Thinking like a fish: a key ingredient for development of effective fish passage facilities at river obstructions

J. G. Williams, Greg Amstrong, Christos Katopodis, Michel Larinier, François Travade

To cite this version:


HAL Id: hal-00967134
https://hal.archives-ouvertes.fr/hal-00967134
Submitted on 28 Mar 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 11277

To link to this article: DOI:10.1002/rra.1551
URL: http://dx.doi.org/10.1002/rra.1551

To cite this version: Williams, J. G. and Armstrong, Greg and Katopodis, Christos and Larinier, Michel and Travade, François

Any correspondance concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
THINKING LIKE A FISH: A KEY INGREDIENT FOR DEVELOPMENT OF EFFECTIVE FISH PASSAGE FACILITIES AT RIVER OBSTRUCTIONS

J. G. WILLIAMS, a,b* G. ARMSTRONG, c C. KATOPODIS, d M. LARINIER e and F. TRAVADE f

a National Marine Fisheries Service—NOAA Fisheries, Northwest Fisheries Science Center, Seattle, Washington, USA
b University of Washington, School of Aquatic and Fishery Sciences, Seattle, Washington, USA
c Environment Agency Wales, Haverford, Pembrokeshire, Wales, UK
d Katopodis Ecohydraulics Ltd., Winnipeg, MB, Canada
e National Office for Water and Aquatic Environment (ONEMA), Institut de Mécanique des Fluides, Toulouse, France
f Electricité de France—Études et Recherches, Chatou CEDEX, France

ABSTRACT

Worldwide, obstructions on watercourses have interfered with migratory pathways of fish species, reducing life-cycle success and often eliminating diadromous fish species altogether from river basins. Over the last century, efforts to mitigate these effects were initially directed at developing fishways for upstream, high-value migrant adult salmon. In more recent years, efforts have turned to developing fishways for other species. Results of past research suggest that the development of effective fishways requires biological knowledge of fish behaviour when encountering variable flows, velocity and turbulence, combined with hydraulic and civil engineering knowledge and expertise to develop facilities that provide appropriate hydraulic conditions that fish will exploit. Further, it often requires substantial financial resources for biological and hydraulic testing as well as engineering design, particularly where prior knowledge of the behaviour of target fish species does not exist. Where biological or engineering knowledge (or both) is absent, development of effective passage facilities must take on a trial and error approach that will almost certainly require years to attain success. Evaluations of existing adult and juvenile fish passage facilities, where they have been carried out, suggest that migrant fish reject areas with hydraulic conditions they determine unsuitable. Even well designed fish ladders or nature-like bypass channels for upstream migrants, even those with good attraction flows, will fail if incorrectly sited. Although progress has been made, developing successful installations for downstream migrants remains much more difficult, probably because downstream fish move with the flow and have less time to assess cues at entrances to any bypasses that they encounter.

KEY WORDS: dams; fish passage; fish behaviour; fish bypass systems

INTRODUCTION

Worldwide, myriad anthropogenic obstructions on watercourses have had tremendous negative effects on the migratory pathways of diadromous and potamodromous fish. The consequent reduction in life-cycle success has often eliminated species, especially those that are diadromous, from river basins across the globe. Some obstructions in Europe had fishways installed to facilitate upstream passage as long ago as 300 years (Clay, 1995). For salmon, at least, it appears that the most successful early fishways were a series of small pool and weir configurations with a shallow slope that covered relatively short vertical rises (Francis, 1870). In contrast, fishways installed from the mid to late 1800s at dams on rivers of the east coast of the USA may have passed salmon (Salmo salar), but they were singularly unsuccessful in passing shad (Alosa sapidissima) (Stevenson, 1897). Construction costs for fishways have always been, and indeed remain, an issue for owners of weirs and dams; thus, the shorter and steeper the passage route, the less the cost to construct. However, historically, salmon did not successfully pass steep pool fishways (Francis, 1870), and this led to research and development of more effective types of passes. In the early 20th century, research began that would lead to a successful design of relatively narrow sloping fishways with various vanes (Denil, 1909a, 1938), and variants of these were later tested by McLeod and Nemenyi (1941) in the late 1930s. Although most early efforts were directed at salmon and alosids, the large number of fishway designs tested by McLeod and Nemenyi (1941) involved fish present in Iowa River, which included trout, catastomids, clupeids, cyprinids and percids. Species of fish from these groups showed different preferences for pool and weir configurations—with or without orifices, various vane configurations in Denil-type fishways and preferences for passage in light or dark. In the early 1980s, further variants...
on Denil fishways provided an ability to juxtapose wider
and shallower types of bottom baffle units to create passes
with considerably higher discharge (Larinier, 2002a). Some
of the designs pass a wide range of species with varying
swimming capabilities probably by virtue of the relatively
heterogeneous conditions within them.

