An elementary proof of Fermat-Catalan conjecture.
Jamel Ghannouchi

To cite this version:
Jamel Ghannouchi. An elementary proof of Fermat-Catalan conjecture.. 4 pages. 2014. <hal-00966840v4>

HAL Id: hal-00966840
https://hal.archives-ouvertes.fr/hal-00966840v4
Submitted on 19 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
An evidence of both Catalan-Mihăilescu and Fermat-Wiles theorems and generalization to Fermat-Catalan and Beal conjectures

Jamel Ghanouchi

jamel.ghanouchi@live.com

Abstract

(MSC=11D04) We begin with an equation, for example: $Y^p = X^q \pm Z^c$ and solve it.

(Keywords: Diophantine equations, Fermat-Catalan equation; Approach)

Introduction

The goal of this document is clearly to solve the Fermat-Catalan equation $Y^b = X^q \pm Z^c$. We have some solutions, they are:

- $1^3 + 2^3 = 3^2$
- $2^2 + 7^2 = 3^4$
- $13^2 + 7^3 = 2^9$
- $2^7 + 17^3 = 71^2$
- $3^9 + 11^4 = 122^2$
- $33^3 + 1549034^2 = 15613^3$
- $1414^3 + 2213459^2 = 65^7$
- $9262^3 + 15312283^2 = 113^7$
- $17^7 + 76271^3 = 21063928^2$
- $43^8 + 96222^3 = 30042907^2$

If we study minutely those solutions, it appears a common point, there is an exponent 2 in the formulas. It is not only the case of the Fermat-Catalan equation.

Effectively, this exponent 2 appears at least in two other diophantine equations: the Fermat equation, of course, but not only, it appears also in the Catalan equation and in some Pillai equations of the form $Y^p = X^q + a$.

Our goal, here, is to show and to prove formally, with the tools of the logic and algebra, how this exponent 2 appears in the equations!

Resolution of Fermat-Catalan equation

Let Fermat-Catalan equation:

$$Y^p = X^q + aZ^c$$

$a = \pm 1$

Now, let

$$w = \frac{\log (-aZ^c + \sqrt{Z^{2c} + 4Y^pX^q}) - \log (2Y^{p-2})}{\log (X)}$$

exist and

$$w \log (X) = \log (X^w) = \log (-aZ^c + \sqrt{Z^{2c} + 4Y^pX^q}) - \log (2Y^{p-2})$$

