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ABSTRACT

      In this chapter, we consider the effect of mechanical vibration on the onset of convection in 

porous media. The porous media is saturated either by a pure fluid or by a binary mixture. The 

importance of transport model on stability diagrams are presented and discussed. The stability 

threshold for the Darcy-Brinkman case in the RaTc-R and kc-R diagrams are presented ( where 

RaTc , kc and R are the critical Rayleigh number, the critical wave number and the vibration  

parameters respectively). It is shown that there is a significant deviation from the Darcy model. 

In the thermo-solutal case with the Soret effect, the influence of vibration on the reduction of 

multi-cellular convection is emphasized. A new analytical relation for obtaining the threshold 

of mono-cellular convection is derived. This relation shows how the separation factor  is 

related to controlling parameters of the problem,  = f (R, *
, Le) when the wave 

number 0k . The importance of vibrational parameter definition is highlighted and it is 

shown how, by using a proper definition for vibrational parameter, we may obtain compact 

relationship. It is also shown how this result may be used to increase components separation.

KEYWORDS

Porous media, Darcy-Brinkman model, high-frequency vibration, double diffusive convection, Soret 

effect, linear stability, long-wave mode, separation 

1.1 Introduction

Microgravity research deals with the effects of reduced gravitational force on physical, chemical and 

biological phenomena. Many scientific disciplines are affected by gravity such as fundamental physics, 

fluid mechanics, transport phenomena, etc. It should be noted that some of these disciplines are 

laboratory sciences that inherently use controlled and model experiments.

In a reduced gravity, the decrease in rates of sedimentation, hydrostatic pressure and buoyancy-driven 

flows cause other effects to become more important. These effects at the same time can be observable 

and measurable. The acceleration due to vibration can then be treated as an important and interesting 

experimental parameter. It has been shown that a spacecraft in orbit is subject to many disturbing 

influences of human as well as equipment origin. These influences result in the appearance of residual 

accelerations, which are commonly called “g-jitter”. As a first approximation, “g-jitter” may be 

modeled as mono-frequency vibration (see for example Alexander (1994) or Nelson (1991)).

The exploration of this parameter at normal earth gravity and at reduced gravity, may provide a better 

understanding of certain physical process, and possibly may lead to the identification of new 

http://www.editorialmanager.com/tipm/download.aspx?id=27697&guid=1a685fd8-1fbd-434a-8b43-7d736e68cb7b&scheme=1
http://www.editorialmanager.com/tipm/viewRCResults.aspx?pdf=1&docID=1113&rev=0&fileID=27697&msid={0B21FE03-F2B7-42E1-B2C3-ACFD891EBC6D}
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phenomena. One idea that may be associated with microgravity is the commercial manufacturing in 

space environment. We summarize below some of these aspects.

Material science and processing

The microgravity environment provided by an orbiting spacecraft or space station offers new 

opportunities in control of the solidification process. Reduction of convective velocities permits, in 

some cases, more precise control of the temperature and composition of the melt. Likewise, body force 

effects such as sedimentation will be reduced. To accomplish the objectives discussed above, it is 

necessary to conduct a series of carefully chosen, well conceived experiments. At the same time, these 

experiments should delineate the advantages and limitations of microgravity research. For example, 

microgravity experiments may be used to elucidate the essential features of solidification process and 

suggest better control strategies. These strategies may improve the current technologies for earth-

bound experiments; an example is the application of mechanical vibration (shaking) of the container.

Another aspect which is of highest importance is the prediction and control of microstructures. The 

region between the advancing solid and dendrite tip is called the “mushy zone”. This region is 

composed of a fine, micrometer length scale mixture of liquid and solid. This closely resembles 

transport in porous media and this is the reason porous media modeling has received much attention. 

By carefully controlling the direction in which heat is extracted (directional solidification), interesting 

controlled solid-liquid micro-structure can be produced. 

Diffusive transport processes

Under normal gravitational acceleration, multi-component fluids experience various modes of thermo-

solutal convection (depending on the relative orientation of temperature and concentration gradients 

with each other and with the buoyancy vector). With reduced gravity, there is an attractive opportunity 

to obtain a better fundamental understanding of temperature-concentration interactions which may be 

overshadowed under terrestrial condition.

