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Abstract 

 

Wetlands represent 6% of the Earth’s land cover surface. They are of crucial importance in the 

global water cycle and climatic dynamics. Nowadays, wetlands are the most threatened land cover 

type, nevertheless their spatial distribution and ecological functions are poorly documented. Despite 

the need for more detailed information, wetland mapping is a rarely activity.  Few data are available 

mainly because of the complexity of obtaining good field data. We therefore propose a method 

based on multi sensor imagery analysis, to characterize land cover patterns of the second largest 

wetland area of the world (The ‘Cuvette Centrale’ of the Congo River basin). Time series of 

MODIS (Moderate Resolution Imaging Spectroradiometer) EVI (Enhanced Vegetation Index) 

images are used to map land cover types based their phenological differences. Flooded areas in the 

Congo Basin have been mapped during different seasons using L-band synthetic aperture radar 

(PALSAR) imagery. The associated model has been improved upon by the addition of elevation 

data as well as mean canopy heights acquired with LIDAR (Light Detection and Ranging) data. The 

result of this study is the first detailed spatial distribution of four forested wetland types within the 

‘Cuvette Centrale’ of the Congo River basin. This study demonstrates that the spatial organization 

of the floodplain landscape depends on the extent of flooding. The results also show that land cover 

phenology is closely related to the time period of flood and solar intensity for this region, similarly 

to what is observed in the extensive floodplain of the Amazon basin.   

 

 

Keywords: Remote sensing, large river floodplain forest, landscape, Congo River basin, PALSAR, 

MODIS, ICESat/GLAS 
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1. Introduction 

 

Wetlands and floodplains, which cover approximately 6% of the Earth’s ice-free land surface 

(Matthews & Fung, 1987; Organisation for Economic Cooperation and Development (OECD), 

1996), have many economic uses and provide an abundance of ecological services (Frazzier, 1999; 

Gosselink and Mitsch, 2000). Wetlands have a substantial impact on the alteration of flooding, flow 

rates, sediment stabilization, water quality, and groundwater recharge and discharge (Maltby, 1991; 

Bullock & Acreman, 2003). Wetlands also play a key role in biogeochemical cycles, including the 

methane (CH4) and carbon dioxide (CO2) cycles in particular (Matthews, 2000; Shindell et al., 

2004), and therefore exert influence on climate dynamics (RAMSAR convention, 1971). Wetlands 

are reservoirs of complex biological processes (Arfi, 2002), hot spots of biodiversity (Keddy et al., 

2009), and they are also crucial in the life cycle regulation of many fauna and flora species (Hey & 

Philippi, 1995). Wetlands also provide habitats for fishing and hunting and may contain wood 

suitable for harvesting or exploitation (Callicott & Frodeman, 2009). Despite the provision of 

multiple ecosystem services, wetlands appear to be the most threatened of all landscape types 

(Callicott & Frodeman, 2009). The threat to wetlands is testified by the loss of half of the world’s 

wetlands during the last century. This decrease was mainly due to anthropogenic pressure and 

climate change (Mitsch & Gosselink, 2007; Murdoch et al., 2000; Maltby, 1986). International and 

local institutions promoted the conservation of wetlands since the RAMSAR convention ratified in 

1971. The emphasis on nature conservation increased over the last twenty years (Frazzier, 1999; 

Convention for Biological Diversity, 1992). 

Although many research efforts have attempted to characterize the large river floodplain of the 

Congo basin ecosystems so as to bolster their protection, the lack of knowledge regarding their 

spatial distribution and their ecological functions has hindered these efforts significantly (Junk & 
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Piedade, 2005). The forested wetlands within the ‘Cuvette Centrale’ of the Congo River basin, the 

second largest basin in the world after the Amazon basin, are poorly documented. Various projects 

at different levels of maturity proposed for example to transfer water from several tributaries of the 

Congo River into lake Chad (Bonifica, 1982, 1984 and 1985; Misser, 2003; Turton & Ashton, 2004; 

Biggs & Williams, 2001). These water transfers would produce substantial modifications to the 

hydrological regime in the ‘Cuvette Centrale’ and hence would cause a significant threat to the 

forested wetlands in the Congo River basin. The impacts of such a water transfer is also likely to be 

amplified by climatic change within the region (IPCC, 2007). The risk of a degradation or even the 

destruction of forested wetlands resulting from a significant reduction in high water levels due to 

either natural or anthropogenic changes is particularly important. The lack of ecological as well as 

hydrological information render corroborated decision making difficult. 