Although some migrating fish might have successfully
passed upstream over low-head obstructions with rudimentary
fishways in the early last century, Calderwood (1928) lamented
that hydropower dams nearly always blocked salmon
runs completely and that, essentially, no fishways in either
Europe or the USA successfully and effectively passed salmon above them. Because of the importance of salmon
and steelhead (Oncorhynchus sp.) runs in the Columbia
River, USA, great concern existed about the ability to con-
struct effective fishways for Bonneville Dam when it was
designed in the 1930s (Holmes and Morton, 1939). The
fear of possibly destroying runs on the largest Chinook
designed in the 1930s (Holmes and Morton, 1939). The
River, USA, great concern existed about the ability to con-
struct effective fishways for Bonneville Dam when it was
designed in the 1930s (Holmes and Morton, 1939). The
fear of possibly destroying runs on the largest Chinook
(Oncorhynchus tsawytscha) salmon bearing river in the
world (Griffin, 1935) led to designs for a complex passage
system that consisted of three fish ladders—one for the
powerhouse and one on each side of the spillway and three
pairs of fish locks—one pair located adjacent to each ladder
entrance (one lock was always open for fish passage
whereas the other was filled with water to lock fish to the
forebay). The fish lifts were mostly used experimentally,
but it appeared that salmon more readily used the ladders
than the locks, thus, the lifts were essentially abandoned
after several years. Improvements to pool and weir ladders
and entrance conditions did not occur until after consider-
able research during the 1950s and 1960s at the fisheries en-
gineering research laboratory constructed at Bonneville Dam
(Collins and Elling, 1960; Collins et al., 1963; Connor et al.,
1964; Monk et al., 1989). Although pool and weir ladders
worked at Columbia River dams, they were not feasible
in the Fraser River, British Columbia, Canada, where a
rock slide at Hell’s Gate in 1913 substantially narrowed
the river, increased velocities and decreased upstream pas-
sage of sockeye salmon (Oncorhynchus nerka). Little miti-
gation occurred for decades, but by the 1930s, concerted
efforts began to develop a new type of fishway that could
pass fish upstream through the area. The result of the re-
search was the design of vertical-slot fishways (Clay, 1995).
Vertical-slot fishways were finally installed in 1945/46 and upstream passage of sockeye salmon increased
tremendously under the flow levels for which the fishways
were designed (Talbot, 1950). The estimated 32+ million
adult sockeye return to the Fraser River in 2010 was the lar-
gest since prior to the blockage in 1913.

The development and refinement of pool and weir, vertical
slot and steep slope fishways continued into the latter half of
the 20th century and were primarily targeted at salmon and
shad (Alosa spp.) in North America and Europe although
as early as the 1930s, variants of pool and weir and steep
slope fishways were found to successfully pass a range of
other fish species (McLeod and Nemenyi, 1941). In the last
20 years, more efforts have been expended toward adapting
these types of passes to a wider range of fish such as
lamprey (Keef er et al., 2010) and potamodromous species
(e.g., see Katopodis et al., 1991; Silva et al., 2009; Silva
et al., 2010). Because these latter species often have lesser
swimming capabilities than salmon and shad, the efforts
have been directed toward quantifying the rather complex
fishway hydraulics beyond mean velocities and depths and
developing configurations with lower velocities, slopes,
head drops and power dissipation, breaking up eddies or
using roughness in the bottom of the passes (Katopodis,
1992, 2005). More recent research has also focused on the
development of fishways with greater amounts of hydraulic
heterogeneity to provide conditions that allow both more
species and much greater range in sizes of fish that can
pass through them (Katopodis et al., 1991; Mallen-Cooper,
1999; Katopodis, 2005; Mallen-Cooper and Brand, 2007;
Mallen-Cooper and Stuart, 2007; Tarrade et al., 2008;
Baumgartner et al., 2010).

In some cases, despite a lack of knowledge about a local
species ability to utilize fishways, regulators may have
required that dams have fish passage facilities installed. In
South America, for example, numerous hydropower dams
were constructed with fish passes and subsequent evalua-
tions of some of these facilities have indicated that only small
percentages of fish pass them (Oldani and Baigún, 2002;
Agostinho et al., 2007b; Pompeu and Martínez, 2007). In
other cases, adults have appeared to successfully pass up-
stream (Agostinho et al., 2007a; Pelicice and Agostinho,
2008), but it was not clear if juveniles could make it down-
stream. Although considerable efforts over decades led to
effective fish passes for salmon, the same configurations in-
stalled in areas where other species migrate will not neces-
sarily work. To develop good passage systems, it requires
knowledge of swimming capabilities and hydraulic prefer-
ces of fish. In Brazil, work has started to develop this
important information for some species of concern (Santos
et al., 2007, 2008).

