Non-Negative Spherical Deconvolution for Fiber Orientation Distribution Estimation

Jian Cheng, Dinggang Shen, Pew-Thian Yap

To cite this version:

Jian Cheng, Dinggang Shen, Pew-Thian Yap. Non-Negative Spherical Deconvolution for Fiber Orientation Distribution Estimation. Scientific Meeting and Exhibition of the (ISMRM), Apr 2013, United States. pp.1. hal-00967831

HAL Id: hal-00967831
https://hal.archives-ouvertes.fr/hal-00967831
Submitted on 31 Mar 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Non-Negative Spherical Deconvolution for Fiber Orientation Distribution Estimation

Jian Cheng1, Dinggang Shen1, and Pew-Thian Yap1

1Department of Radiology and Biomedical Research Imaging Center (BRIC), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States

Introduction: In diffusion MRI, Spherical Deconvolution (SD) was proposed to estimate the fiber Orientation Distribution Function (fODF) $\phi(u)$ based on spherical deconvolution using a single-fiber response function $h(u)$[1,2]. The peaks or the shape of fODFs can be used to infer local fiber directions. Constrained Spherical Deconvolution (CSD) [1], which takes into consideration the non-negative of the IODF, is the most widely used method among SD variants. Although CSD is capable of accurately determining fiber directions, it is susceptible to false positive peaks especially in the regions with low anisotropy. This is a common drawback of all existing SD-based methods. Moreover, in practice the IODF estimated using CSD still has significant negative values. We propose a method called Non-Negative Spherical Deconvolution (NNSD) to solve the above two problems. Based on a Riemannian framework of ODFs [3] and Square Root Parameterized Estimation for non-negative definite Ensemble Average Propagator [4], NNSD is formulated such that the non-negativity of the IODF is guaranteed with largely reduced false positive peaks.

Methods: We represent both the IODF and the signal from a single fiber along the z-axis (i.e., the kernel) using Spherical Harmonic (SH) basis with the maximal order l, i.e., $\phi(u) = \sum_{l} c_{l} Y_{l}^{m}(u)$ and $h(u) = \sum_{l} h_{l} Y_{l}^{m}(u)$, respectively, where u is a unit vector and $Y_{l}^{m}(\cdot)$ is the SH basis with order l and degree m. Based on the theoretical results in [1,2], the MR signal attenuation is reconstructed using the spherical convolution between the IODF and the kernel as $E(u) = \sum_{l} \sum_{m} \frac{4\pi}{2l+1} c_{l} h_{l} Y_{l}^{m}(u)$. In NNSD, we estimate instead the square root of the IODF [3,4], i.e., $\phi(u) = \left(\sum_{l} c_{l} Y_{l}^{m}(u)\right)^{2}$. It can be proved that in this case the convolved signal is $E(u) = \sum_{l} \sum_{m} \frac{4\pi}{2l+1} c_{l} h_{l} Q_{m/m}^{l}(u)$, where $Q_{m/m}^{l}(u) = c^{2} K(u)c$, where $K_{m/m}^{l} = \int_{S^{2}} Y_{l}^{m}(u)[Y_{l}^{m}(u)]^{T} d\Omega(u)$ is a mathematical constant, $c = [c_{0}, ..., c_{L}]^{T}$ is the unknown coefficient vector, and $K(u)$ for each u is a fixed symmetric matrix, i.e., $K_{m/m}^{l}(u) = \frac{4\pi}{2l+1} \int_{S^{2}} Q_{m/m}^{l}(u) d\Omega(u)$. We then estimate the parameter c from the measured diffusion signal vector $E = (E_{1}, ..., E_{N})^{T}$ by minimizing $J(c) = \sum_{l} \|c^{2}K(u)c - E_{l}\|^{2} + \lambda c^{T}Lc \quad \text{s.t.} \|c\| = 1$ where L is the Laplace-Beltrami regularization diagonal matrix with element $L_{ii} = (i+1)^{2}$. Since IODF is a probability density function and SH is an orthonormal basis, we have the constraint $\|c\| = 1$ [3,4]. Riemannian gradient descent on the sphere is performed to minimize the above cost function [4], i.e., $(1.0, ..., 0.0)^{T}$, indicating isotropic IODF, is used for initialization. The IODF is recovered by squaring the square root of the IODF naturally resulting in non-negativity of the IODF.

Experiments and Results: The proposed NNSD method was validated using both synthetic data and real data. The synthetic DWI data was generated based on a mixture of tensors with eigenvalues [1.7,0.3,0.3] x 10^{-3} mm^3/s, with a b-value of 1500 s/mm^2, and with 81 directions non-collinear gradient-sensitized directions. This data was perturbed with Rician noise with a low SNR=10. The SNR is defined as the ratio between the standard deviation of the background image representing the Generalized Fractional Anisotropy (GFA) [5] values calculated from the fODFs. The IODFs were normalized based on the intensities of the background image. It can be observed that in both single-fiber and crossing regions, NNSD and CSD both can correctly detect the local fiber orientations. The IODFs computed by NNSD however do not contain any negative values, as opposed to CSD. In more isotropic regions, the IODFs given by NNSD have significantly lower GFA than those by CSD, signifying the fact that NNSD removes a significant amount of false positive peaks. Evaluation was also performed using real human data with a b-value of 2000 s/mm^2, 120 gradient directions, 2mm isotropic voxel dimensions, TR/TE=124,000ms/116ms. We used the same parameters as those in the synthetic data for CSD and NNSD. The results are shown in the right two subfigures in Fig.1. CSD results in a significant amount of false positive peaks, which is especially evident in the regions with low anisotropy, as indicated by the high background GFA values. NNSD obtains a very clean IODF field with similar peaks as detected by CSD in the high anisotropic regions and more isotropic IODFs in the isotropic regions, such as CSF and grey matter.

Fig. 1: CSD and NNSD results for synthetic data (two left panels) and real data (two right panels). Min-max normalization was not performed.

Conclusion: We have proposed a novel Spherical Deconvolution (SD) method called Non-Negative SD (NNSD) to overcome the two main limitations of existing IODF estimation methods. First, NNSD guarantees that the estimated IODFs are non-negative across the whole continuous spherical domain. Second, NNSD reduces significantly the false positive peaks that are prevalent in methods like CSD [1]. The clean IODF field given by NNSD will help to reduce spurious fiber tracts in tractography algorithms.