$$= \log \left(\frac{-aZ^c + \sqrt{Z^{2c} + 4Y^pX^q}}{2Y^{p-2}}\right)$$

Thus

$$X^w = \frac{-aZ^c + \sqrt{Z^{2c} + 4Y^pX^q}}{2Y^{p-2}}$$
We deduce
\[2X^w Y^{p-2} + aZ^\nu = \sqrt{Z^{2\nu} + 4Y^p X^q} \]
Or
\[(2X^w Y^{p-2} + aZ^\nu)^2 = Z^{2\nu} + 4Y^p X^q \]
= \[4X^{2w} Y^{2p-4} + Z^{2\nu} + 4aZ^X^w Y^{p-2} \]
And
\[X^{2w} Y^{2p-4} + aZ^\nu X^w Y^{p-2} = Y^p X^q \]
Or
\[X^w Y^{p-2} + aZ^\nu = Y^2 X^{q-w} \]
Hence
\[Y^2 X^{q-w} - X^w Y^{p-2} = aZ^\nu = Y^p - X^q = Y^2 Y^{p-2} - X^w X^{q-w} \]
Thus
\[Y^2 (X^{q-w} - Y^{p-2}) + X^w (X^{q-w} - Y^{p-2}) = 0 \]
= \[(Y^2 + X^w)(X^{q-w} - Y^{p-2}) = 0 \]
And
\[Y^p - X^q = Y^{q-w} \]
Now, let
\[w' = \log \left(\frac{Y^q - X^p + \sqrt{(Y^q - X^p)^2 + 4Y^q X^p} - \log (2X^{p-2})}{\log (Y)} \right) \]
\[w' \text{ exists and} \]
\[w' \log (Y) = \log (Y^{w'}) = \log (Y^q - X^p + \sqrt{(Y^q - X^p)^2 + 4Y^q X^p} - \log (2X^{p-2}) \]
= \[\log \left(\frac{Y^q - X^p + \sqrt{(Y^q - X^p)^2 + 4Y^q X^p}}{2X^{p-2}} \right) \]
Thus
\[Y^{w'} = \frac{Y^q - X^p + \sqrt{(Y^q - X^p)^2 + 4Y^q X^p}}{2X^{p-2}} \]
We deduce
\[2Y^{w'} Y^{p-2} - (Y^q - X^p) = \sqrt{(Y^q - X^p)^2 + 4Y^q X^p} \]
Or
\[(2Y^{w'} X^{p-2} - (Y^q - X^p))^2 = (Y^q - X^p)^2 + 4Y^q X^p \]
= \[4Y^{2w'} X^{2p-4} + (Y^q - X^p)^2 - 4(Y^q - X^p)Y^{w'} X^{p-2} \]
And
\[Y^{2w'} X^{2p-4} - (Y^q - X^p)Y^{w'} X^{p-2} = Y^q X^p \]
Or
\[Y^{w'} X^{p-2} - (Y^q - X^p) = X^2 Y^{q-w'} \]
Hence
\[X^2 Y^{q-w'} - Y^{w'} X^{p-2} = -Y^q + X^p = -Y^{w'} Y^{q-w'} + X^2 X^{p-2} \]
Thus
\[Y^{w'} (X^{p-2} - Y^{q-w'}) + X^2 (X^{p-2} - Y^{q-w'}) = 0 \]
= \[(Y^{w'} + X^2)(X^{p-2} - Y^{q-w'}) = 0 \]
And
\[X^{p-2} = Y^{q-w'} \]
But
\[X^{(p-2)^2} = Y^{(p-2)(q-w')} = X^{(q-w')(q-w')} \]
Thus
\[(p - 2)^2 = (q - w')(q - w') \]
And
\[X^{q-w} = Y^{p-2} = Y\sqrt{(q-w)(q-w')} \]
Thus
\[X^{\sqrt{q-w}} = Y^{\sqrt{q-w'}} \]

But let
\[w_1 = q - \frac{(q-w)^2}{p-2}; \quad w_2 = q - \frac{(q-w')^2}{p-2} \]

Or
\[(q-w)^2 = (p-2)(q-w_1); \quad (q-w')^2 = (p-2)(q-w_2) \]

We have
\[(q-w)^2(q-w')^2 = (p-2)^2(q-w_1)(q-w_2) \]

Thus
\[(q-w)(q-w') = (q-w_1)(q-w_2) \]

And if we suppose \((p-2)(q-w)(q-w') \neq 0\)
\[(q-w)^2 = (p-2)(q-w_1) = \sqrt{(q-w)(q-w')}(q-w_1) \]

or
\[q-w_1 = (q-w)\sqrt{\frac{q-w'}{q-w}} \]

and
\[(q-w')^2 = (p-2)(q-w_2) = \sqrt{(q-w)(q-w')}(q-w_2) \]

\[q-w_2 = (q-w')\sqrt{\frac{q-w}{q-w'}} \]

But
\[Y^{q-w_2} = Y^{(q-w')\sqrt{\frac{q-w'}{q-w}}} = X^{(p-2)\sqrt{\frac{q-w'}{q-w}}} \]

\[= X^{\sqrt{(q-w)(q-w')\sqrt{\frac{q-w'}{q-w}}}} = X^{q-w'} = X^{\sqrt{(p-2)(q-w_1)}} \]

Hence
\[Y^{q-w_2} = X^{q-w'} \]