When taken in combination, the early research to develop
upstream passage facilities indicated that carefully con-
trolled studies in laboratories, using naturally migrating fish,
could lead to fishway designs that upstream migrant fish
could effectively ascend. Nonetheless, Francis (1870) had
already recognized that the best designed fishway would
not work unless fish could readily find the entrance;
whereas Denil (1909b) and McLeod and Nemenyi (1941)
concluded further that fishway entrances needed to attract
fish and have a quantity and characteristic of flow that would
enable them to easily enter. For upstream migrants, outside
of laboratory settings, little information existed about how
fish found ladder entrances or the effectiveness of location and attraction flows for fish.

Finally, technical fish passes are not the only possible solution to passage at river obstructions. In Canada since the 1970s (Katopodis, 2005) and particularly in Europe somewhat later (Parasiewicz et al., 1998), nature-like fish passes have been constructed at many obstructions including even large dams. They look essentially like a small stream. Nonetheless, for these alternative passage systems to work effectively, just as with technical fish passes, they need to have entrances that fish readily find, hydraulics that attract fish to enter and hydraulics within the nature-like systems that fish will readily pass to the upper end where the exit is (Schmutz et al., 1998; Aarestrup et al., 2003; Calles and Greenberg, 2005; Katopodis, 2005; Calles and Greenberg, 2007).

In contrast to the considerable efforts that had gone into the development of upstream passage facilities, much less effort had been expended to develop facilities for downstream migrants, particularly for salmon. This resulted for a number of reasons. Most downstream-migrating salmon are juvenile fish and the magnitudes of fish passing dams were 'out of sight, out of mind'; concern about loss of fish passing one dam often did not exist, and fish hatcheries were considered a solution (Ebel, 1985). Nonetheless, mortality to downstream migrants had long been recognized. In Europe, during the early 20th century, Denil (1909b) identified damage inflicted by turbines as well as bottom or surface bypasses on silver eels (Anguilla anguilla) in Germany. Later on, Otterstöm (1936, 1942) identified mortality to salmon, trout and eels passing turbines. In the USA, after the completion of Bonneville Dam, Harlan Holmes released fin-clipped juvenile Chinook salmon through turbines and spillways at the dam. Based on adult returns, he determined (unpublished US Fish and Wildlife Service internal report) that fish passing through turbines had about a 10% increase in mortality compared to those passing through spillways. Systematic mortality estimates of juvenile salmon passing through Kaplan turbines at Columbia River dams was quantified in the 1950s (Schoeneman et al., 1961). In the 1950s, Von Raben (1955) established the first model relating damage of fish passing turbines to turbine characteristics. Taken together, decreased survival of fish passing through turbines led to directed efforts to develop strategies that would actively (screen fish away) or passively (alter migration behaviour or allocation of water to a non-turbine route) increase survival for downstream migrants.

Tremendous efforts in the last 50+ years have gone into developing effective screening systems to divert downstream juvenile salmon migrants from turbines at Columbia River dams (Williams, 2008). Efforts to develop screening systems in other river systems for downstream anadromous fish have been less successful (Haro et al., 1998). As an alternative to expensive screening systems, most research in the last 20 years has focused on the development of surface bypass routes for fish (Johnson and Dauble, 2006; Travade and Larinier, 2006). Further, these efforts have generally focused on salmonids and shad; little is known about behaviour nor has much research been directed at developing solutions for generally catadromous, potamodromous and non-salmonid fish (Coutant and Whitney, 2000).

The greatest improvements in fish passage facilities have resulted from research identifying how fish react to varying and well-defined hydraulic conditions—conditions they avoid and ones they seek. This research has led to configurations that upstream migrants can successfully negotiate. Information on the ability of upstream-migrating fish to effectively find and move into fishways has mostly come from field observations and directed studies with radio or acoustically tagged fish. With the exception of some hydraulic models to understand how systems designed to guide or deflect downstream migrants affect hydraulic flow characteristics encountered by downstream migrant fish, nearly all information on the effectiveness of systems to pass downstream migrants at dams has come from field observations of installed prototypes. In recent years with the technology to downsize tags, some radio and acoustic tags inserted in juvenile salmonids (Williams, 2008) and adult eels (Travade et al., 2010) have provided some behavioural information on how these fish approach dams and bypass systems.

Successful fishways have hydraulic conditions that fish choose or do not actively seek to avoid. Although most installed fishways have targeted anadromous fish, the general approach to the development of effective fishways of identifying fish behaviour and developing good hydraulic conditions will likely directly apply to catadromous and potamodromous fish. Here, we provide some additional details.