 

In this respect, remote sensing (RS) offers a unique opportunity to map and describe landscape units 

and forest types of areas where direct access is difficult. The spectral bands provided by RS sensors 

allows the investigation of different aspects of these tropical swamp ecosystems. Optical data are 

often used to characterize types of vegetation and deforestation (Vancustsem et al., 2009; Peixoto et 

al. 2009; Achard et al., 2001; Wittmann et al., 2002; Huete et al., 2002), and these have also been 

used in tropical areas even if dense cloud cover often makes characterization difficult. Radar RS 

observations complement optical data because they provide valuable information even when 

monitoring tropical land surfaces, which often have high cloud coverage. In addition, L-band SAR 

sensors are very useful for the monitoring inundated wetlands (Rosenqvist et al., 1999; Frappart et 

al., 2005). Light Detection and Ranging (LIDAR) has also been applied in remote areas for the 

investigation of topography and maximum canopy height in flat areas (Lefsky et al., 2007). In 2010, 

Ballhorn et al. used ICESat/GLAS data (a space-borne LIDAR system) to estimate elevation and 

canopy height in a peat-land region of Kalimantan, Borneo. Various estimates of forests biomass 

were derived from these results. 
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The combination of information provided by both classes of sensors allowed us to study many 

aspects of the tropical forest habitat, including not only its spatial distribution but also its structure 

and certain ecological functions and processes. Two previous studies using RS data aimed to map 

the wetland area within the ‘Cuvette Centrale’ of the Congo River basin. The first was conducted by 

De Grandi et al. (1998) and used a single sensor approach and JERS-1 L-band SAR images to map 

flooded and non-flooded forest areas. The second study, was conducted by Bwangoy et al. (2010) 

using a multi-sensor approach, to produce a 'wetland probability map’ for the ‘Cuvette Centrale’ 

with a higher accuracy than the map created in the first study.  

 

Though the forest types present in the ‘Cuvette Centrale’ have been well documented (Evrard, 

1968), their spatial distributions have been poorly described due to difficulties of access to the 

floodplain area, lack of infrastructure and political instability. Hence, the accurate mapping of the 

spatial extension of the forest ecosystems within the ‘Cuvette Centrale’ is a strong requirement for 

enabling the monitoring of land cover changes related to modifications in rainfall and the associated 

hydrological regimes of the Congo River basin. Our objective is to document the spatial distribution 

and functional description of the wetland land cover types, using a multi-imagery remote sensing 

approach. This approach is fundamental for a continental water resources assessment for  natural 

and anthropogenic interpretation.  

 

2. Material and Methods 

2.1.Study area 

The Congo River basin harbors the second largest forest area in the world preceded only by the 

Amazon River basin. The study area under consideration, the ‘Cuvette Centrale’, is located in the 

center of the Congo River basin. It extends along the equator from 22° longitude west to 16° 

longitude east and from 3° latitude north to 3° latitude south (Fig. 1). Bwangoy et al. (2010) 
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provided a map of this wetland area using a multi-sensor approach. From this study, a mask of the 

forested wetland was used to delineate the area of the current study (Fig. 1).  

[Figure 1]  

 

Physiography 

The ‘Cuvette Centrale’ is surrounded by mountains and plateaus and is the remnant of a lake that 

occupied the area during the Tertiary geological period. It dried out as a consequence of the reduced 

Congo downstream riverbed through the Crystal Mountains towards the Atlantic Ocean (Robert, 

1946). Sandy, lacustrine quaternary sediments cover the base of the area where forested wetlands 

are located (Lepersonne, 1974; Moukolo et al., 1993; Censier, 1996). The topography is almost 

without height differences, and the average slope is less than 7 cm/km between Kisangani and 

Kinshasa (Devroey, 1957) over the last 50 km of the Kasai (Devroey, 1939) and over the last 450 

km of the Ubangi downstream of Dongo (Yayer, 1951). Within the ‘Cuvette Centrale’, the Congo 

River and its tributaries are bordered by discontinued levees that have been covered with flooded 

forest (Yayer, 1951). The floodplain is not limited laterally by these levees, and floods can extend 

over very large areas through networks of natural channels during high water seasons.  

 

Rainfall 

The average rainfall in the ‘Cuvette Centrale’ ranges between 1400 and 1800 mm. year-1, with an 

average of 1655 mm.year-1 in Mbandaka (0.03 N, 18 E) (Fig. 2). Potential evapotranspiration is 

1280 mm. year-1 (FAO, 2000). More than 20% of the rainfall is available for runoff, as observed in 

the discharge records in Brazzaville (Briquet, 1989; Shahin, 2002). Because of the topographic 

barrier around the ‘Cuvette Centrale’, a large proportion of rainfall is believed to be of local origin; 

it is thought to follow a closed cycle consisting of evaporated rainfall, condensation, and then again, 

repeated rainfall (Robert, 1946).  
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[Figure 2]  

 

Hydrological regimes 

At the outlet of the ‘Cuvette Centrale’, only 6% of the discharge measured in Kinshasa and 

Brazzaville originates from the upstream part of the Congo River basin, whereas 24% comes from 

the ‘Cuvette Centrale’ itself. 23% comes from the Kasai River sub-basin, and less than 20% comes 

from the Ubangi (Briquet 1993). In the ‘Cuvette Centrale’ between Kisangani and Mbandaka, the 

flow rates of the Congo River are characterized by a bimodal flooding pattern, consisting of high 

water in November and December, a secondary peak in April and May, low water in August and a 

secondary minimum in February and March. In other words, there is a 1 to 2 month time lag 

between flooding and rainfall seasonality (Fig. 2). Downstream of the Congo River, at Mbandaka, 

water is received from its two main tributaries, the Oubangi and the Kasai Rivers. The Oubangi 

extends its watershed over the two Congo tributaries and into the Central African Republic. The 

Oubangi's flow rate is characterized by high waters reaching their maximum in November while 

low water levels occur in March (Callède et al., 2009). The Kasai is the main tributary of the Congo 

River in the southern hemisphere. The watershed of the Kasai extends across the southern 

hemisphere into the Democratic Republic of the Congo and Angola. The Kasai reaches the Congo 

River at the downstream edge of the region where floodplain forest can be found. High water 

regimes generally occur in April, while low water regimes occur during August, although there is a 

small secondary high water period during December and January. In the downstream part of the 

river basin, waters are higher in December than in April due to the influence of the Congo River.  