Fluid mechanics and transport phenomena

Fluid mechanics and transport phenomena are influenced significantly by gravity. As a consequence, 

different behavior may be expected for many fluid configurations in a microgravity environment. Also, 

the reduction of gravitational body forces leads to the dominance by other forces normally obscured in 

terrestrial environment. Because fluid mechanics and transport processes are involved in many areas of 

microgravity research, they represent a common theme for fundamental studies.

Fluid mechanics and transport phenomena also play an essential role in many space based 

technologies. Space system designer will be constantly challenged to develop new technologies and 

critical concepts that involve fluid mechanics and transport phenomena in low gravity environment.

Unfortunately, predictive models for the low gravity environment are often inadequate.

Our objective in this chapter is to highlight some of these predictive models in thermo-vibration 

problems in porous media.

1. 2 A brief summary of thermal vibrational convection in porous media

      In recent years, effects of mechanical vibration on the stability threshold of thermal systems have

been the subject of numerous studies. In broad terms, the subject of thermo-vibration convection 

concerns the appearance of a mean flow in a confined cavity filled with a fluid (mono or multi-

component) subjected to temperature or concentration non-homogeneities. This type of convective 
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motion, in which the buoyancy force may be thought of as time dependent, has attracted the attention 

of many researchers. Gershuni and Lyubimov (1998) gave a summary of different aspects of thermo-

vibrational problem. Their work mainly covers the Russian researches in this field and focuses on fluid 

media. One of the most interesting features of this book is a comprehensive treatment of the so-called 

time-averaged method. In this method, valid under the limiting case of high-frequency and small 

amplitude vibration, the time dependent acceleration does not appear explicitly in the governing 

equations. Instead a vibrational force due to its mean energy appears in the momentum equation. 

Furthermore, in some cases the time-averaged method provides us with closed form analytical 

solutions from which it is possible to study the onset of convection. Given the fact that stability 

characterization of thermal vibrational convection is generally complicated and depends on many 

physical parameters, the existence of some closed form relations is quite beneficial in understanding 

these problems. It should be noted that this method was first proposed by Simonenko and Zenkovskaya 

(1996). Thermo-vibration problem has received particular attention in porous media, too. Generally, 

these studies can be classified in two groups: porous media saturated by a pure fluid or by a binary-

mixture.  Here we report only the researches dealing with the high-frequency and small amplitude 

vibration, for other cases the readers can refer to Razi et al. 2008. Zen’kovskaya (1992) studied the 

effect of vertical vibration (parallel to the temperature gradient) on the onset of convection in a 

horizontal porous layer. The Darcy model is used in the momentum equation. It is found analytically 

that vibration has a stabilizing effect (it increases the critical Rayleigh number). In another study, 

Zen’kovskaya and Rogovenko (1999) completed the previous work by considering arbitrary directions 

of vibration. The result of their linear stability analysis showed that only the vertical vibration has

always a stabilizing effect. In addition, they find that convection under microgravity is possible 

provided that the direction of vibrational is not parallel to the temperature gradient. Bardan and 

Mojtabi (2000) extended the vertical vibration results to the confined cavity geometry. In addition to 

performing the linear stability analysis, they conducted a weakly non linear stability analysis too. They 

concluded that the primary bifurcations were of symmetry-breaking pitch fork type. Razi et al. (2002) 

and Charrier-Mojtabi et al. (2003) discussed the validity of the time-averaged formulation. Bardan et 

al. (2004) analyzed the importance of vibrational parameter in physical interpretations of the thermal 

stability results. Finally, Charrier-Mojtabi et al. (2006) revisited the confined cavity and infinite 

horizontal porous layer problems under the effect of vertical vibration. From a theoretical point of 

view, they found how we may estimate the stability results of confined cavity from the results obtained 

from an infinite horizontal porous layer. 

All the papers cited above dealt with porous media saturated by a single component fluid. For the 

problems involving porous media saturated by binary-mixture, we may cite the work of Sovran et al 

(2002). They presented a linear stability analysis of thermo-solutal problem. The Soret effect was also 

considered in the governing equations. They concluded that vertical vibrations increased the stability 

threshold. In addition, they presented the results of the Hopf bifurcation for negative separation ratios. 