**THINKING LIKE A FISH**

If we understood what goes through a migrating fish’s mind…if anything at all… or at least understood its innate behavioural preferences when it encounters varying hydraulic conditions; ones it chooses to accept or avoid, we could more easily develop hydraulic conditions that lead toward successful migrations. Humans harvesting fish in rivers have known for aeons that correct placement of fishing gear leads to higher catches of fish because migrating fish in rivers are not randomly distributed. Becker (1938) used the term of ‘thinking like a fish’ over 70 years ago in an effort to persuade boys to try to understand where to find and catch the biggest fish in a body of water, thus, the idea of understanding fish behaviour in flowing water is not new. Although we do not have a clear understanding of fish reactions to macro-hydraulic and
micro-hydraulic conditions, based on decades of observations on upstream migrant fish, considerable knowledge exists on what locations of fishways and attraction flows generally lead to the most successful rates of passage. As early as the 19th century, Francis (1870) observed installed salmon ladders at weirs and based on location or attraction flows suggested why most did not pass fish effectively. For salmon and shad (possibly also Pacific lamprey—*Lampera tridentata*), biologists and hydraulic engineers with considerable experience with site placement of upstream fishways could probably have a ready answer to the question, ‘What would fish do when they migrate into the area?’ (see Clay, 1995; Larinier, 2002c; Armstrong et al., 2004; NMFS, 2004). For upstream migrants, the answer to the question while not ‘thinking like a fish’ does rely on some common behaviours related mostly to changes in water velocities (acceleration) and volume of flow near a fishway site (or potential site) compared to total discharge at a dam (although we recognize that fish also likely consider turbulence, noise, smell, temperature and oxygenation).

On the other hand, although downstream migrants also appear to rely to a large degree on changes in hydraulic conditions, the ability of engineers/biologists to look at a site and determine a location and means to bypass fish is generally lacking for large obstructions. Despite decades of efforts directed at juvenile downstream migrant salmonids; early research that considered behavioural systems—electrical guidance (Pugh et al., 1970), louvres (Bates and Vinsonhaler, 1957), louvres and electrodes combined (Monan, 1967), lights (Fields, 1957), additional work with incandescent and strobe lights in the 1980s (Gessel et al., 1991) and more recent ideas such as creating turbulent flows that fish will follow (Coutant, 2001b) and additional work with lights and infrasound (see Coutant, 2001a for additional behavioural papers), no clear behavioural solutions exist that one can apply to new locations. Physical systems, particularly fish screens, have been more effective for water intakes, irrigation canals and a few small-scale hydroelectric projects (Gessel et al., 1991; Congress of the United States/Ociﬁce of Technology Assessment, 1995; Katopodis, 2005; Katopodis et al., 2005). It appears that external stimuli will not sufficiently influence passage success of the majority of fish that actively migrate downstream through fishways; success depends on fish finding hydraulic conditions they consider acceptable.

Based on success and failures of passage systems for upstream and downstream migrants, it clearly appears to us that migrant fish have a directed, not random migration. They seek conditions that indicate that their migratory pathway will keep them within the main flow of a river, for if not; they might continually end up in unfavourable areas and miss the optimum window for migration or else find themselves in sub-optimal habitats, such as minor tributaries. In either case, evolutionary selection likely weeds out the majority of fish that do not maintain an optimum migration. Upstream migrants tend to seek areas with higher velocity gradients, whereas downstream migrants tend to avoid them. In areas of a river with low velocity, fish may distribute across the width of the river, but as velocity increases, as it does at man-made obstructions, the upstream migrants tend to migrate on the edges of the main body of water—conditions generally found either more toward the shoreline or nearer the bottom—where water velocity gradients exist. In contrast, downstream migrants tend to move toward the area with the highest flow volume as this generally has the highest water velocity but the lowest velocity gradient.

Changes in hydraulic conditions, as reflected in water velocity, turbulence characteristics and momentum, provide the major cue fish use to seek a migration pathway in rivers when confronted with variable hydraulic conditions (near-field behaviour). Below we expand on how migrants respond to hydraulic conditions and why this knowledge is critical to the development of effective fish passage facilities.

**UPSTREAM PASSAGE**

Upstream migrants swim into flow that provides the ability to assess conditions that they encounter for essentially as long as they choose. Thus, they can slowly move upstream and assess possible passage routes carefully. They can reject areas with velocity gradients too low and accept ones where they detect velocity gradients they find acceptable. Likewise, they can choose routes close to the bottom with lower velocities or swim higher in the water column to seek higher water velocities. Knowledge of hydraulic conditions favoured by salmon led to the design of successful fishways for these species. Yet, these fishways do not always pass other species of fish effectively (Moser et al., 2002; Knaepkens et al., 2006; Mallen-Cooper and Brand, 2007). Concern about passing a broader range of species has led to research to obtain information on conditions more favourable for passage for non-salmonids (for example, see Katopodis et al., 1991; Mallen-Cooper, 1999; Moser et al., 2000; Larinier, 2002b; Haro et al., 2004; Katopodis, 2005; Santos et al., 2007; Santos et al., 2008; Silva et al., 2009; Roscoe and Hinch, 2010; Silva et al., 2010).