Within the downstream portion of the river, the waters are higher in December than in April due to 

the influence of the Congo’s flow rate and the contribution of the Kasai tributaries that collect 

waters from Lake Mai-Ndombe in the equatorial domain (Devroey, 1939). The typical flood 

amplitude in the ‘Cuvette Centrale’ is between 3 and 5 m for the rivers (Devroey, 1957) and 
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approximately 2 m for the floodplain (Yayer, 1951). The volume of water that is potentially stored 

in the ‘Cuvette Centrale’ under the tree canopies can equals approximately half of the annual 

discharge from the Oubangi to the floodplain extending from the Congo River to the Likouala-aux-

Herbes (Yayer,1951). 

 

Vegetation 

The ‘Cuvette Centrale’ is primarily covered by forested wetland subjected to the flood pulse of the 

Congo River basin (Junk et.al., 1989). The vegetation in this area is poorly studied (see Evrard 

(1968) for a review of the botanical inventories), as is the flood height and the flood length of each 

vegetation types. Indeed, the geographical conditions, the lack of infrastructure and the political 

instability make this area very difficult to access.  

Four forest types have been identified, but not spatially mapped in detail. The typology of the four 

forest types was establish taking into account Evrard’s inventories and the typology developed by 

Junk et al., in 2011 for the Amazonian floodplain forest.  

1) Forests subjected to relatively stable water levels (Entandrophragma palustre, Coelocaryon 

botryoide and Raphiales spp. palm forests); 

2) Forests subjected to seasonal short lasting flood pulse of low amplitude (Guibourtia 

deumeusei and Oubanguia africana); 

3) Non-flooded forests, characterized by higher and bigger trees (Evrard, 1968) and a more 

important diversity of tree species than the other groups and; 

4) Forest subjected to seasonal flood pulse, located along the river (Pachystela 

longepedicellata and Pseudospondias microcarpa) (Léonard, 1947).  

These forest types can be distinguished according to their stand structure and floristic composition.    
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2.2 mapping of forested wetlands by MODIS-Enhanced Vegetation Index (EVI)  

 

EVI, a “16-Day L3 Global 500 m MODIS product (MOD13A1 c5)”, is a vegetation index. Data 

were acquired for the period from January 2001 till December 2009, and used to map the forested 

wetland types within the ‘Cuvette Centrale’ of the Congo River basin with respect to leaf phenology 

(Huete et al., 2006). The values of EVI index have been derived from the multispectral 

measurements of the MODIS sensor onboard the NASA Terra satellite according to the following 

equation provided by Huete et al. (2002): 

 

( )
( )LBLUECREDCNIR

REDNIRG
EVI

+×−×+

−×
=

ρρρ

ρρ

21
     

(Eq. 1) 

Where ρNIR [841–876 nm], ρRED [620–670 nm] and ρBLUE [459–479 nm] are the reflectances of 

near infrared, red and blue bands respectively, G is the gain factor, L is the canopy background 

adjustment (that addresses non-linear, differential NIR and red radiant transfer through a canopy) 

and C1, C2 are the coefficients of the aerosol resistance terms (which use the blue band to correct 

aerosol influences in the red band). The coefficients used in the MODIS-EVI algorithm are: L=1, 

C1 = 6, C2 = 7.5, and G (gain factor) = 2.5. This dataset is available at http://reverb.echo.nasa.gov.  

The EVI value is considered to be closely related to canopy structure and architecture. The EVI also 

provides improved sensitivity compared with other vegetation indices for high biomass regions, 

such as the tropical forest (Myneni et al., 2007; Huete et al., 2002). 

To reduce atmospheric bias and remaining ‘contaminated’ pixels after classical atmospheric 

corrections (see Huete et al., 2002), time-composited EVI imagery (2000-2009) has been used. 

According to Pennec et al. (2010), an average for each 16-day period is calculated over the ten-year 

time span examined in this study. 
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An unsupervised k-means classification is then performed for yearly averaged EVI imagery. To 

determine the optimal number of land cover classes, we used the Thorndike index (Thorndike et al., 

1953):  

Sk = ∑∑∑ ∗∗
max maxmax

1 1

2

1

1 k

=k

i

=i

ik

k

=k

k σn
N

        

 (Eq. 2) 

Here, N represents the total number of pixels, nk is the number of pixels by class, k is the class index 

varying between 1 and kmax, i is the index of the 16-day period (from 1 to imax=23), and σ ik

2
 is the 

variance of the class k for the period i. The optimum number of classes is obtained using the classes 

that correspond to the inflection point of the Sk index. 