Charrier-Mojtabi et al. (2004) investigated the influence of vibration on the Soret-driven convection. 

The confined cavity and infinite horizontal porous layer saturated by a binary-mixture were 

considered. Different directions of vibration were considered. From the linear stability analysis they 

concluded that vertical vibration had a stabilizing effect on the stationary and Hopf bifurcations. The 

stability diagrams in kc- coordinate illustrated that vibration reduced the critical wave number too. 

They presented many tables which highlighted the effect of vibration on the Hopf frequency and the 

Nusselt number. Some analytical relations for the long wave mode instability were proposed, too.

Elhajjar et al. (2008), revisit the Sovran et al. (2002) problem. They propose a new application for the 

effect of vibration, namely a better species separation in the case of the long wave mode. Furthermore, 

for the first time in thermo-vibration problems they perform a linear stability analysis of the long wave 

mode. They emphasize that the mono-cellular convection loses its stability via a transient bifurcation. 

They characterized this stability by its critical Rayleigh, wave number and oscillatory frequency. In the 

follow up, they showed that vibration had a stabilizing effect on this kind of instability. Although 

thermo-solutal convection problems with the Soret effect are important from an applied point of view, 

thermo-solutal problems without the Soret effect has their own merits. In this kind of thermo-solutal
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problems, the concentration gradient is imposed and is not induced by a temperature gradient. As we 

may find analytical relations for the onset of stationary and the Hopf bifurcations, we may have a 

better opportunity to study the sensitivity of each parameter on the critical values of Rayleigh and 

wave numbers. For these studies, we may mention Jounet and Bardan (2001) and Mojtabi et al. (2005).

2. The effect of high-frequency vibration on the onset of convection in a horizontal 

porous layer saturated by a pure fluid

The problem of the onset of convection in an infinite horizontal layer is well suited to highlight 

mathematical and physical features of thermo-vibrational problems. This is why we begin by this 

problem. Later we will discuss the effect of different transport models on the convection threshold, 

namely Darcy and Darcy-Brinkman models.

2.1 Mathematical formulation

The geometry of the problem consists of two horizontal parallel plates having infinite extension

in the ox direction. These plates are rigid and impermeable; they are kept at constant but different 

temperatures T1 and T2. The distance between the plates is H. The porosity and permeability of the 

porous material filling the layer are  and K respectively. The porous layer and its boundaries are 

subjected to a harmonic vibration. We suppose that the porous medium is homogenous and isotropic. 

The fluid is assumed to be Newtonian and to satisfy the Oberbeck-Boussinesq approximation. In the 

momentum equation, the Darcy-Brinkman model is used. In a coordinate system linked to the porous 

layer, the gravitational field may be replaced by the sum of the gravitational and vibrational 

accelerations g g+b2
sin( t)j where j is the unit vector along the axis of vibration, b is the 

displacement amplitude and  is the angular frequency of vibration. After making standard 

assumptions (local thermal equilibrium, negligible viscous heating dissipations …), the governing 

equations for vertical vibration (parallel to the temperature gradient) are written as:
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In system of equations (1), f is the dynamic viscosity of fluid, (c)* the effective volumic heat 

capacity, (c)f is the volumic heat capacity of fluid and * represents the effective thermal conductivity 

and finally  = e/f ( e is the Brinkman effective viscosity)

2.2 Time-averaged formulation

In order to study the averaged behavior of the system (1)-(2), we use the time-averaged 

method. This method has been used under the conditions of high-frequency and small-amplitude of 

vibration. Under these conditions, it is possible to subdivide the fields into two different parts; the first

part varies slowly with time (i.e. the characteristic time is large with respect to the vibration period) 



5

while the second part varies rapidly with time and is periodic with a period of 2/ (this procedure 

was first used in problems concerning fluid media under vertical vibrational by Simonenko and 

Zenkovskaya (1966).

On replacing the above mentioned transformation into equations (1)-(2), and by performing averaging 

procedures over a vibration period we may distinguish the oscillatory fields from mean fields. Two 

coupled systems of equations are obtained. One governs the mean flow and the other the oscillatory 

flow. As the problem depends on several time scales and amplitude ratios, special relationships 

between time-scales and amplitude ratios should be found. Before proceeding with a discussion on the 

time-averaged method, it is informative to describe the nature of momentum and energy equations in 

the thermo-vibrational problem.

