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Extension of classical viscoelastic models in large deformation to anisotropy

and stress softening

M. Rebouah, G. Chagnon∗

Université de Grenoble / CNRS / TIMC-IMAG UMR 5525, Grenoble, F-38041, France.

Abstract

In this paper, an extension of two classical viscoelastic models adapted in large deformation for
incompressible rubber like materials or soft tissues is proposed. These models are built by using a
three dimensional homogeneization by means of a sphere unit approach. Thus several comparisons
between classical formulations and homogeneization on a sphere unit formulation is proposed. An
adaptation of those models to describe anisotropy is proposed. Finally an extension of those models
to take into account stress softening is described.

Key words: Viscoelasticity . Constitutive equation . Sphere unit model . Anisotropy .
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1. Introduction

Rubber like materials are remarkable materials, by means of their capacity to endure large
deformations and cyclic loadings. Despite many publications, the prediction of their mechanical
behavior is still an open issue. Since last decades, it is well known that soft tissues present a
similar behavior to rubber like materials. The main difference is that most of the soft tissues
present also an initial anisotropy. Both materials present many non linear phenomena as Mullins
Effect (Mullins (1969); Beatty and Krishnaswamy (2000); Diani et al. (2006); Vande Geest et al.
(2006); Natali et al. (2009)), permanent set (Dorfmann and Ogden (2004); Peña et al. (2011)),
hysteresis (Lion (1996); Peña et al. (2009)) and time dependent behavior (Christensen (1982);
Wineman and Rajagopal (2000); Holzapfel and Simo (1996)). Mullins effect and permanent set
are classically taken into account for quasi static behaviors, where the influence of the strain rate
is neglected. At the opposite, the time dependency is treated independently without taking into
account the stress softening in many studies.
Nevertheless for the most of rubber like materials the modeling depends mainly on the strain rate,
and the response varies from purely rubber like material to glassy polymer (Yi et al. (2006); Sarva
et al. (2007)). Soft tissues present also a strain rate dependency. Models were developed to take
into account the viscoelasticity of soft tissues and the initial anisotropy due to their structure, see
for example (Fung (1993); Miller and Chinzei (1997); Pioletti and Rakotomanana (2000); Miller
(2000); Limbert et al. (2004); Taylor et al. (2009)).

∗Corresponding author
Email address: gregory.chagnon@imag.fr (G. Chagnon)

Preprint submitted to International Journal of Non-Linear Mechanics March 25, 2014



The viscoelasticity in large deformations is classically described according to two different theories.
The first theory is the one developed by Green and Rivlin (1957) and Coleman and Noll (1961)
by using the principle of Boltzmann superposition. Indeed Green and Rivlin (1957) introduced
and supposed that relaxation functions depend only on the time and Coleman and Noll (1961)
considered that these functions depend on time and on the actual state of deformation. These
models are expressed in term of convolution integrals and were readapted by Berstein et al. (1963)
and Zapas and Craft (1965) to finally be known as K-BKZ model for fluids. Later, Ogden (1972)
and Christensen (1980) developed the extensions of Green and Rivlin (1957) at the first order for
the solids. All these models are not numerically implemented except for fluid mechanics, i.e. the
K-BKZ model.
The second theory was developed by Green and Tobolsky (1946) by means of differential models
with internal variables. The viscoelasticity is classically build up for uniaxial formulations with
springs and dashpots and generalized to tensorial formulation. The two standard models used are
those of Zenner and Kelvin-Voigt. The readaptation of the differential models, initially proposed
by Green and Tobolsky (1946), was stimulated 40 years later by the work of Lubliner (1985). This
model is based on the decomposition of the deformation gradient into an elastic part and an inelastic
one. Later several authors (Simo, 1987; Govindjee and Simo, 1992b; Holzapfel and Simo, 1996;
Lion, 1996; Kaliske and Rothert, 1998) proposed to separate the response of the material as the sum
of an elastic and an inelastic stress, thus the internal variable is of ”stress” type. Simo (1987) model
is equivalent to the K-BKZ model as proved by Reese and Wriggers (1997), and was implemented
in a finite element code. More recently, Bergstrom and Boyce (1998) developed also a non linear
evolution law for a stress internal variable, this model is today one of the most used. In the same
way, Miehe and Göktepe (2005) were the first to proposed a micro-spherical approach to take into
account the time dependent viscous effects and the stress softening for initially isotropic materials.
The model proposed by Diani et al. (2006) presents also a micro sphere unit representation to take
into account the viscoelasticity and the stress softening includind the induced anisotropy by the
Mullins effect. Other micro mechanics based model were developed in the last decades to take
into accont non linear effects and proposed differents way for three dimensional homogeneization
(Govindjee and Simo, 1991, 1992b; Rajagopal and Wineman, 1992; De Tommasi et al., 2006, 2010)
The objective of this paper is to compare a classical and a three dimensionnal homogeneization
by a sphere unit formulation of two models recently studied by Petiteau et al. (2012). Thus, a
Convolution Integral Model (CIM) and a Internal Variable Model (IVM) are used in this paper.
The IVM used is the one proposed by Huber and Tsakmakis (2000), and CIM is an adaptation of
Berstein et al. (1963) proposed by Petiteau et al. (2012).
First, a presentation of the both classical models is made in the section 2. Then, the sphere unit
formulation of these models is developed in section 3. A comparison between classical and sphere
unit formulation is proposed in section 4 for different loadings. Then by means of the sphere
unit formulation some extensions to turn the modeling anisotropic are proposed. The influence of
several parameters are highlighted for different loadings states and for both models in section 5.
Finally, stress softening is added in the viscoelastic spherical approach.