Whether with large or small fish or those with good or poor swimming capabilities, the ability to develop a successful fishway starts by laboratory testing of a potential passage configuration to see if fish move past it, then determining what hydraulic conditions fish prefer or avoid. Repeat testing with modifications to, for example, weir heights, slot openings, vane arrangements and slopes to alter water velocity and turbulence will lead to a configuration that a species will pass. A successful fishway just links a
series of passage configurations, with the recognition that some fish species might need resting or holding areas if they must pass a large number of passage chambers to transit a high vertical distance. For salmonids initially, but subsequently tested for many other fish species, research to determine acceptable velocities, slopes, resting areas, etc. within pool and weir, vertical slot or Denil configurations has led to successful fishways through which many species of fish readily and successfully pass (Katopodis et al., 1991; Larinier, 2002b; Armstrong et al., 2004; NMFS, 2004).

Although seemingly easy to determine passage conditions that upstream migrant fish will choose and successfully pass, research, for the most part, has only occurred for economically important species such as salmon and shad. It takes considerable resources including both financial and time and a laboratory to conduct the research. Further, it requires engineers and biologists working together to determine the hydraulic conditions through which fish most readily pass and then translate this into a successful design for a fishway. This is particularly important because studies in laboratories seldom have the scale of a fishway installed at a passage barrier.

Clearly, the most effective fishway would take the whole flow of the river. Because of this, probably one of the most complicating factors about fishway design relates to the ‘requirement’ to actually use as little water as possible in the fishway. This results generally from two factors: (i) the more volume of water in a fishway, the higher the cost to construct; and (ii) desire of dam operators to divert as little water as possible to fishways because the more water diverted, the less they have available to produce power or for other purposes. Thus, even the largest fishways at Columbia River dams where hundreds of thousands of adult fish may pass a year utilize only about 5 m$^3$ s$^{-1}$ flow. This fact leads to the most critical part of fishway design for upstream migrants. Although fishways themselves may successfully pass fish upstream once fish enter them, they will not work if the entrance is located in an area unattractive to fish. Migrants tend to move as far upstream as possible when they encounter the high velocity water discharged at dams and avoid low velocity areas (for example, see Arneklev and Kraabol, 1996; Karppinen et al., 2002; Lundqvist et al., 2008). Because fishways nearly always have miniscule flow compared to flows passing a dam, locating the fishway entrance becomes crucial for success. As a result, most successful fishways have entrances located as close to a dam as possible, the entrances are oriented such that fish can move in the current as directly as possible into them (entrances perpendicular to river flow attract fish poorly), and generally, additional attraction water at the entrance is required to provide a large enough flow volume, velocity and favourable turbulence characteristics to attract fish to the fishway entrance. Generating attractive conditions and providing additional flow are often not trivial, yet fishway effectiveness rests on efforts to provide such attraction. Attraction flows used at fishways in the USA, France and the UK typically range from 5 to 10% of the total discharge at a dam. In the Columbia River, this equates to 100 s of m$^3$ s$^{-1}$ flow. In our experience, modern fishways often fail not because they have unsuitable hydraulic conditions but because fish fail to find and enter them. Possibly, prior migration experiences also influence the rate of passage (Thorstad et al., 2008). When fishway entrances are placed too far downstream, fish often fail to find them because the entrances have insufficient attraction to compete with the hydraulic conditions in the river that draw fish upstream to the impassable area. Likewise, fishways placed in the middle of a dam also do not attract fish very effectively because they do not have sufficient velocity gradients and because fish tend to approach a dam via the shorelines.

Even with well designed fishways, not all fish will pass equally well (Caudill et al., 2007). Fish vary in their physical capabilities and behaviours just as humans do. Research to determine the configurations that will work effectively for a species needs to assure that test animals represent a broad range of individuals. Fish populations have not survived for millions of years by all individuals within them having the same abilities or strategies.