For this reason we perform an order magnitude analysis in the oscillatory system.

2.3. Scale analysis method for the oscillatory system

The key step in resolving the closure problem lies in establishing relations between oscillatory 

velocity and temperature fields in terms of the averaged ones. For this purpose, the scale analysis 

method is used. This method has been successfully employed by Bejan (1995, 2000) and Bejan and

Nelson (1998) and Nield and Bejan (1999) in predicting boundary layer approximations, the existence 

of optimal geometries and critical parameters. Later it became an important tool in Constructal theory, 

Bejan (2000) and Bejan and Lorent (2008). The following reference scales are used in the oscillatory 

system of equations: 
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By replacing these scales in the oscillating momentum equation and assuming that for the oscillating 

temperature scale TT  , the buoyancy terms involving T may be neglected (the condition for this 

assumption will be validated later). 

In order to study the possibility of convective motion in the oscillatory momentum equation, the 

following expression is considered:

Buoyancy term (containingT) Inertia (transient term in the momentum equation)

By replacing the order magnitudes of corresponding terms in this expression, we obtain the oscilating 

velocity scale  TbT
scalev (4)

Furthermore, from the inequality Inertia  Darcy and Brinkman Friction terms, we get:
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In relation (5a) and (5b) vib=1/, viscD = K/ and viscB = H
2
/  which represent vibrational , Darcy 

and Brinkman viscous time scales , respectively. Assumptions (5a) and (5b) allow us to neglect the 

viscous terms in the oscillating momentum equation. It should be noted that (5b) is the additional 

assumption related to applying the Darcy-Brinkman model.

Following the same procedure, the order magnitude of important terms in the oscillatory energy 

equation is found. Imposing the oscillatory velocity scale in the equality Convection  Transient term 

and using the hypothesis TT  results in:
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Inequality (6) gives the criterion for small-amplitude vibration. Also, from the following inequality 
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                                                        Transient term >> Diffusive (conductive) terms

we obtain:
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In (7) cond =H
2
/a* represents the conductive time scale. Relation (7) allows us to neglect the 

diffusive terms in the energy equation.

Now that the scale of T’ has been found, the final step is to validate our assumptions in the 

oscillatory momentum equation; in other words it should be shown under which condition 0TTb2

is the dominant buoyancy force.

Under condition:

                                         
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2
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0TTb2
is the dominant buoyancy force in the oscillatory momentum equation. In (8), the 

gravitational buoyancy time scale is defined as buoy =(gTT /H)
1/2

.

2.4 Time-averaged system of equations:

By applying assumptions (5a), (5b), (6), (7) and (8) to the oscillatory system of equations and also 

by applying the Helmholtz decomposition, the oscillatory pressure term may be eliminated. This 

allows the finding of exact oscillatory velocity and temperature (W and  are solenoidal and 

irrotational parts of the Helmholtz decomposition):
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By substituting Eq. (9) and (10) in the coupling terms of mean fields, the time-averaged equations are 

found (details can be found elsewhere Razi et al. (2004)). By introducing reference parameter, T1-T2

for temperature, H for height, H
2
/a* for time, a*/H for velocity, TT for W and a*/K for pressure, 

the resulting averaged system in dimensionless form may be written:
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The corresponding boundary conditions for this system are:
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in the above relationships RaT is the thermal Rayleigh number, Rav is the vibrational Rayleigh number, 

B is the ratio of viscous time scale to the conductive time scale. It should be noted that we may define 

vibrational Rayleigh number as:
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This definition is more appropriate for weightlessness studies, as it is always positive. In any case, 

under simultaneous action of vibration and gravitational accelerations, it is better to separate the 

vibrational parameters from thermal parameters, see Bardan et al. (2004). This remark will be revisited 

in section 3.4.

2.5 Linear stability analysis

2.5.1. Darcy model

In the presence of vertical vibration (vibration parallel to the temperature gradient), mechanical 

equilibrium is possible. In order to find the motionless state, the velocity is set equal to zero. The 

equilibrium state corresponds to a linear distribution of temperature and zero for the solenoidal field.