And
\[X^{q-w_1} = X^{(q-w)\sqrt{\frac{q-w'}{q-w}}} = Y^{(p-2)\sqrt{\frac{q-w'}{q-w}}} \]

\[= Y^{\sqrt{(q-w)(q-w')\sqrt{\frac{q-w'}{q-w}}}} = Y^{q-w} = Y^{\sqrt{(p-2)(q-w_1)}} \]

Hence
\[X^{q-w_1} = Y^{q-w_1}; \quad Y^{q-w_2} = X^{q-w'} \]

Then
\[X^{\sqrt{q-w_1}} = Y^{\sqrt{q-w_2}} \]

And
\[X^{\sqrt{p-w}} = Y^{\sqrt{q-w_2}}; \quad Y^{\sqrt{p-w}} = X^{\sqrt{q-w_1}} \]

But
\[\frac{w_2 - w'}{w - w_1} = \frac{q - w' - (q-w_2)}{q - w_1 - (q-w)} = \frac{q - w' - (q-w')\sqrt{\frac{q-w'}{q-w}}} {(q-w)\sqrt{\frac{q-w'}{q-w}} - (q-w)} \]

\[= \frac{(q-w')\sqrt{q-w'}}{(q-w)\sqrt{q-w}} \]

And
\[\sqrt{\frac{q-w(w_2 - w)}{q-w(w' - w_1)}} = \sqrt{\frac{q-w(q-w') - q-w(q-w_2)}{q-w(q-w') - q-w(q-w_2)}} \]

\[= \sqrt{\frac{q-w(q-w') - \sqrt{q-w(q-w')}}{(q-w)\sqrt{q-w'} - \sqrt{q-w(q-w')}}} = 1 \]

Hence
\[\frac{w_2 - w'}{w - w_1} = \left(\frac{w_2 - w'}{w' - w_1} \right)^3 \]

\[X^{q-w'} = Y^{q-w_2} \]

3
But
\[\sqrt{\frac{w_1 - w}{w_1}} Y \sqrt[3]{\frac{w_1 - w}{w_2}} = X \sqrt[3]{\frac{w_1 - w}{w_1}} Y \sqrt{\frac{w_1 - w}{w_2}} = Y \sqrt{\frac{w_1 - w}{w}} Y \sqrt[3]{\frac{w_1 - w}{w_1}} = 1 \]

But let
\[q - u = v(q - w') ; \quad q - w_1 = v(q - w_2) \]

We have
\[\frac{q - w_1}{q - w_2} = v = \left(\frac{q - w}{q - w'} \right)^2 = u^2 \]

Thus \(v = u^2 \). And
\[(q - w_1)(q - w_2) = u^2(q - w_2)^2 = (p - 2)^2 = (q - w)(q - w') = u(q - w')^2 \]

Thus
\[(q - w')^2 = u(q - w_2)^2 \]

And
\[(q - w)^2 = u^2(q - w')^2 = u^3(q - w_2)^2 \]

And
\[\frac{(q - w)^2}{(q - w_1)^2} = \frac{u^2(q - w_2)^2}{u^4(q - w_2)^2} = \frac{1}{u} \]

But
\[(q - w) \sqrt{\frac{q - w}{q - w'}} (q - w')^2 = (q - w') \sqrt{\frac{q - w'}{q - w}} (q - w)^2 = (q - w_1)(q - w')^2 = (q - w_2)^2(q - w)^2 \]

And
\[(p - 2)^2(q - w')^2 = (p - 2)^4(q - w_2) = (q - w_1)(q - w_2)^2(q - w')^2 = (q - w_2)^2(q - w)^2 \]

And
\[\frac{1}{u}(q - w_1)^2(q - w_2)^2 = \frac{1}{u}(p - 2)^4 \]

And
\[(p - 2)^2(q - w)^2 = (p - 2)^3(q - w_1) = (q - w_1)(q - w_2)(q - w) = (q - w_1)^2(q - w')^2 \]

We deduce
\[p - 2 = u(q - w_2) = \frac{1}{u}(q - w_1) = \sqrt{u}(q - w') = \sqrt{u}(q - w) \]