In sum, for upstream migrants, we believe that fish seek specific cues from flow and water velocity gradients and successful fishways must account for these. Further, for upstream migrants, a fishway must not only attract fish, it must also have hydraulics that allows a fish to physically ascend it. Research and experience suggest that with sufficient laboratory testing, it is possible to determine hydraulic conditions that fish will actively use as a conduit and develop a fishway that will effectively pass most upstream migrants of any species over a dam of just about any height. Nonetheless, economic considerations might limit the ability to construct an effective fishway for fish without good swimming abilities at dams of considerable height. However, in some cases, this might not lead to recovery of stocks once abundant as very often appropriate habitat has been drowned out, and once fish no longer migrate above dams, activities are permitted that alter water quality, raise temperatures, remove water or change formerly habitable areas for fish into now inhabitable ones. Furthermore, although an individual upstream passage system may cause little harm in itself or only delay migration by hours to a few days while fish seek to find the entrance to the fishway and pass through it, the cumulative effect from a series of dams and fishways may alter timing sufficiently so as to decrease viability of upstream migrants (Caudill et al., 2007; Roscoe and Hinch, 2010). Consequently, passes usually need to be highly efficient and effective at passing fish upstream quickly and without delay. It takes biologists and engineers working together in tandem to develop an effective system, but given
the widely different objectives between developers and regulators, this does not happen readily without specific directed efforts to have all parties working together. A facility that will effectively pass fish requires a fundamentally sound ecological approach and sympathetic engineering at the inception of the developmental design, not a retrofit after a project becomes completed—particularly one where a ‘simple solution’ was built with thoughts that an engineer could always modify it if it does not work. And finally, just as not all humans can run a 100-m dash, not all fish have the same physical capabilities. Although designs may not provide conditions to pass all fish of a species, they need to pass the large majority of them.

Clearly, catching fish upstream successfully past obstructions is not sufficient in itself to maintain a viable diadromous run. What goes up must come down. Yet, still less knowledge exists about effective ways to catch fish safely downstream past dams (Larinier and Travade, 2002; Katopodis, 2005). In the following section, we discuss some of the major issues involved in developing fishways for downstream migrants.

**DOWNSTREAM PASSAGE**

Probably the greatest factor that challenges development of fishway design for downstream migrants relates to how fish encounter obstructions. Unlike upstream migrants that swim into the flow and have time to ‘check out’ their environment, downstream migrants move with the flow, thus, they have much less time to assess conditions they encounter. Further, whereas both behavioural and swimming capabilities play a role in the success of upstream migrants passing through a fishway, because downstream migrants tend to move with the flow, they need relatively less swimming ability and rely more on behavioural adaptations. Developing strategies to keep fish from migrating through a deleterious route is often exacerbated for juvenile fish, particularly salmonids, because their behaviour may change with size or physiological state (Iwata, 1995), and also their vertical position in the water column may change with diel variation in ambient light (Smith, 1974). For instance, small subyearling Chinook salmon smolts tend to migrate closer to the shoreline, whereas yearling Chinook salmon smolts mostly migrate in the middle of the thalweg in areas with the highest flow. Thus, for the latter run type at least, the natural pathway for them generally follows the main flow, which usually takes them through turbines unless screens intercept that flow or else alternative surface flow routes can attract and pass these surface-oriented fish (e.g. see Johnson et al., 2000; Johnson and Moursund, 2000; Johnson et al., 2005; Johnson and Dauble, 2006).

Adult eels migrating downstream also appear to follow the route with the highest flow but, depending on size and quantity of flow and trashrack spacing, may seek alternate routes to turbine passage (Travade and Larinier, 2006; Travade et al., 2010). Fish may also try to avoid areas with rapid changes in water velocity (either acceleration or deceleration) (Haro et al., 1998; Kemp et al., 2005, 2008; Enders et al., 2009) and areas created by screens or surface flows designed to divert them from turbines, and instead they may move to areas of flow with less turbulence/low velocity gradients; in other words, they move with the bulk flow that goes through the turbines. On the other hand, adult eels migrate near the river bed and do not respond to changes in velocity until they physically encounter an obstruction (Gosset et al., 2005; Russon et al., 2010). Based on recovery of lamprey juveniles in fyke nets placed in turbine units at Columbia River dams during research to develop turbine screening systems for juvenile salmon (data on lamprey from unpublished National Marine Fisheries Service research, but see Long (1968) for details on nets for vertical distribution studies and Gessel et al., 1991 for details on screen studies), it appears that the majority of juvenile lamprey (macrophthalmia and ammocoetes) also migrate near the bottom. However, in these stages, because of their small size, almost nothing is known about their downstream behaviour or orientation to flow. Finally, the fate of potamodromous species is often ignored despite the fact that they may undergo considerable movements downstream as juveniles or adults (Pavlov, 1994; Larinier and Travade, 2002; Zitek et al., 2004; Katopodis, 2005; Pavlov et al., 2008).

