Non-Local Non-Negative Spherical Deconvolution for Single and Multiple Shell Diffusion MRI
Jian Cheng, Rachid Deriche, Tianzi Jiang, Dinggang Shen, Pew-Thian Yap

To cite this version:

HAL Id: hal-00967830
https://hal.archives-ouvertes.fr/hal-00967830
Submitted on 31 Mar 2014
I. Introduction

In diffusion MRI (dMRI), Spherical Deconvolution (SD) is a category of methods which estimate the fiber Orientation Distribution Function (ODF). Existing SD methods, including the widely used Constrained SD [1], normally have two common limitations: 1) the non-negativity constraint of the ODFs is not satisfied in the continuous sphere; 2) many spurious peaks are detected, especially in the regions with low anisotropy. In [2], we proposed a novel SD method, called Non-negative SD (NNSD), to avoid these two limitations. NNSD guarantees the non-negativity constraint of ODFs in the continuous sphere; and it is robust to the false positive peaks. In this abstract, we propose Non-Local NNSD (NLNNSD) which considers non-local spatial information and Ricci noise in NNSD, and apply it to the testing data in ISBI contest.

II. Method

We represent the square root of ODF \(\Phi(u) \) as a linear combination of real Spherical Harmonic (SH) basis \(Y^m_l(u) \) with even order, i.e., \(\Phi(u) = \sum_{m=0}^{L} \sum_{l=0}^{m} \sum_{c} \sum_{\alpha} \sum_{v'=0}^{1} c_{m,l,c}^{(c)} Y_{m,l}(u)^{2} \), where \(c_{m,l,c}^{(c)} \) is the integral constant of three SHs which can be calculated from the Wigner 3-j symbol. Then on the closed formed of spherical convolution using SH basis, for a given axisymmetric fiber response function along z-axis \(H(q)(0,0,1) \), we have

\[
E(q) = \sum_{c=0}^{C} \sum_{\alpha=0}^{\alpha} \sum_{v'=0}^{1} \sum_{l=0}^{L} \sum_{m=0}^{m} c_{m,l,c}^{(c)} Q_{m,l}(q)^{2} \beta_{c} \sum_{l=0}^{L} \sum_{m=0}^{m} h_{c}(q) Y_{m,l}(u)^{2} = c^{2} K(q) \epsilon
\]

where for any fixed vector \(q = qu \), \(K(u) \) is a square matrix with the elements \(K_{mm}^{uu}(qu) = \sum_{l=0}^{L} \sum_{m=0}^{m} \sum_{v'=0}^{1} \sum_{l=0}^{L} \sum_{m=0}^{m} c_{m,l,c}^{(c)} Q_{m,l}(q)^{2} \beta_{c} \sum_{l=0}^{L} \sum_{m=0}^{m} h_{c}(q) Y_{m,l}(u)^{2} \). Then NNSD [2] is to estimate \(\epsilon \) by minimizing

\[
J(\epsilon) = \frac{1}{2} \sum_{i=1}^{N} \left(\epsilon^{T} K(q) \epsilon - E_{i}^{2} \right)^{2} + \frac{1}{2} \epsilon^{T} \Lambda \epsilon, \quad \text{s.t.} \quad ||\epsilon|| = 1
\]

where \(\Lambda \) is a diagonal matrix with elements \(\Lambda_{mm} = \lambda_{m} \), for the Laplace-Beltrami regularization. The constraint \(||\epsilon|| = 1 \) is because of \(\sum_{i=1}^{N} \sum_{i=1}^{N} \Phi_{i} u_{i} d u = 1 \). In this abstract, we propose Non-local NNSD (NLNNSD) which considers the non-local spatial information and Ricci noise. Non-local mean has been used in image denoising [3], [4] and regularization [5]. The cost function in NLNNSD is

\[
J(\epsilon^{(c)}) = \frac{1}{2} \sum_{i=1}^{N} \sum_{i=1}^{N} \left((c^{T} \epsilon^{T}) K(q) \epsilon - \text{NLM}(\epsilon^{(c)}) \right)^{2} + \frac{1}{2} (c^{T} \epsilon^{T}) A \epsilon + \frac{1}{2} \lambda_{NLNNSD} ||\epsilon^{(c)} - \text{NLM}(\epsilon^{(c)})||^{2}
\]

where \(c^{(c)} \) and \(E_{i}^{(c)} \) are the coefficient vector and diffusion signal at voxel \(x \), \(V \) is the number of voxels, NLM(\(c^{(c)} \)) is the non-local Riemannian mean of \(c^{(c)} \) [6], NLM(E_{i}^{(c)}) is the fixed vector in the neighborhood \(N_{r} \) of \(y \), \(G_{y} \) is the Gaussian weighting with standard deviation of \(a \), and \(Z_{y} \) is the normalization factor. \(\lambda_{NLNNSD} \) is the non-local weight determined by the distance of \(\lambda_{NLNNSD} \) with another set of \(\{a, b\} \).

To minimize Eq. (3) with the constraint \(||\epsilon|| = 1 \), we first set \(\lambda_{NLNNSD} = 0 \), and perform a Riemannian gradient descent on the sphere \(||\epsilon|| = 1 \) [6] to minimize \(J(\epsilon^{(c)}) \) individually for each voxel \(x \).

\[
(\epsilon^{(c)})^{(k+1)} = \text{Exp}_{(x)}(\frac{1}{2} \nabla_{\epsilon} J(\epsilon^{(c)})) = \text{Exp}_{(x)}(\epsilon^{(c)} \text{A})
\]

The isotropic ODF with \(c = (1, 0, \ldots, 0) \) is chosen as the initialization. Then the non-local Riemannian mean is performed to calculate NLNNSD at each voxel. Then the Riemannian gradient descent is performed again with \(\lambda_{NLNNSD} \) and the estimated non-local mean NLNNSD in Eq. (3). Note that this procedure can be iteratively performed to update NLNNSD at each voxel, however in practice we found the result with just one iteration is enough.

III. ISBI HARDI Reconstruction Challenge

In the ISBI reconstruction challenge, the testing data was generated based on Numerical Fibre Generation toolbox [7]. We test the proposed NLNNSD in the data with three kind of sampling schemes: 1) single shell DTI scheme with 32 directions, \(b = 1200s/mm^{2} \); 2) single shell HARDI scheme with 64 directions, \(b = 3000s/mm^{2} \); 3) multipole shell DSL-like scheme with 514 directions, \(b \in (0, 4000)(s/mm^{2}) \). For all night datasets (three schemes with three SNR 10, 20, 30), we fixed \(L = 8, \lambda_{NLNNSD} = 0, \lambda_{NLNNSD} = 1 \), and used the tensor fiber response function with FA of 0.8, mean diffusivity of 0.8. In the non-local mean of \(c^{(c)} \) and \(E_{i}^{(c)} \), we uses a 11×11×11 search window, and a 3×3×3 patch to define the weights, where the parameters \(a \) and \(h \) were tuned respectively for \(c^{(c)} \) and \(E_{i}^{(c)} \) to obtain visually good results for each dataset.

References