But
\[Y \sqrt{\frac{w - w'}{w}} = X \sqrt{\frac{w - w'}{w}} = X \sqrt{w(q - w')} \]

And
\[Y = X \sqrt{\pi} \]

Hence
\[\sqrt{w_2 - w'} = \sqrt{w^3(w - w_1)} = (q - w') - (q - w_2) = \frac{1}{u}(q - w) - \frac{1}{u^2}(q - w_1) = \left(\frac{1}{u} - \frac{\sqrt{u}}{w_2} \right)(q - w) \]

\[= \sqrt{u^3}(q - w_1 - (q - w)) = \sqrt{u^3}(\sqrt{u} - 1)(q - w) \]

Hence
\[(u - \sqrt{u}) = \sqrt{u}(\sqrt{u} - 1) = u^2 \sqrt{u^3}(\sqrt{u} - 1) \]

Or
\[(\sqrt{u} - 1)\sqrt{u}(u^3 - 1) = 0 \]

It means that \(u = 1 \). But as \(GCD(X, Y) = 1 \) and
\[Y \sqrt{\frac{w - w'}{w}} = Y \sqrt{\frac{w}{w}} = X \sqrt{\frac{w - w'}{w}} \]
Then \(q - w = q - w' = 0 \) or \(p = 2 \) and \(q = w = w' = w_1 = w_2 \).

This calculus is available if we replace \(p - 2 \) by \(p - 3 \) and it leads as this last case does not exclude the case \(p - 2 \) to \(p = 2 \) or \(p = 3 \). The two cases lead then to \(p = 2 \) and \((p = 2 \) or \(p = 3 \)) which means \(p = 2 \). The same calculation is available to \(p = 4 \) and we have \(p = 2 \) and \((p = 2 \) or \(p = 3 \) or \(p = 4 \)) and it means \(p = 2 \). Etc... Until infinity.

The only solution is \(p = 2 \).

Resolution of Catalan equation

Let Catalan equation:

\[Y^p = X^q + 1 \]

Let \[w = \frac{\log (-1 + \sqrt{1 + 4X^pY^q}) - \log (2) - (p - 2) \log (Y)}{\log (X)} \]

\(w \) exists as we see. But

\[w \log (X) = \log (X^w) = \log (-1 + \sqrt{1 + 4X^pY^q}) - \log (2) - \log (Y^{p-2}) \]

\[= \log \left(\frac{-1 + \sqrt{1 + 4X^pY^q}}{2Y^{p-2}} \right) \]

Thus

\[2X^wY^{p-2} + 1 = \sqrt{1 + 4X^pY^q} \]

Or

\[(2X^wY^{p-2} + 1)^2 = 1 + 4X^pY^q \]

\[= 1 + 4X^{2w}Y^{2p-4} + 4X^{2w}Y^{p-2} \]

We deduce

\[Y^pX^q - X^{2w}Y^{2p-4} = X^wY^{p-2} \]

Hence

\[Y^2X^{q-w} - X^{w}Y^{p-2} = 1 = Y^p - X^q = Y^{p-2}Y^2 - X^wX^{q-w} \]

Or

\[Y^2(X^{q-w} - Y^{p-2}) + X^{w}(X^{q-w} - Y^{p-2}) = 0 \]

\[= (Y^2 + X^{w})(X^{q-w} - Y^{p-2}) = 0 \]

And as \(GCD(X, Y) = 1 \) it leads to \(p - 2 = q - w = 0 \). And

\[w = q = \frac{\log (-1 + \sqrt{1 + 4X^pY^q}) - \log (2)}{\log (X)} \in \mathbb{N} \]

This equation leads to \((X, q) = (2, 3). \) Ko Chao has already solved the case \(p = 2 \).