Downstream-migrant fish, particularly juvenile salmonids, if they behaviourally seek areas of bulk flow, need to swim relatively little other than to maintain orientation or water flow across their gills to maximize downstream distance travelled with minimal energy expenditures. If a fish moves little relative to the flow in which it migrates, its speed with respect to non-moving objects nearly equals the velocity of the water. The observation that juvenile salmon appear to travel at the speed of water at one time suggested that they may float passively downstream (Thorpe et al., 1988). Recent research has shown this assumption false as juvenile salmon and shad have very distinct reactions to changes in water velocity and react to avoid conditions they deem unsuitable (Peake and McKinley, 1998; Castro-Santos, 2005; Kraabøl et al., 2008; Pedersen et al., 2008). If they encounter conditions where the velocity begins to change, decreasing velocity will occur as flow approaches a barrier or increasing velocity will occur where flow begins to constrict or water starts to free fall, they may choose to alter their position in the water body in which they are migrating. If they swim in a downstream direction, and recent research has shown that juvenile salmon sometimes actively migrate headfirst with the current (Johnson et al., 2000; Kemp et al., 2005; Kemp et al., 2006; Enders et al., 2009), they will increase the encounter rate with downstream conditions that changed the velocity gradient in the first place. Thus,
they will have less time to make a decision about whether or not to try to avoid the condition they are encountering. Whereas if a fish swims slowly into the current while moving downstream, and this is considered by some as the only orientation to current for downstream-migrant Pacific salmonids (Coutant, 2001b; Coutant and Whitney, 2006), they can increase their tail-beat speed to slow their downstream travel and possibly move upstream to avoid the changing velocity areas.

Reactions of fish to changing water velocities with variable turbulence differ between migrating and non-migrating fish. Where a resident fish works to hold its position in flowing water, downstream-migrating fish, at least anadromous Pacific salmon that need to travel long distances to arrive during optimal ocean conditions, actively seek to move with the flow because they have a relatively narrow window in which to migrate these distances successfully. Thus, research to develop systems to guide fish toward benign passage routes or repel them from deleterious routes as fish approach river obstructions requires the use of fish actually in a positive migratory phase to understand how they will react to different flow conditions. This presents one of the greatest challenges to researchers trying to develop effective fishway systems because the migratory phase is short-lived. The life stages of diadromous fish that spend their time in freshwater usually do so to feed and grow until they reach some stage at which they begin to migrate toward the sea. One cannot simply raise fish in a hatchery for testing or capture fish and presume they are in an active migratory state that will provide meaningful indications of migratory behaviour. Further, even holding known migratory fish for an extended time period may alter their migratory behaviour and they will thus not express the same behaviour as fish that have naturally migrated for some distance or time in a river. Although few laboratory facilities have this capability, laboratory research on migration behaviour of Pacific salmon juveniles at McNary Dam, Columbia River, USA has been able to use actively migrating fish (Kemp et al., 2005; Enders et al., 2009). Large-scale river studies using radio or acoustic tags implanted in actively migrating fish or else fish tracked with sensitive acoustic gear, such as a DIDSON camera, may also provide needed information (e.g., see Hockersmith et al., 2003; Johnson et al., 2005).

Yet, while not using migratory fish, basic laboratory research has shown that velocity that is chaotic and with wide fluctuations can repel fish, whereas flows that have a component of predictability can attract fish (Liao, 2007). Our experience with migratory fish suggests that they react similarly. To develop effective passage systems, however, requires a quantification of migratory fish behaviour to changing flow; data needed for engineers to design the systems. For juvenile Pacific salmon, studies to determine how migratory fish react to variable flow/velocity conditions within rivers began in earnest in the last decade following improvements and downsizing in acoustic tags that have allowed for tagging and monitoring movement of individual migrant fish. Results have led to models that predict juvenile behaviour as smolts approach dams or diversions where variable water velocity conditions exist (Goodwin et al., 2006; Goodwin et al., 2007; Lemasson et al., 2008; Nestler et al., 2008). Results from these large-scale studies are based on positions of fish generally within cells of water with a volume of 0.5–1.0 m$^3$. Likewise, the ability to estimate velocity components that the fish experience has about the same resolution. To develop information on fine-scale resolution of fish behaviour, recent laboratory studies have been able to determine how fish react to variable velocity with a resolution in cm (Kemp et al., 2005, 2006, 2008; Enders et al., 2009).

Although a laboratory setting may have the ability to provide choices of hydraulic conditions that mirror those that fish may encounter in a real situation, it becomes much more difficult to determine how they might react when given multiple choices. For instance, downstream-migrating salmonid smolts in a river might reject an area with decreasing velocity caused by screens in a turbine intake and choose to move to another area where they find more acceptable velocity conditions. Providing choices in the laboratory on a scale equivalent to those that a juvenile fish might encounter at a dam and to which it could react poses exceptional challenges. For adult fish, this particularly holds true. Inevitably, the combination of laboratory studies and field studies will provide the best set of information needed for effective fishway systems.