 

Aerial photographs (IGN, 1961) of the Northern part of the Democratic Republic of the Congo and 

a topographic map of the same Northern part (IGN - Institut Géographique National 1960) with 

forested wetland types mapped were used to validate the EVI data. The aerial photographs represent 

15 000 km2 of the ‘Cuvette Centrale’; their references are AE-1960-61-NA33XI-XII (from 0 to 532) 

and AE-1961-62-NA33V-VI (from 248 to 524).  

A comparison was established between two areas of the ‘Cuvette Centrale’, respectively the Eala 

and Lukulela areas, regarding the phenology of the EVI index and ancillary data (Fig .1). The 

ancillary data include rainfall (mm), light intensity (cal g/cm²/day) (Evrard, 1968) and the 

hydrology of the nearest river recorded with gauging data (Devroey, 1957; Bultot, 1971; Laraque & 

Maziézoula, 1995).  

 

 

Page 10 of 45

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

 11

2.3 Estimation of tree heights using GLAS/ICESat L2 Global Land Surface Altimetry data 

 

The Geoscience Laser Altimeter System (GLAS) instrument of the Ice, Cloud, and Land Elevation 

Satellite (ICESat) is a full waveform sensor consisting of a 1.064 µm laser at 40 Hz that has been 

operational from 2003 to 2010. The GLAS sensor acquired the returned energy of a footprint of 

0.70 m and creates a waveform enabling the measurement of terrain elevation and the vertical 

distribution of vegetation density. This dataset includes laser footprint geo-location and reflectance 

as well as geodetic, instrumental, and atmospheric corrections for the range measurements. The 

dataset is available at http://reverb.echo.nasa.gov. 

 

The LIDAR technique has been used to detect the topography (Blair & Hofton, 1999) of the 

“footprint” and to estimate the maximum height of the canopy for each forest type. Waveform 

analysis enables one to approximate the maximum height of the canopy for flat terrain (Lefsky et 

al., 2007; Neuenschwander et al., 2008) as well as topographical elevation (Ballhorn, et al., 2010). 

The interpretation of these data is more complex for an area with a slope, where vegetation and 

ground reflectance are mixed in the signal return (Chen, 2010).  

Two kinds of products have been used to study the waveform:  

1) GLA01 as the raw product; 

2) GLA14 which provides an approximation of beginning and end signals by fitting the 

complex waveform from GLA 1 into six Gaussian maximum peak distributions (Zwally et 

al., 2003; Harding & Carabajal, 2005).  

From these Gaussian peaks, vegetation structure and topography could be extracted. All 

ICESat/GLAS data available for the ‘Cuvette Centrale’ from February 2003 to January 2009 were 

procured. The GLA14 data available were converted into shape vector files to enable overlays with 

EVI based classifications and ICESat tracks. This makes it possible to select corresponding MODIS 

footprints.  
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Two hundred footprints (issued from the unsupervised classification of MODIS data) were selected 

by EVI class to analyze the correlation between topography and spatial distribution for the different 

types of forested wetlands. The maximum height of the forested wetland types was determined by 

waveform analysis using the distance between the beginning of the signal and the centroid of the 

ground return (Ballhorn et al. 2010).  

 

2.4 Estimating inundation by ALOS PALSAR  

 The Phased Array type L-band Synthetic Aperture Radar (PALSAR) sensors on board of the L-

band Advanced Land Observing Satellite (ALOS) have been chosen to study the process of 

inundation. Six images, which were acquired on 1/25/2009, 3/15/2010, 4/27/2009, 09/07/2007, 

10/25/2008, and 12/13/2009, have a horizontal/horizontal polarization and a 100 m spatial 

resolution at various viewing angles (from 18° to 43°).  

SAR imagery is sensitive to the presence of water located under the vegetation canopy since the 

backscattered signal is significantly increased due to the radar double-bounce returns from the water 

and vegetation surfaces. The ScanSAR imagery has been pre-processed with respect to radiometric 

calibration, incidence angle normalization and speckle reduction. The imagery has first converted 

into sigma nought (σ0) in dB (ALOS PALSAR, 2008). The angle of incidence effect on the 

backscattering coefficients have been corrected using the procedure developed by Baghdadi et al. 

(2001). The normalized backscattering coefficient is given by: 

 

σ n
°
=

σ
°
(θ i)

F (θi)
      (Eq. 3) 

 

Here, σ° (θi) represents the backscattering coefficient (dB) at the incidence angle θ
i . 

In linear units, σ
°
(θ i) is given by the relation β cosα θ (Ulaby et al., 1982; Beauchemin et al., 

1995). Thus, F(θ) is of the form β cosα θ , and the normalized backscattering coefficient (β) is given 
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as σ
°
(θ i)/ cosα

θi (Baghdadi et al., 2001). For each date of acquisition, the coefficient α is equal to 

the slope of the linear relationship between σ
°

 (dB) and 10 log [cos(θ )] , which has been 

established using ten homogeneous regions of interest (ROI’s) chosen in the non-flooded forest and 

at an incidence angle between 18° and 43°. A Lee filter (Zhenghao & Fung, 1994) has subsequently 

been applied to a window of 7*7 pixels to reduce speckle. Similar to EVI, an unsupervised k-means 

classification was performed for an optimum number of classes. This unsupervised classification 

was applied to a temporal series of PALSAR scenes, which represented different periods of flooding 

in the study area. To study the dynamics of inundation, each class was averaged. 

