

Figure 4: An algorithm to compute an approximate solution of TVL1 using
openings and the Fast Level Set Transform. The tree is visited from the leaves
to the root.

Proposition 5 ([51]). The decomposition (u,v) is optimal if and only if:

Jze€ X, |2|<1 and f/udivz :/|Du|, (21)
e BVE), [ 105 <1 and [po= o 22)
such that  —divz+ Ap = 0. (23)

Haddad and Meyer have studied the case where the whole signal is in the
texture part (u =0, v = f). Conversely they have also proved that if [ |[Dp| < 1
n (22), the solution must be (u,v) = (f,0). Let us also mention that they have
deeply investigated the radial case using Proposition 5, expliciting in particular
the decomposition of the radial function f(r) =e™".

The rationale behind Problem (Q,(f)) is of course that if an image f is the
sum of a structure part and a texture part, one expects to get the former in the
solution u of @ (f) part and the latter in v = f — u. Indeed, the total variation
is low for cartoon-like images and high for oscillating images, and conversely for
the G-norm. This approach has had a certain success in practical applications
(see [18, 73, 42]).

The aim of this section is to discuss the limitations of the above paradigm.
Can this model actually separate texture from structure? Is there any constraint
on the texture and structure part?

13



Figure 5: First row: original image. Second row: result of a gradient descent
scheme. Third row: result of the FLST-based algorithm with euclidean balls
as structuring elements. Fourth row: result obtained with Darbon-Sigelle’s
algorithm (connectivity 4). Five row: result of the FLST based algorithm,
using a square as structuring element. All pictures were computed with A = 1/9,
except the first column (A = 1/6, the small component is kept, contrary to the
second column).

Original
S

Gradient descent

FLST+openings

Darbon-Sigelle C-4

FLST+openings
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3.1 When it works...

Let (u,v) be a decomposition of f using (Qx(f)). If v # 0, then [ |Dp| =1
in (22) according to [47]. Now, let g € L>°(R? R?) be a vector field adapted to
v, t.e. divg = v and ||g]lcc = ||v|l¢. By integration by parts, (22) is equivalent
to

— [@.0p) = ligl [ 1D, ie. 0= [ ((9.22) + gl ) diDpl. (2
/ / /( | Dp

This means that |Dp|-almost everywhere, |g| must reach its maximum, and g
must be pointing in the opposite direction from Dp. To build examples of exact
decompositions, it is therefore sufficient to define vector fields z and g which
satisfy (24) with p = —1 divz.

In the radial case, we have proved in [38] the following result which guar-
antees a successful decomposition. Let us write z(z) = 2(r)e,, g(z) = g(r)e,,
u(z) = a(r), ete.

Proposition 6. Let g € W1>°(R_,R) with g(0) = 0. Assume that there are val-
ues 0 < rj« <...<1g<...<7Tpe with ro =1 such that g(ry) = (=) 17|00
forke{s*,...0,...k*} and ri11 —rp < for 55 <k <k*—1. Then, for

k*—1
dm <A< (14 7 DL BT ) (25)
kg Tk41 — Tk

the radial function f defined by f(r) = 1j0,1)(r) —l—ﬁ%a%r(r) has a perfect decom-
position (u,v) given by:

{7}(7") = 1p(r)

st

Here is a typical example of the result. Let N € N* be an odd number, and
consider the function f defined by

fry=1py(r) -8 <sin(N7rr) - - }W cos(Nm*)) Li12,3/2)(7),

so that we may choose rx, =1 + % and k* = —j* = %
For 47 < A < 4n (2N2 — 2N + 1)7 f has an optimal decomposition given
by:

<

(r) =1p,1y(r),

(r) = -8 (sin(Nﬂr) - - ]1\77"

<

COS(Nﬂ"I“)) 111/2,3/2)(7)-

This decomposition is illustrated in Figure 6 and the constructed z and p are
shown in Figure 7. Incidentally, let us observe the effect of the frequency (N or
1 above) on the decomposition: the faster the oscillation, the larger the

Tk+1—Tk
interval of A for which the decomposition is perfect.
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Figure 6: TV-G decomposition predicted by Proposition 6: original im-
age f (left), cartoon part u = 1pg(,1) (middle), texture part v(z) =
(=sin(N7|z|) + =& cos(Nw|z|)) 11 /2,3/2)(|2]) (right).

Vectorfield z

z(r)

0 0.5 1 15 2 25 3
r
Function p
T

Figure 7: The function p and the vector field z (in fact —z and p are displayed)
constructed in the proof of Proposition 6.