With the exception of the recent work on juvenile salmonids identified above in the last 10 years, and as a consequence of the difficulty in testing behaviour of downstream migrants, much less research has been carried out in this area when compared to upstream-migrating adults. Further, outside of considerable efforts to develop effective fish screening systems for downstream migrating for salmonid smolts at dams on the Columbia River, much less attention has gone toward developing means to divert or guide downstream migrants away from turbines at hydropower dams in other places (Larinier and Travade, 2002).

For both upstream-migrating and downstream-migrating fish, where the biological knowledge of their behaviour or engineering components for an effective fishway (or both) are missing, development of effective passage facilities has often taken on trial and error approaches that have required years (to decades) to attain success— even where resources, funding, time and the will have existed.

CONCLUSIONS

Initial development of effective passage facilities at obstructions, including hydroelectric dams, was initially directed
almost entirely at salmonid species, both in North America and Europe. It took decades to develop effective facilities, often based on trial and error testing of prototype installations. Recently, research has begun to focus on developing facilities for upstream non-salmonid migrants. Results from more recent studies demonstrate that ‘one solution does not fit all’ and that design of passage facilities that can effectively pass a wide range of species needs to take into account the preferences and swimming abilities for the specific species of interest. It requires biological knowledge about fish behaviour under the varying flow/velocity/turbulence conditions they encounter during upstream migration, development of fishways that provide flows through which fish can actively and successfully migrate and, of particular importance, installing fishways with adequate attraction flows at locations that fish will seek during their migration. We encourage and recommend actively quantifying migration behaviour of fish in the field. The ability to do so has become feasible within the last decade or so because of tremendous advancements in technology. The use of internally implantable PIT-tags (Prentice et al., 1990), acoustic tags (Ehrenberg and Steig, 2009) and radio tags (Aarestrup et al., 1999; Moser et al., 2002; Burke and Jepson, 2006; Keefer et al., 2008), along with the ability to estimate 3-D positions of fish from underwater acoustic arrays (Hockersmith et al., 2003; Johnson et al., 2005), can provide information on upstream or downstream behaviour of fish in relation to hydrodynamic conditions as they approach river obstructions. Computational fluid dynamic models provide the ability to estimate the hydraulic characteristics in forebays and tailraces of obstructions through which tagged fish pass (Khan et al., 2008), and others have developed modelling tools to combine the fish behaviour with the hydraulics (Goodwin et al., 2006, 2007). These types of field techniques along with laboratory experimentation to develop flow conditions through which fish will pass can provide the information needed for species for which we presently have little data.

We emphasize again that construction of effective fish passage facilities will only occur if biologists and engineers work together to achieve successful environmental outcomes. Biologists need to provide engineers the knowledge on fish behaviour under different flow conditions, using all pertinent variables for the correct description of the flow conditions that engineers use in design. On the other hand, it is critical that engineers seek biological input before proceeding with design, avoiding the temptation to consider solely engineering and developer objectives in the first instance. And finally, money...costs go way beyond actual fishway construction. Most often, substantial amounts are needed for biological and hydraulic testing, engineering design and post-construction evaluation, particularly where specific knowledge of fish behaviour does not already exist.

The ability to comparatively easily construct test facilities to define fish behaviour for upstream migrants under variable flow conditions has led to much greater progress in developing successful upstream fishways than downstream ones. Further innovative research is sorely required, especially in relation to fish behaviour and hydrodynamics and particularly for downstream-migrating fish.

The ability to understand how a fish species of interest will respond to micro-hydrodynamic and macro-hydrodynamic conditions upstream and downstream of obstructions, what attracts them and what repels them, is the key to the development and design of successful passage facilities. Worldwide, biologists and engineers still lack the understanding and quantification of the behaviour of all sorts of freshwater fish species for which a need to develop fishways exists. To tackle this will require multi-disciplinary approaches, particularly co-operation between biologists and engineers to ensure sound environmentally engineered solutions (i.e. the brave new world of ecohydraulics has far to go).

ACKNOWLEDGEMENTS

We are indebted to the hundreds of people over decades who have conducted research to develop and evaluate fishways at river obstructions. The thesis we present here is not just our own, but depends on work from the past and the present. We particularly thank two reviewers who provided excellent comments on our draft and provided ideas on how to focus our thoughts. This manuscript is much improved because of them.

REFERENCES


Otterström CV. 1942. Turbines and descending salmon and trout smolt (and eels). In Report of the Danish Biological Station to the Ministry of Agriculture and Fisheries, Blegvad H (ed.). Dansk Biologisk Station: Copenhagen; 27–37.