 

A χ²-test was used to establish the relationship between an EVI class and a PALSAR class. 

 

3. Results 

 

3.1 EVI classification for forested wetland types 

 

Based on the Thornlike index presented in Fig. 3, the optimum number of EVI-based forest classes 

has been determined using the elbow effect (Tibshirani et al., 2001). An unsupervised classification 

for the EVI average year was performed, and the results were clustered into four classes (Fig. 3).  

 

[Figure 3]  

 

The classification result is shown in Fig. 4. The class EVI-1 of forest is located mainly alongside 

rivers and large lakes. This class is also present in the southwestern part of the Congo River basin 

and northwest of Lake Tele. EVI-1 covers an area of 24 000 km². The EVI-2 class is present in the 

central region of the ‘Cuvette Centrale’ and covers 85 000 km². The EVI-3 class covers 121 000 

km² and is frequently associated with the EVI-2 class. The EVI-4 class covers a smaller area (56 
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000 km²) and occurs near Lake Tele in the north of the ‘Cuvette Centrale’ along the Oubangui River 

as well as in the south near the lakes and tributaries of the Congo River. 

 

[Figure 4]  

 

The EVI classification has been compared and validated using two different datasets: the 

topographic map of Northern Congo (IGN, 1960) and the soil and tree elevations derived from the 

GLAS measurements. Thematic accuracy of the EVI vegetation map was assessed using a χ² test 

and a contingency table according to the IGN topographic map and the spatial distributions of the 

EVI classes. These results are shown in Fig. 5. EVI class footprints and transitions between EVI 

classes have been visually photo-interpreted using aerial photographs (shape, location and map).  

 

[Figure 5] 

 

GLAS data allow for the acquisition of average elevations and maximum canopy heights for three 

EVI classes (Table 1). Class EVI-1 does not produce results due to the lack of ICESat-GLAS data 

for this type of forest. At least one EVI class elicits elevations significantly different from the others 

(ANOVA, p-value < 0.5). On average, the EVI-2 class is associates with the lowest elevations and is 

characterized by the lowest maximum canopy height. On average, the elevation of the EVI-4 class 

is higher than that of the other classes and demonstrates the largest maximum canopy height.    

 

[Table 1]  

 

Time series analysis suggests that differences between EVI classes are not linked with phenological 

patterns (Fig. 6). Although the EVI classes demonstrate a similar temporal evolution, they display 

different magnitudes of EVI values. Each forested wetland type is characterized by a leaf phenology 
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cycle with two peaks of activity during May and October separated by a decrease of leaf density in 

December and August. Each EVI class exhibits similar characteristics, and an EVI mean value 

increasing as the class type changes from EVI-1 to EVI-4 (Fig. 6). These variations are mostly 

based on the intensity of the greenness related to the EVI index.  

[Figure 6] 

 

3.2 PALSAR-derived inundation classification 

 

The optimum number of classes has been determined using the Thornlike index. For the series of 

PALSAR images of the ‘Cuvette Centrale’, the optimum number of classes is five (Fig. 7). One 

class represents the borders of the image, and its value is equal to zero for each of the PALSAR 

images examined. 

 

[Figure 7]  

 

The time variations of the backscattering coefficients for each class are shown in Fig. 8. Four areas 

with distinct flooding patterns can be observed. The temporal dynamics of the backscattering 

coefficients for each class allow the characterization of each class in terms of inundation and land 

cover. PALSAR-1 data reveal low backscatter values associated with large annual amplitude that 

peaks in March/April at approximately -12.5 dB and reaches a minimum of -18 dB in October. 

PALSAR-2 data have an almost constant backscatter coefficient with values between 7.5 to 8.5 dB, 

regardless of the season. PALSAR-3 data elicit the highest backscatter values, between 4.5 and 3.5 

dB. The maximum is observed at the end of the year. PALSAR-3 data have a temporal evolution 

close to that of PALSAR-2 between December and April and close to PALSAR-4 data between May 

and October.  

[Figure 8]  
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Fig. 9 presents the spatial distribution of the flooding area’s derived from an unsupervised 

classification of PALSAR imagery. The PALSAR-1 class is typically located outside the ‘Cuvette 

Centrale’ and along the Oubangui River. The PALSAR-2 class is observed along the large rivers, 

such as the Congo River itself, and within the western portion of the ‘Cuvette Centrale'. The 

PALSAR-3 class is located in the center and west of the Cuvette Centrale. The PALSAR-4 class is 

typically located in the vicinity of the PALSAR-3 class. 

