Noise-induced phase slips, log-periodic oscillations, and the Gumbel distribution

Abstract : When two synchronised phase oscillators are perturbed by weak noise, they display occasional losses of synchrony, called phase slips. The slips can be characterised by their location in phase space and their duration. We show that when properly normalised, their location converges, in the vanishing noise limit, to the sum of an asymptotically geometric random variable and a Gumbel random variable. The duration also converges to a Gumbel variable with different parameters. We relate these results to recent works on the phenomenon of log-periodic oscillations and on links between transition path theory and extreme-value theory.
Type de document :
Article dans une revue
Markov Processes And Related Fields, Polymat Publishing Company, 2016, 22 (3), pp.467-505. 〈http://math-mprf.org/journal/articles/2016/〉
Liste complète des métadonnées

Littérature citée [59 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00967427
Contributeur : Nils Berglund <>
Soumis le : jeudi 2 octobre 2014 - 14:50:10
Dernière modification le : jeudi 7 février 2019 - 16:47:15
Document(s) archivé(s) le : samedi 3 janvier 2015 - 11:00:59

Fichier

ihp14_rev.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00967427, version 2

Collections

Citation

Nils Berglund. Noise-induced phase slips, log-periodic oscillations, and the Gumbel distribution. Markov Processes And Related Fields, Polymat Publishing Company, 2016, 22 (3), pp.467-505. 〈http://math-mprf.org/journal/articles/2016/〉. 〈hal-00967427v2〉

Partager

Métriques

Consultations de la notice

285

Téléchargements de fichiers

74