3.2 ...and when it does not.

It should be observed that in the above example, in the original function
f, there is some texture near the edge of the cartoon part (at » = 1). This is
not a coincidence and the aim of this section is to prove that this property is
necessary to obtain a perfect decomposition.

First, we consider the one-dimensional setting and we recall the argument
given in [40]. Assume that we want to decompose a function f € L'(R) N L?(R)
using (Qx(f)) (replacing BV(R?) with BV(R)). The G-norm can be computed
as

/t v(s)ds + C‘ .

— 00

[vlle = &fn@igﬁ
The function V : ¢ — fioo v(s)ds is continuous, bounded (for v € L*(R)) and
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the optimal C' is C' = —W. To fix ideas, let us consider a rectangular
function perturbed with some textures (see Figure 8)

f(@) =101 () + Bsin(8prz)Lig -

The ideal decomposition one would expect is a perfect step u(z) = 1(o,1)(x),

f

—\WW—
B A e e——

u
v
§

Figure 8: Top: original signal f. Middle row: expected decomposition. Bottom
row: decomposition with the same energy.

and a pure oscillation v(z) = Bsin(8pmx)1li ¢, <z (Figure 8, middle row).
The energy of the cartoon part is simply [ |[Du| = uw(0%) —u(07) +u(17) —

(1+) = 2, whereas the energy of the texture part is given by |jv]¢ =
B f e sin(8pnt)dt = . Yet, replacing u on [— }1, }1] with any non-decreasing

functlon u* with the same hmltb at +1, say, a ramp z — (3 + %I)l[—nm] (x)

as in Figure 8, last row), one still gets the same cartoon energy [ |Du*| = 2.
As for the texture part, we should notice that one extra oscillation is added
near the discontinuity of the original function f. But since the G-norm favors
oscillations, this change in the texture part is not penalized. Indeed,

0
0"l = max <4£7T,/ 2+ lt)dt) - (26)

-1
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for n small enough (0 < 1 < min(%, p%))

Therefore, we see on this example that given any decomposition with sharp
edges, there exists a decomposition with the same energy where halos around
edges appear in the texture part. This explains why some edges appear in the
texture part in Figure 1. This phenomenon may also explain the kind of halo
that appears in smooth areas: replacing the ramp with a slow gradation, one

may alter smooth parts without changing the energy.

3.3 Texture near edges

In the above example we have observed that, if the perfect decomposition
were optimal, another optimal decomposition would have ”shadow edges” in
the texture part: depending on luck or on the choice of the algorithm, this
artifact may not appear.

Now we advocate the fact that in the two-dimensional framework, and for
typical images of the model, the artifact is bound to appear: there should always
be some texture in the v part around the points where u has jumps. One may
prove (see [38] for the proof) that:

Proposition 7. Let f € L*(R?) be a radial function, u = 1p) and v =
f=1p(0,1) such thatv # 0. Lete > 0 and C(_. .y = {z € R?, 1—¢ < || < 1+¢}.
Ifviq . ., =0, then the decomposition (u,v) is not optimal.

More generally, for any convex set C' C R? and & > 0, let us define
C.={xeC, dx00)>¢e} and C_..={recR? d(z,00)<¢e}.
The following result holds (see Proposition 5.2.14 in [38]):

Proposition 8. Let C C R? be a C1! conver body, f € L*(R*)\{1¢}, u=1¢
and v = f — 1¢. Assume that Suppv C C and that the decomposition (u,v) is
optimal. Then Suppv NIC # (), where Suppwv is the support of v.

Proof. Assume by contradiction that d(Suppwv,dC) > 0, so that there exists
€ > 0 such that Suppv C C.. .

As (u,v) is optimal, equations (21), (22), (23) hold. Since leZ’DP;] =|v|lc =

SUD e BV (R2)\0 %, pis a non-trivial minimizer of G(w) := [ |Dw|— [, Tola -

The level sets (Ey)ter of p are thus solutions to the prescribed mean curvature
problem associated to —m:

inf PerE—/ v .
BECR? e [vlle

Now, we replace p with p* = plc._, so that {p* >t} = ExNC, for t > 0, and
{p* <t} = E,NC; for t <0. Since C. is convex, Per (E; N C.) < Per F;, with
strict inequality if |E; \ Cc| > 0.