Resolution of Fermat equation

Let Fermat equation:

\[Y^n = X^n + Z^n \]

Let here too

\[w = \frac{\log (-Z^n + \sqrt{Z^{2n} + 4Y^nX^n}) - \log (2) - (n - 2) \log (Y)}{\log (X)} \]

\(w \) exists as we see. But

\[w \log (X) = \log (X^w) = \log (-Z^n + \sqrt{Z^{2n} + 4Y^nX^n}) - \log (2) - \log (Y^{n-2}) \]

\[= \log \left(\frac{-Z^n + \sqrt{Z^{2n} + 4Y^nX^n}}{2Y^{n-2}} \right) \]

Thus

\[2X^wY^{n-2} + Z^n = \sqrt{Z^{2n} + 4Y^nX^n} \]

Or

\[(2X^wY^{n-2} + Z^n)^2 = Z^{2n} + 4Y^nX^n \]

\[= Z^{2n} + 4X^{2w}Y^{2n-4} + 4X^{2w}Y^{n-2}Z^n \]
We deduce
\[Y^n X^n - X^{2w} Y^{2n-4} = X^w Y^{n-2} Z^n \]

Hence
\[Y^2 X^{n-w} - X^w Y^{n-2} = Z^n = Y^n - X^n = Y^n - 2Y^2 - X^w X^{n-w} \]

Or
\[Y^2 (X^{n-w} - Y^{n-2}) + X^w (X^n - Y^{n-2}) = 0 \]

\[= (Y^2 + X^w) (X^{n-w} - Y^{n-2}) = 0 \]

And as \(GCD(X,Y) = 1 \) it leads to \(n - 2 = n - w = 0 \). And
\[2 = n = \frac{\log (-1 + \sqrt{1 + 4Y^2X^2}) - \log (2)}{\log (X)} \in \mathbb{N} \]

This equation leads to the solutions of Fermat equation for \(n > 1 \) as we will see.

Resolution of Fermat- Catalan equation

The only solution, in all cases, is \(p = 2 \).

And \(Y^2 = X^q + aZ^c \). Thus, Fermat-Catalan equation is available for
\[q = \frac{\log (-aZ^c + \sqrt{Z^{2c} + 4Y^2X^q}) - \log (2)}{\log (X)} \in \mathbb{N} \]

\[= \frac{\log (Y^n - X^2 + \sqrt{(Y^n - X^2)^2 + 4Y^2X^q}) - \log (2)}{\log (Y)} \in \mathbb{N} \]

If we try successively \(q = 3 \) and \(q = 4 \), etc, we will find the \(X, Y \) which satisfy the equations.

Example
\[Z^c = 1^c \]
\[q = \frac{\log (-1 + \sqrt{1 + 4Y^2X^q}) - \log (2)}{\log (X)} \in \mathbb{N} \]

Implies \(X = 2, Y = 3 \) and \(q = 3 \).
\[1^c + 2^3 = 3^2 \]
\[aZ^c = -2^5 = -32 \]
\[q = \frac{\log (2^5 + \sqrt{1024 + 4Y^2X^q}) - 0.69}{\log (X)} \in \mathbb{N} \]

Implies \(X = 3, q = 4 \) and \(Y = 7 \).
\[2^5 + 7^2 = 3^4 \]
\[aZ^c = -7^3 = -343 \]
\[q = \frac{\log (343 + \sqrt{117649 + 4Y^2X^q}) - 0.69}{\log (X)} \in \mathbb{N} \]

Implies \(X = 2, q = 9 \) and \(Y = 13 \).
\[13^2 + 7^3 = 2^9 \]
\[aZ^c = 17^3 = 4913 \]
\[q = \frac{\log (-4913 + \sqrt{24137569 + 4Y^2X^q}) - 0.69}{\log (X)} \in \mathbb{N} \]