For linear stability analysis, the temperature, velocity and solenoidal fields are perturbed around the 

equilibrium state. By performing the standard linearizing procedure and developing disturbances in 

normal modes, we obtain:  
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In (13) k is the wave number and ,  , f represent amplitude of velocity, solenoidal and temperature 

disturbances, respectively. Also,  characterizes the eigenvalue of the system, which is generally a 

complex number (=r+Ii). It should be noted that velocity boundary conditions in (12) should be 

modified and the no-slip condition should be imposed. There exist exact solutions of sinusoidal form 

for this system, which upon replacing in (13) results in the following relation for the marginal stability 

(=0):
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For all values of control parameters, it has been verified numerically that i = 0. It can be understood 

from the above equation that, under micro-gravity (RaT = 0), the system remains thermally stable. 

Under the condition of vibration in the presence of gravity, Rav can be replaced by R
2
Ra

2
T. From Eq. 

(14), we get:
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Figure 1, shows the critical Rayleigh number as a function of R for the layer heated from below. We 

conclude that vibration has a stabilizing effect, and the critical Rayleigh number increases. At the same

time vibration, decreases the critical wave number. Another interesting feature of equation (15) is that 

it gives additional information for complete stabilization:

 2
1

R (kc0) (16)

We may observe the existence of this asymptote in Figure 2.

2.5.2 Darcy-Brinkman model

In this section we consider two different sets of boundary conditions, namely free surface and rigid 

boundaries.

2.5.2. A. Free surface boundary conditions (unrealistic boundary condition):

For this case, there is an exact solution for the system of equations and the procedure is the same as 

previous section.  We find an analytical relation which resembles (14):
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From a comparison of equation (14) and (17), we conclude that the Brinkman term only modifies the 

first part, and it has no effect on the second part (vibrational effect). This is due to the fact that 

vibrational effect under high frequency and small amplitude is obtained from neglecting the viscous 

terms. The critical Rayleigh and wave numbers can be found from the following system:
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In this situation, the critical vibrational parameter for absolute stabilization is modified:

                                          0,
)1(4

1
22

2
max  ck

Da
R                                                         (19)

Equation (19) shows that, the stress free boundary conditions, reduces the critical vibrational 

parameter. This is due to the additional frictional effect in the time averaged momentum equation.

2.5.2. B.  Rigid boundary conditions

Figure 3, shows the effect of Da parameter on the onset of convection. For the layer heated from 

below, we see that the Brinkman model modifies the critical RaTc values significantly. This means that 
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by increasing Da, there is a deviation from the Darcy model. This deviation depends largely on 

vibrational parameter, too.  For a detailed description, see Maliwan (2004).

For the layer heated from below, the conductive solution is always stable.

2.6 Some key results

In this section we studied the effect of transport models on the stability threshold under the effect of 

vibration. The direction of vibration is vertical (parallel to the temperature gradient). The time-

averaged method is adopted. For the first time, the time-averaged governing equations for the Darcy-

Brinkman model are obtained. The additional assumption in obtaining this system of equations has 

been explained. We showed that there is a significant deviation (20%) from the Darcy model in

determining the critical Rayleigh number. This effect is not as significant in critical wave numbers.

3. Influence of high-frequency mechanical vibration on a porous media saturated 

by a binary mixture

In this section we study the effect of vibration on a porous media saturated by a multi-component fluid. 

This problem is more interesting than a single-component fluid for in addition to buoyancy forces due 

to the gravity and vibration we may also have the effect of dissipative mechanism. This mechanism is 

cause by diffusion (or thermo-diffusion).  As put forward elsewhere Vaerenberg and legros (1990), the 

Soret effect must be taken into account as it can modify the concentration gradient in the liquid-solid 

interface. Under the Soret effect, the temperature gradient invokes a concentration gradient in a binary 

mixture, see De Groot and Mazur (1984).  From a physical point of view, we may encounter 

oscillatory instability (Hopf bifurcation) which is normally absent in a single component fluid (pure 

fluid) situation under the effect of vibration (see section 2). Many instability modes such as stationary 

multi-cellular, mono-cellular and oscillatory multi-cellular may be observed too.