 

[Figure 9]  

 

 

3.3 Classification comparisons 

 

The two classifications presented above exhibit strong dependency (χ2 test, p -value < 0.005). Thus, 

these results are combined to analyze the nature of the landscape (EVI classes) in relation to 

flooding status (PALSAR classes).  

 

[Figure 10] 

 

 

4.4.4.4. Discussion  

 

The results of this study are the first to describe the spatial distribution of the forested wetland types 

in the ‘Cuvette Centrale’ of the Congo Basin, in detail. The multi-sensor approach applied, produces 

a better understanding of the phenology, the structure and the flooding periods of the different forest 

types.    
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4.1 Spatial distribution of the forested wetland 

 

The complementary use of three data sources permitted the classification of the different forested 

wetland types. The four forested wetland types identified by Evrard in 1968 were discriminated and 

mapped based on their leaf phenology using EVI imagery data. Each of these four forested wetland 

types have different greenness intensities but the same seasonality. Thus, our hypothesis is that the 

discrimination of forested wetland types according to the EVI index is based on the stand structure 

of each type. The density of the cover has also been shown to be significant, and the EVI index 

value was shown to be high (Huete et al., 2006). The structure is clearly identified on the stereo 

aerial photography and is related to the intensity of the EVI index (Pennec et al., 2011). Class EVI-

2 consists of sparse stands of forest canopy, whereas class EVI-4 has a closed stand forest structure 

composed of different understory strata. In general, a forest type with a multi-layered stratified 

canopy and a closed crown cover generates a greater EVI signal than a single-layered canopy with 

an open crown cover (Gond et al., 2011).   

 

The map obtained for this study offers a good spatial and thematic accuracy compared to the IGN 

topography map from 1960. Moreover, the vegetation exhibits a marked zonation related to the 

flooding regime (relationship with PALSAR dataset) as the floodplain vegetation of the Amazon 

and Okavango basins (Parolin et al., 2010). The GLAS data permit the evaluation of the average 

elevation and the maximum canopy height for three forested wetlands, which is in agreement with 

the Evrard and Leonard (1947) indications for emergent trees of seasonal flooded forest. However 

we notice that it is possible that GLAS data overestimate the maximum canopy height because in 

the Amazon floodplain, the forests subjected to relatively stable water level reaches an average 

height of 15-20 meters (Scarano et al., 1997). 
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4.2 Hydrological dynamics 

 

Four hydrological dynamics were identified using the PALSAR multi-temporal images that can be 

related to the vegetation map.  

 

In general, radar backscattering is lower for an open water body than for other surfaces. This is due 

to specular reflection from the water surface. This is a characteristic which permits the accurate 

determination of the extent of the flooding area for open water bodies, such as rivers and lakes not 

covered with vegetation. Moreover, the L-band has extensive higher canopy penetration depth, 

permitting the detection of water surfaces below the canopy. The multi-temporal use of L-band 

imagery allows the discrimination between forest subjected to relatively stable water level, forest 

subjected to seasonal flood pulse and non-flooded areas. As shown in Fig. 8, there is no overlap of 

the mean values with their standard deviations indicated, for each class. The PALSAR imagery in 

the ScanSAR mode allows us to detect flooding over large areas (i.e., from 250 to 350 km, or three 

to five times the footprint of a conventional SAR scene).  

 

Regarding PALSAR image classification, the PALSAR-1 class elicits the lowest level of 

backscattering and can be used to identify non-covered water surfaces (rivers and lakes). Increasing 

backscattering coefficients during the low water season (March/April) are likely to be the 

consequence of the presence of islands and vegetation species found in the river channels and the 

open water of the Likouala-aux-Herbes and Moanda Rivers. PALSAR-2 exhibits very low 

backscatter variation over a year and a relatively low mean backscattering value. This is assumed to 

be originating from volume as well as multiple scattering mechanisms of non-flooded forests 

(Martinez & Le Toan, 2007; Evans et al., 2010). PALSAR-3 has the highest backscattering 

coefficient values due to the double-bounce effect of the interactions of the radar pulse with 
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vegetation trunks and the underlying water surface (Hess et al., 1995; Wang et al., 1995). Because 

the backscattering coefficient has low temporal dynamics (less than 1.5 dB), this signature can be 

attributed to the forest subjected to relatively stable water levels. PALSAR-4 exhibits time 

variations similar to those of PALSAR-2 (non-flooded forests) during low water level periods 

(March/April) and variations similar to those of PALSAR-3 (forest subjected to relatively stable 

water level) during high water level periods (October/January). This class is associated with forests 

subjected to seasonal short lasting flood pulse, with low amplitude (<5m, Yayer, 1951). At the end 

of the year, the PALSAR-4 backscatter is lower than the PALSAR-3 return, which is likely to be 

due to the tree density of forests subjected to seasonal flood pulse compared to the low density of 

forests with stable water level.  

The results of this study have been partially validated using the Congo River and Oubangui water 

levels in the ‘Cuvette Centrale’. These water levels represent the increased water levels at the end of 

the year (November-December) and the lower water levels in March and April from the PALSAR-4 

profile (Fig. 8). In terms of the dynamics and backscattering values, these results are consistent with 

those recently published for forest units, including flooded and non-flooded forests, using ALOS 

PALSAR data for the classification of different types of tropical and temperate forests (Thiel et al., 

2009; Ardila, et al., 2010; Evans et al., 2010). 