2. Presentation of the models

The two viscoelastic isotropic models used in this paper are those used by Petiteau et al. (2012).
The first one is an IVM deduced from the theory of Green and Rivlin (1957) and the second is
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a CIM deduced from the theory of Green and Tobolsky (1946). These two models are quickly
recalled in this section, in the incompressible framework.

2.1. Internal Variable Model

The simplest IVM for viscoelasticity was derived by Huber and Tsakmakis (2000) and is repre-
sented by a Zenner model. This model is based on the decomposition of the deformation gradient F
between an elastic part Fe, which represents the deformation gradient of a spring and an inelastic
part Fi, which represents the deformation gradient of a dashpot as illustrated in Fig.1. Thus, the
deformation gradient F can be expressed as

F = FeFi (1)

C
0

C
1

C
2

Fi 
Fe 

F 

(a) (b)

F 

Fe Fi 

Neo Hookean 
parameter C

Neo Hookean 
parameter C2 

1 

Figure 1: Representation of the different configurations by using a strain type internal variable (a) and the rheological
representation of the components (b)

Classically it is considered, that there is no rotation in Fi and thus the rotation is only in the
elastic part Fe. This permits to keep unique the elastic-inelastic decomposition. Furthermore it is
assumed that the material is incompressible, thus each deformation is defined as det Fe = 1 and
det Fi = 1. The strain enery density associated to the rheological representation is defined by:

φ(Fe,Fi) = φ1(Fe) + φ2(Fi) (2)

where φ1 represents the strain energy density between the initial C0 and the intermediary C1 con-
figuration and φ2 the strain energy density between the intermediary C1 and final C2 configuration.
According to the Second Principle of Thermodynamics

Dint = σ : D− φ̇ ≥ 0 (3)

where Dint is the internal dissipation and D is the rate of deformation tensor. After some algebric
manipulations described in Huber and Tsakmakis (2000) and Petiteau et al. (2012), the second
principle can be rewritten as

(

σ − 2
∂φ1

∂B
B− 2

∂φ2

∂Be

Be

)

: D+ 2FT ∂φ2

∂Be

Fe : Di ≥ 0 (4)
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where Di is the inelastic strain rate tensor defined as Di = 1/2(Li + LT
i ) and Li = ḞiF

−1
i the

velocity gradient. B is the left Cauchy Green tensor (defined as B = FFT ) associated to the
global deformation and Be is the left Cauchy Green tensor (defined as Be = FeFe

T ) associated
to the elastic deformation. According to the procedure described by Coleman and Noll (1963) for
deformation processes, the incompressibility constraint and to Petiteau et al. (2012) who defined a
Neo Hookean strain energy (Treloar, 1943) for each spring of the rheological model, it is deduced
from Eq.(4) that the Cauchy stress can be described as:

σ = −pI+ 2C1B+ 2C2Be (5)

and the dissipation

2FT ∂φ2

∂Be

Fe : Di ≥ 0 (6)

where C1 the material parameter of the Neo Hookean model associated to the global deformation
and C2 is the material parameter of the Neo Hookean model of the elastic part. It is quickly recalled
that a Neo Hookean model is defined as W = C1(I1 − 3), where I1 is the first strain invariant.