This problem in the context of the high-frequency vibration in a binary mixture was pioneered by 

(Gershuni et al. 1997) for horizontal vibration and Gershuni at al.(1999) for vertical vibration. Razi et 

al. (2004) completed this study for arbitrary directions of vibration. The geometry was infinite 

horizontal fluid layer. They found that vibration modifies the stability diagram and can be effectively 

used to control the onset of convection. Generally the vertical vibration (parallel to the temperature 

gradient) increases the stability threshold. For the same problem, under finite frequency situations, 

(Smorodin et al. 2002) showed that vertical vibration had stabilizing effect in the synchronous mode.

Due to the application and importance of solidification control and the existing analogies with porous 

media which was previously explained (section 1), many researchers studied this problem in recent 

years. In this context we may mention Sovran et al. (2002), Maliwan (2001), Maliwan et al. (2002) and   

Charrier Mojtabi et al. (2004). Elhajjar et al. (2008) proposed a new application of vibration in 

increasing separation. They also pioneered the stability analysis of the long-wave mode, too.

For the case in which the concentration gradient is imposed independently and is not generated by the 

temperature gradient, we may cite Jounet and Bardan (2001) and Mojtabi et al. (2005).  

3.1 Problem description

The geometry of the problem consists of a rectangular cavity filled with a porous medium and 

saturated by a binary mixture. The aspect ratio is defined as A = L/ H where H represents the height 

and L the length of the cavity. The cavity boundaries are rigid and impermeable; the horizontal 

boundaries can be heated from below or above. The governing equations are written in a reference 

frame linked to the cavity. For the high frequency and small amplitude vibration, the time-averaged 

equations in dimensionless form are written as:
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Where WT and Wc are the solenoidal vectors corresponding to the temperature and concentration 

respectively.

The corresponding boundary conditions are given by:
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                    (20b)

System (20a) depends on the following parameters: the thermal Rayleigh number Ra = KgTH/a
*
, 

the vibrational Rayleigh number Rav =R
2
RaT

2
, the separation factor  = - Ci (1-Ci)(c/T)DT/D

*
, the 

normalized porosity *
(*

= / ) where 
*( ) /( ) fc c   , the Lewis number Le (Le = a

*
/D

*
in which 

a
*

is the effective thermal diffusivity and D
*

is the effective mass diffusivity), the coefficient of the 

unsteady Darcy term in the momentum equation B (in porous media B is normally very small  10
-5

), 

and finally  represents the direction of vibration with respect to the heated boundary.

3.2 Mechanical equilibrium (or quasi-equilibrium)

When the direction of vibration is parallel to the temperature gradient, i.e.  = /2, there exists 

a mechanical equilibrium, for both an infinite horizontal layer and a confined cavity. This solution is 

characterized by:

0,0,,1,0 00000  CTycstCyT WWV                             (21)

However, for other directions of vibration the situation is quite different. For an infinite horizontal 

layer, there exist a mechanical quasi-equilibrium solution, which is represented by zero mean velocity 

and generally non-zero oscillatory part. This motionless state for an infinite horizontal layer is 

characterized by:

0 0 0 1 0 2 0

0 3 0

0, 1 , , W cos ; W 0,

W cos , W 0

x y

x y

T T

C C

T y C c y c y

c y


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  

V
                         (22)
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3.3 Formulation of the stability problem in an infinite horizontal porous layer

In order to investigate the stability of the conductive solution, the fields are perturbed around the 

equilibrium solution. Then, after performing linearization, the disturbances are developed in the form 

of normal modes. It is assumed that the perturbation quantities are sufficiently small so that the 

second-order terms may be neglected. The system of equations for amplitudes can be written as:
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    (23)

The corresponding boundary conditions are given as:

                                    
01xF1xF1xD1x1x

00xF0xF0xD0x0x
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                                         (24)

The solution of system (23)-(24) leads to a spectral amplitude problem in which  is related to the 

important thermo-physical parameters of the problem, namely  =  (Ra, Rav,, , *
, k, Le).  