 

 

The comparison of the EVI and PALSAR classifications with the IGN topographic map 

demonstrates agreement for the spatial units obtained. However, we must consider that the ‘Cuvette 

Centrale’ of the Congo River basin is located on the equator and is therefore located in both the 

southern and the northern hemispheres, which each have distinct hydrologic systems (Devroey, 

1957). The PALSAR ScanSAR dataset currently available for this area only allows us to consider 

two seasons, the beginning and the end of the year. As a result, neither specific months nor the 

contribution of each tributary of the ‘Cuvette Centrale’ to the global inundation has been studied in 
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detail. Detailed monitoring of inter-annual variation regarding the extent of flooding within this 

vegetation landscape is not currently accessible with ALOS radar data.  

 

4.3 Classifications comparisons 

 

We find similar forested wetland types using both approaches (PALSAR and EVI mapping (χ² 

test)). The spatial distribution of the EVI classes is driven by flooding status (stable water level, 

seasonal flood pulse, and no flooding). The EVI-4 class corresponds to the “no flooding” PALSAR 

class. Since this region is labeled on the topographic map as non-flooded forest, this is consistent 

with our results.  

 

Given the relationship between EVI, GLAS, and PALSAR data and based on published data, we 

propose the following labels for EVI classes (Fig. 4):  

- EVI-1 consists of forest subjected to seasonal flood pulse, located alongside rivers, as 

described by Evrard (1968) 

- EVI-2 consists of forests subjected to stable water level, dominated by Raphiales, occuring 

at an average elevation of 304 m, and with a 20 m maximal canopy height;  

- EVI-3 consists of forests subjected to seasonal short lasting flood pulse, with low amplitude, 

as described by Evrard (1968), located at an average elevation of 306 m and with a 30 m 

maximum canopy height;   

- EVI-4 consists of non-flooded forests located at an average elevation of 311 m and with a 40 

m maximum canopy height.  

To illustrate these classes, we show four field photographs (Fig. 10). 
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4.4 Vegetation dynamics  

 

The current study demonstrates also that in the ‘Cuvette Centrale’ of the Congo River basin, there is 

a strong relationship between high photosynthetic activity (EVI), a high level of light intensity 

(Evrard, 1968), a low level of flooding and a high level of rainfall. The forested wetlands of the 

Congo River ‘Cuvette’ loop through four phenological phases (two rainy and two dry seasons; Fig. 

11). Without the contribution of any field measurements, we hypothesize that some species may 

shed their leaves during the flooding periods (December to January and July to August), as the 

Amazonian floodplain trees (Schöngart et al., 2002; Haugaasen & Perez, 2005).    

 

[Figure 11] 

 

At the beginning of the year (February to March), the water level of the Congo River is at its 

minimum, and the light intensity and rainfall increase (Devroey, 1957). The EVI demonstrates a 

similar increase likely corresponding with the growth of the vegetation. Rainfall and light intensity 

are relatively stable from March to May when Congo River flooding typically occurs (maximally in 

May). Then, the EVI index values increase until May, when they reach the first peak of activity, and 

then decrease until July. Each of the other variables also decreases until the minimum light 

intensities occurs in July that causes consequent photosynthetic activity decrease. This period also 

corresponds to large rainfall causing floods in the Congo. 

Beginning in August and reaching a maximum in October, there are simultaneous increases in light 

intensity and photosynthetic activity, rainfall, Congo and Oubangui River floods. Additionally, these 

parameters reach secondary peaks of activity in October. 

At the end of the year, light intensity, photosynthetic activity and rainfall decrease between 

November and January, which is concurrent with the maximum level of the Congo River flooding 

(December) and the high level of the Oubangui River. This period is also marked by lower 
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greenness activity.  

 

 Previous studies (Parolin et al., 2010; Schöngart, et al., 2002) have shown that the phenology of 

seasonal flooded forest (e.g., in várzea and igapó) is dependent on the maximum level of 

inundation. However, the phenology of terra firma forest in the Amazon Basin was shown to be 

driven by rainfall as well as light intensity (Haugaasen & Peres, 2005). Flooded and non-flooded 

forests react in a similar way; the main drivers of phenology are light and rainfall for non-flooded 

forest, and flooding and light intensity for flooded forests. Indeed, light intensity plays a key role. It 

is possible that light intensity could influence the two peaks of photosynthetic activity for each 

forest type because low levels of light intensity and a hydric stress occur during dry periods 

(Farnsworth et al., 2011; Camberlin et al., 2001). Most likely many environmental parameters play 

key roles in the phenology of intrinsic factors related to the phylogenetic origin of the species or 

genus (Wright & van Shaik, 1994). 

 

5. Conclusion 

 

This paper explores the use of a multi-sensor approach for the thematic characterization of forested 

wetland types within the Congo River basin and demonstrates that each type of sensor provides 

complementary information for the investigation of the spatial distribution, inundation and leaf 

phenology of forested wetland types. 