Implies \(X = 2, q = 7 \) and \(Y = 71 \).
\[2^7 + 17^3 = 71^2 \]
\[aZ^c = 11^4 = 14641 \]
\[q = \frac{\log (-14641 + \sqrt{14611^4 + 4Y^2X^q}) - 0.69}{\log (X)} \in \mathbb{N} \]
Imples \(X = 3, q = 5 \) and \(Y = 122 \).
\[
3^5 + 11^4 = 122^2
\]
\[
aZ^c = -33^8
\]
\[
q = \log \left(\frac{33^8 + \sqrt{33^8 + 4Y^2X^7}}{\log (X)} \right) - 0.69 \in \mathbb{N}
\]

Imples \(X = 15613, q = 3 \) and \(Y = 1549034 \).
\[
33^8 + 1549034^2 = 15613^3
\]
\[
aZ^c = -1414^3
\]
\[
q = \log \left(\frac{1414^3 + \sqrt{1414^3 + 4Y^2X^7}}{\log (X)} \right) - 0.69 \in \mathbb{N}
\]

Imples \(X = 65, q = 7 \) and \(Y = 2216459 \).
\[
1414^3 + 2213459^2 = 65^7
\]
\[
aZ^c = -9262^3
\]
\[
q = \log \left(\frac{9262^3 + \sqrt{9262^3 + 4Y^2X^7}}{\log (X)} \right) - 0.69 \in \mathbb{N}
\]

Imples \(X = 113, q = 7 \) and \(Y = 15312283 \).
\[
9262^3 + 15312283^2 = 113^7
\]
\[
aZ^c = 17^7
\]
\[
q = \log \left(\frac{-17^7 + \sqrt{17^7 + 4Y^2X^7}}{\log (X)} \right) - 0.69 \in \mathbb{N}
\]

Imples \(X = 76271, q = 3 \) and \(Y = 21063928 \).
\[
17^7 + 76271^3 = 21063928^2
\]
\[
aZ^c = 43^8
\]
\[
q = \log \left(\frac{-43^8 + \sqrt{43^8 + 4Y^2X^7}}{\log (X)} \right) - 0.69 \in \mathbb{N}
\]

Imples \(X = 96222, q = 3 \) and \(Y = 30042907 \).
\[
43^8 + 96222^3 = 30042907^2
\]

For Fermat equation, we have \(q = n = 2 = w \) and
\[
2 = \log \left(\frac{-aZ^2 + \sqrt{Z^4 + 4Y^2X^7}}{\log (X)} \right) - \log (2) \in \mathbb{N}
\]

Example:

\[
aZ^2 = 11^4
\]
\[
2 = \log \left(\frac{-11^4 + \sqrt{11^8 + 4Y^2X^7}}{\log (X)} \right)
\]
\[
(2X^2 + 11^4)^2 = 11^8 + 4Y^2X^2 = 11^8 + 4X^4 + 4(11^4)X^2
\]
\[
Y^2 = X^2 + (11^4)
\]
\[
(Y - X)(Y + X) = 11^4
\]
\[
Y + X = 11^3 = 1331
\]
\[
Y - X = 11
\]
\[
2Y = 1342
\]
\[
2X = 1320
\]
\[
Y = 671
\]
\[X = 660 \]

Or
\[
671^2 = 660^2 + 11^4 \\
= (11(61))^2 = (11(60))^2 + 11^4 \\
61^2 + 60^2 = 11^2
\]

Or
\[
aZ^2 = 13^{12} \\
Y^2 = X^2 + 13^{12} \\
(Y - X)(Y + X) = 13^{12} \\
Y + X = 13^9 \\
Y - X = 13^3 \\
2Y = 13^6 + 13^3 = 13^3(13^3 + 1) \\
2X = 13^9 - 13^3 = 13^3(13^6 - 1) \\
4Y^2 = (13^6)(13^6 + 1)^2 = (13^6)(13^6 - 1)^2 + 4(13^{12}) \\
(13^6 + 1)^2 = (13^9 - 1)^2 + (2(13^3))^2
\]

Etc...

Conclusion

Fermat-Catalan equation \(Y^p = X^q \pm Z^r \) has solutions only for \(p = 2 \). We have shown a way to solve it.

References