Generally, the decay rate  is a complex number, i.e.  = r + I i.  For a stationary bifurcation, the 

stability domain is determined by setting  = 0. In the case of an oscillatory bifurcation, the stability 

domain is determined by setting r = 0 (i represents the frequency of the oscillating instability)

3.4 Limiting case of the long-wave mode instability ( =  / 2)

      The results of the previous studies indicate that the long wave mode (k = 0) is the dominant mode 

of the Soret-driven convection under the effect of mechanical vibration in binary liquids. For this 

reason, we study the special case of the long wave mode theoretically. In some related studies in fluid 

media, Gershuni et al.(1997) and (1999) and Razi et al.(2004) showed that asymptotic analysis results 

in a closed form relation for the stability threshold. To obtain such a relation, a regular perturbation 

method with the wave number as the small parameter is performed (for simplifying the procedure we 

drop the hat symbol in (23) and (24)):
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By substituting expressions (25) in the amplitude equations resulting from the linear stability analysis

and factoring the same order of k, we find sequential system of equations:

For the zeroth order (k
0
):

                                         0;0;0;;0;0 0000 00
   TFFcst                                    (26)

For the first-order(k
1
):
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For the second-order(k
2
):

For this order of k we obtain the following system of equations:
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Subjected to the corresponding boundary conditions:

                              0:10
22

2
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dy

d
yandyAt T

After invoking the solvability condition, we find:

                                                    
12

1
2

* TRa

Le

                                                                   (29)

We note that 2 is a real number (2R) which means that instability is of stationary type. For the

marginal stability 2 is set equal to zero and we obtain:

                                                   
Le

RaTcs 
12                                                                                  (30)

As mentioned in Razi et al. (2004) in thermo-vibration problems in fluid-media, we may continue this 

procedure up to the fourth order of k. By setting 4= 0, we find the following relation: 

                                                160)1(14
1

204
*






vLeRa

Le
                                            (31)

The solution of this nonlinear equation shows that from which value of  the long wave-mode may 

appear. The results also emphasize the fact that vibration increases the long wave mode domain.  In 
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other words this means that long-wave mode settles in at lower value of   under the effect of vertical 

vibration. 

In addition relation (31) can be written in a more compact form if we use the alternative definition of 

vibrational Rayleigh number (RaV = R
2

RaT
2
):

                                 0
2016

204160

2016204

*

2

2 


 kfor
R

Le

R


                                              (32)

Relation (32) is the new results which provides us with a theoretical basis for the previous 

publications, Sovran (2001), Charrier-Mojtabi et al. (2004) and Elhajjar et al. (2008). In addition, the 

importance of vibrational Rayleigh definition is highlighted one more time in the Soret driven 

convection. 

These theoretical relations for the long-wave mode for different orientation of vibration are compared 

with the relations previously obtained in fluid media (Razi et al. 2004 and Mojtabi et al. 2005), see 

table 1. The comparison of the results reveals that the Darcy model can capture the essential physical 

features of binary mixture under the effect of vibration in fluid media. 

Relation (32) also shows how by selecting the vibrational parameter, we may increase the mono-

cellular region significantly.

3.5 Stability analysis results for arbitrary values of wave number

      The aim of this section is to present the effect of vibration on the critical Rayleigh number for

arbitrary values of critical wave number.

The results are presented in the stability diagram RaTc-  and  kc-. Only  0 region is considered. 

For complete analysis, the readers are referred to MC. Mojtabi et al. (2004) or Ehajjar et al. (2008).

Figure 4 illustrates the effect of vibration on the onset of convection for the layer heated from below.

For this case the numerical values of physical parameters are chosen as Le = 100, B = 10
-6

and *
= 0.5.  

The vibrational Rayleigh number is varied in the interval 0  RaV  50. We can see that all the curves 

in this region fall between two limiting ones: 1. ( RaV = 0, classical Soret driven convection under 

static gravity ) and 2. (k = 0, or the long wave mode instability). Therefore, we conclude that RaT 
12/(Le) is a sufficient condition for the onset of convection. Figure 5 shows the effect of vibration on 

the critical wave numbers. It is evident that vibration decreases the multi-cellular instability, in other 

words vibration reduces the critical wave number. Another interesting result is that vibration reduces 

the mono-cellular threshold values of  for convection, cf Figure 6. This conclusion is in perfect 

agreement with relations (31) and (32).