The unique feature of the ‘Cuvette Centrale’, compared to Amazonia, is that the rainy season occurs 

twice per year (April-May and September-October). The spatial distribution of forested wetland 

types is controlled by topography and also by the time and the intensity of the submersion. Any 

changes in this parameter can modify the organization and the functioning of the forested wetlands. 

The phenology of forested wetlands is already modified from year to year according to the inter-

annual variations of eco-climatic parameters.   
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This study investigates a new area of research regarding the ‘Cuvette Centrale’ floodplain in the 

Congo River basin. With the spatial distribution and the brief functional description provided, it is 

now possible to investigate this large ecosystem with more details. The documentation and the 

study of this huge remote area are fundamental for understanding continental natural resources 

involved in freshwater regulation, carbon stocks and basic chemical element exchanges at the 

tropical atmosphere-biosphere interface. 
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Figures caption and Table 

 

 
Figures 

Figure 1.  Location of the ‘Cuvette Centrale’ within the Congo River basin (Africa). 

Figure 2. Figure 2. The average rainfall (mm),  evapotranspiration (mm), and  average monthly 

components of water budget in Mbandaka (m), (sources: FAO, 2000; Devroey, 1957). 

Figure 3. The Thornlike index value vs. the number of clusters for unsupervised classification of the 

EVI index. 

Figure 4. A map of the unsupervised classification using the EVI average year.  The labeling takes 

into account the Evrard and Junk typology, the PALSAR, the GLAS and the EVI information. The 

map corresponds to the EVI unsupervised classification with a masked inundated landscape 

(Bwangoy et al., 2010). 

Figure 5. Repartition percentage of each EVI class in each IGN class; the surface area examined 

corresponds to approximately to 50,000 km². IGN-1 corresponds to forests subjected to seasonal 

flood pulse, localised along river, IGN-2 corresponds to forests subjected to relatively stable water 

level, IGN-3 corresponds to forests subjected to relatively stable water level and IGN-4 corresponds 

to non flooded forests (IGN, 1960). 

Figure 6.  Annual variation of the EVI index for each forest class.  

Figure 7. The Thornlike index vs. the number of clusters for the unsupervised classification of the 

PALSAR images. 

Figure 8. Annual variation of the mean backscattering coefficient and standard deviation for each 

PALSAR-derived class. 

Figure 9.  A map of the unsupervised classification results of 6 PALSAR products. 

Figure 10. Forested wetland photographs from field 
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Figure 11. The relationship between photosynthetic activity and environmental parameters (rainfall 

in mm, Oubangui and Congo flooding in m3.s-1 and light intensity in cal g/cm²/day) at two stations 

located in the Cuvette Centrale: Eala (18.28°E; 0.0°) and Lukolela (17.18°E; 1.08°S). 

Table 

Table 1. EVI class structure characteristics documented with ICESAT-GLAS data. 
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Figure 1.  Location of the ‘Cuvette Centrale’ within the Congo River basin (Africa).  
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Figure 2. The average rainfall (mm),  evapotranspiration (mm), and  average monthly components of 

water budget in Mbandaka (m), (sources: FAO, 2000; Devroey, 1957). 
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Figure 3. The Thornlike index value vs. the number of clusters for unsupervised classification of the 
EVI index. 
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Figure 4. A map of the unsupervised classification using the EVI average year.  The labeling takes into 
account the Evrard and Junk typology, the PALSAR, the GLAS and the EVI information. The map corresponds 

to the EVI unsupervised classification with a masked inundated landscape (Bwangoy et al., 2010).  
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Figure 5. Repartition percentage of each EVI class in each IGN class; the surface area examined 

corresponds to approximately to 50,000 km². IGN-1 corresponds to forests subjected to seasonal flood 

pulse, localised along river, IGN-2 corresponds to forests subjected to relatively stable water level, 
IGN-3 corresponds to forests subjected to relatively stable water level and IGN-4 corresponds to non 

flooded forests (IGN, 1960). 
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Figure 6. Annual variations of average EVI (and associated standard deviation) for each forest class 
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Figure 7. The Thornlike index vs. the number of clusters for the unsupervised classification of the 
PALSAR images. 
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Figure 8. Annual variation of the mean backscattering coefficient and standard deviation for each 
PALSAR-derived class. 
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Figure 9.  A map of the unsupervised classification results of 6 PALSAR products.  
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Figure 10. Forested wetland photographs from field  
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Figure 11. The relationship between photosynthetic activity and environmental parameters (rainfall in mm, 
Oubangui and Congo flooding in m3.s-1 and light intensity in cal g/cm²/day) at two stations located in the 

Cuvette Centrale: Eala (18.28°E; 0.0°) and Lukolela (17.18°E; 1.08°S).  
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Class Surface (km²)  
 

Average 

elevation 

(m) 
 

Canopy maximum Height 

(m) 

Means Std 

EVI-1 24 000 No Data No Data No Data 

EVI-2 85 000 304 20 4.04 

EVI-3 121 000 306 30 4.8 

EVI-4 56 000 311 41 3.7 

 

Table 1. EVI class structure characteristics documented with ICESAT-GLAS data. 
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