By Lemma 1 below, |Dp|(C(_.)) > 0, and the coarea formula implies that
the set B = {t > 0, |E; N C(_. | > 0} has positive Lebesgue measure. Since
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Per (E,NC:) < PerE; for all t € B, [ |Dp*| < [|Dp|. Since [p*v = [ pv, we
see that G(p*) < G(p), which is a contradiction. O

The following lemma is a consequence of the Gauss-Green theorem (see [38,
Lemma 5.2.13]):

Lemma 1. Under the same assumptions as in Proposition 8, if p is the function
defined in Equations (22),(23) and ¢ > 0, then |Dp|(C(_. ) > 0.

To conclude this section, let us observe that the TVL1 model is not concerned
with such a limitation, as the following example shows (see [38] for the proof).
Let N € N*. For 2 < A < 2N, the radial function f defined by

F(r) =10 (r) — Bsin(N7r) 1.5 (r), (27)
has an optimal decomposition given by:

(r) = 1po,1(r),
(r) = —Bsin(N7r)ligs/(r).

The corresponding decomposition is illustrated in Figure 9.

=3}

(S}

Figure 9: TV — L' decomposition predicted for (27): original image f (left),
cartoon part u = 1p(o,1) (middle), texture part v(z) = —sin(Nw|z|)1j,3(|z])
(right).

4 Conclusion

We have presented the analysis of the TVL1 and TV-G models developed
in [38]. On the one hand, the behavior of the TVL1 model relies on geometric
considerations. Our study shows the connection between the model and mor-
phological openings. The decomposition produced by TVL1 is quite similar
to granulometries, and the crucial notion to distinguish texture or noise from
structure is the scale.

On the other hand, the key notion used by the TV-G model is the oscillation
of a pattern. While in some cases the TV-G model is able to separate oscillating
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textures from the geometric structure of images, we have highlighted a serious
limitation of the model: in the original signal, there must be some texture in the
neighborhood of edges for the decomposition to be perfect. Otherwise, shadows
of edges or gradations appear in the texture part, resulting in an inflated aspect
of the result.

Appendix

Proof of Proposition 6. We build the vector field z in (21) and the corresponding

p in (23) using \p = ;% (rz(r)).
Forr € [0,7;«], weset Z(r) = (—

By induction on k (with j* < k < k* — ), we define Z on [0, 7] such that

Z(ry) = (=1)*=1. We set, for r € (rk,rk+1],

1)7" =1 so that p(r) = pj-—1 = (—1)7 12

N L( AP i -

Ar) = - (Tkz(rk) + %(TQ - Tﬁ)) with pr = (-1)* A(Tk1 = 1k)
(g i
r(( D7 (1) Tht1l — Tk

so that p(r) = pp and Z(rpy1) = (—1)F.

For 7 € (rg-,+00), we set 3(r) = Z==20e) — (—1)F ~1Z= 5o that (r) =
pr= = 0.

Observe that the fact that Z(1) = Z(rp) = —1 implies that (z, Du) = |Dul,
| Duj-almost everywhere. Moreover, it is easy to check that the condition 41 —
rr < g for j* < k < k* — 1 implies that Z varies monotonically from (—1)’“*1
to (—1)¥ in [rg,7x41]. Hence we have built z and p which satisfy (21) and (23).

It remains to prove that p satisfies (22). The total variation of p is equal to

P — Pje—1| + .-+ 217k [pr — Pr—1| + - -+ 2700, [P — Pre—1]

A7

2 2 2 2
= 27T« + + ...+ 27r ( +
! (Mj* A1 — Tj*)) F\Ark = 1) A(Fkg1 — )

2
oo+ 27 [ —————— +0
+ + 271y, <)\(7“k*—7“k1)+ )

477 Tht1l + Tk
— |1+ kTR
A kz; Thtl — Tk

Tk+1—Tk
Moreover the vector field g is such that ||g|lcc = ||v|lg- Indeed, by symme-
try, there exists an optimal vector field ¢* which is radial, and the difference
g — g* is radial and divergence free, hence of the form % Since both ¢ and g*
are bounded we get C' = 0 and g = g*. Observing that §(rs) = (—1)**{|g|lec =
({rk})||g||007 we obtain (24) and thus (22).

Hence, choosing A = 4 (1 Jrzk Jl M) we obtain that [|Dp| =

\Dp\
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As a conclusion, we obtain that the decomposition (u,v) is optimal for
(QaA(f)) with A = 4rn (1+ZZ*71 M) It is not difficult to see that

=J* Thy1—Tk

it is also optimal for A = 4m (consider Z(r) = r for 0 < r < 1, % oth-
erwise, and p = %1(0,1)). Consequently, it is optimal for all A such that
dr < X< dr (1+Z’,j*:;3 %ﬁ:)

O
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