3.6 Separation management under high frequency vibration

As mentioned elsewhere (Bonneville 1990), finding experiments that emphasizes the benefits of 

residual acceleration is of prominent importance. Recently, Elhajjar et al. (2008), proposed such an 

application. They showed that in the case of mono-cellular convection, there is a possibility of 

increasing separation, cf figure 7. Their study is theoretical as well as numerical. It should be added 

that the separation is defined as S = mA, in which m is the slope of the concentration field in the 

horizontal direction and A is the aspect ratio. They show that there is an optimum value for (LeRa) 

for which S possesses a maximum value:

                                                                  (LeRa )opt = 24                                                             (33)

Equation (33) and (32) may be considered simultaneously to provide us with the set of controlling 

parameter to achieve maximum separation. Figure 8 gives a qualitative representation of flow and 
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concentration fields under different physical situations.  For the case studied, A = 10, Le = 2, = 0.4, 

Ra = 15.7, *
= 0.5. The vibrational Rayleigh numbers considered are set to 0 and 20 ( RaV = 0 and 20). 

In 6(a), the convective flow has multi-cellular nature and it is not possible to achieve the separation of 

the components. However in 6(b), the component separation in binary-mixture is achieved under the 

effect of vibration (all parameters are kept constant except RaV, which is set equal to 20). It is 

noteworthy that vibration has drastically changed the flow patterns, too.

3.7 Summary of key results

      In this section, we presented new results for the Soret-driven convection under the effect of 

vibration. Vibration is in the range of high-frequency and small amplitude and its direction is taken 

parallel to the temperature gradient. The focus was placed on the long wave mode instability. An exact 

analytical relation for characterizing the mono-cellular domain is presented. From this equation we 

may find vibrational parameter for which the mono-cellular flow becomes the dominant flow pattern. 

This conclusion along with better separation results of components under the influence of vibration 

proposed by Elhajjar et al. (2008) may be used to achieve maximum components separation.
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Table 1. Comparison of results of the long-wave mode for the onset of convection in the presence of 

vibration.

Physical 

situation
Fluid layer Porous layer
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Figure 1: Influence of vertical vibration parameter R on the onset of convection in a horizontal 

porous layer saturated by a pure fluid (Darcy model) for the layer heated from below.
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Figure 2: Influence of vibration parameter on the critical wave number kc (Darcy model) for the 

layer heated from below.

Figure 3: Influence of vertical vibration on the critical Rayleigh number for different values of Da

for the layer heated from below.
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Figure 4: Effect of vertical vibration on the onset Soret-driven convection, Le = 100, *
= 0.5 and B = 

10
-6

for the layer heated from below.

Figure 5: Effect of vertical vibration on the critical wave number in Soret-driven convection, 

Le = 100, *
= 0.5 and B = 10

-6
for the layer heated from below
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Figure 6: Effect of vertical vibration on the onset of mono-cellular separation ratios, Le = 100, *
= 

0.5 and B = 10
-6

for the layer heated from below.

Figure 7: Separation (S) versus (Ra Le).
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(a)

(b)

Figure 8: Streamlines and iso-concentrations  a) Static gravity (Rav = 0 ) b) simultaneous effects of 

vibration and gravitation (RaV = 20), RaT = 15.7, Le = 2, A = 10 and *
= 0.5
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NOMENCLATURE

Roman Letters

a* effective thermal diffusivity, m2.s-1

b vibration amplitude, m

Ci initial mass fraction
C’ dimensional mass fraction

D* mass diffusion coefficient

DT thermodiffusion coefficient

Da Darcy number

e                        the direction of vibration

g gravitational acceleration, m.s
-2

H height, m

j unit vector in y direction

k wave number 
K permeability, m2

Le Lewis number(a/D*)

P pressure, N.m
-2

R vibration paramete

Ra Rayleigh number

Rav vibrational Rayleigh number

T temperature, K

t dimensional time

V velocity, m.s
-1

W solenoidal vector 

Greek Letters

 direction of vibrationC                   coefficient of mass expansion

T
 coefficient of thermal expansion porosity

* normalized porosity 
* effective thermal conductivity  kinematic viscosity, m

2
.s

-1

 density, kg.m-3

(c)* volumic heat capacity of medium vibration period separation factor dimensional pulsation