It is deduced as in Petiteau et al. (2012) that for uniaxial extension in the direction
→

x the first
component of the stress tensor is:

σ = 2C1

(

λ2 −
1

λ

)

+ 2C2

(

λe
2 −

1

λe

)

(7)

where σ is the stress for a tensile test along the direction
→

x and λ and λe the global and elastic
stretches along the same direction. To determine the deformation of elastic and inelastic parts, i.e.
the left Cauchy Green tensor of the elastic part, it is necessary to establish an evolution equation of
Be, which is deduced as the simplest sufficient condition to satisfy Eq.(6). As described by Huber
and Tsakmakis (2000) and Petiteau et al. (2012), the evolution equation is

Ḃe = LBe +BeL
T − 4

C2

η

(

Be
2 −

1

3
I1BeBe

)

(8)

where η is a material parameter. Particularly, in uniaxial extension the expression can be written
by means of the stretch of the elastic part:

λ̇e = λe
λ̇

λ
− 4

C2

3η
(λ3

e − 1) (9)

2.2. Convolution Integral Model

The CIM model is an adaptation of a K-BKZ formulation (Berstein et al., 1963). By using
the same model as Petiteau et al. (2012) the stress endured by an incompressible material can be
expressed as follow:

σ = −p(t)I+ 2g0B(t)− 2F(t)

∫ t

−∞

g1 exp

(

−
t− τ

τr

)

∂C−1(τ)

∂τ
dτFT (t) (10)

where g0, g1 are material parameters that represent the stiffness of the material and are expressed
in MPa and τr is a material parameter that represents a relaxation time in seconds. Adapted to
uniaxial extension in direction

→

x , the model can be defined as:

σ = 2g0

(

λ2(t)−
1

λ(t)

)

+

∫ t

−∞

2g1 exp

(

−
t− τ

τr

)[

1

λ(τ)

∂λ(t)

∂τ

(

2
λ(t)2

λ(τ)2
+

λ(t)

λ(τ)

)]

dτ (11)
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3. Homogeneization on the sphere unit

3.1. General definition

The formulations previously presented (Eq.(5) and Eq.(10)) are isotropic. To turn it into a
possible anisotropic formulation it is proposed to adapt the model with a sphere unit formulation,
i.e. a spatial repartition of n directions, where each direction is defined by an initial vector A(i)

transformed in a vector a(i) after deformation by a(i) = FA(i), where i is the number of the
direction. It is often considered that each direction corresponds to a macromolecular chain and
thus each chain can endure only tension-compression. To take into account the behavior of a

material according to different directions, the fourth invariant I
(i)
4 is used. It is to note that the

elongation and the fourth invariant are equivalent according to the definition:

I4
(i) = A(i).CA(i) = λ(i)2 (12)

Where C = FTF is the right Cauchy Green strain tensor. The following sections describe how to
turn the models described previously into spherical models.

3.2. Application of the sphere unit to the two viscoelastic models

3.2.1. IVM

For IVM formulations, the location of the rotation in the decomposition between the elastic and
the inelastic parts (cf. Eq.(5)) is still an open issue. Indeed it is often estimated that the rotation
endured by the material occurs into the elastic part and not into the inelastic one. By means of
this spherical formulation, the problem does not occur since each direction is only submitted to
tension, that means that there is no hypothesis to formulate about the rotation in this approach.
It is proposed to turn the IVM into a sphere unit formulation, thus each expression described
previously has to be adapted. First, the evolution equation of the IVM is just adapted from Eq.(8)
to be defined along n directions, it writes for each direction i:

Ḃ
(i)
e = L(i)Be

(i) +Be
(i)LT (i)

− 4
C2

η

(

Be
(i)2 −

1

3
I1BeBe

(i)

)

(13)

thus for uniaxial extension:

λ̇(i)
e = λe

(i) λ̇
(i)

λ(i)
− 4

C2

3η

(

λ(i)
e

3
− 1
)

(14)

by means of this expression one can obtain the value of the stress in each direction:

σ(i) = 2C1

(

λ(i)2 −
1

λ(i)

)

+ 2C2

(

λ(i)
e

2
−

1

λ
(i)
e

)

(15)

3.2.2. CIM

To adapt the formulation of the CIM, the previous equation Eq.(11) must also be defined in n
directions. Thus for the CIM, and due to the hypothesis of uniaxial extension the n directions can
be described only by λ(i)(t). The stress for each direction can be deduced from the Eq.(11):

σ(i) = 2g0

(

λ(i)2(t)−
1

λ(i)(t)

)

+

∫ t

−∞

2g1exp

(

−
t− τ

τr

)

[

1

λ(i)(τ)

∂λ(i)(t)

∂τ

(

2
λ(i)2(t)

λ(i)2(τ)
+

λ(i)(t)

λ(i)(τ)

)]

dτ (16)
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3.2.3. Definition of the global stress

In this paper, it is proposed to use the spatial repartition of 42 directions proposed by Bazant
and Oh (1986). This discretization is homogeneously spread in space and allow to describe an
isotropic behavior. The choice of 42 directions is made because they well represent the space and
limit also the anisotropy due to the discretization as explained by Gillibert et al. (2010). To obtain
the total stress endured by the material, it is necessary to sum the influence of each direction by
applying a weight ω(i). Thus, the stress induced by the material for both models is defined as:

σ =
42
∑

i

ω(i)σ(i)(a(i)n ⊗ a(i)n ) (17)

where a
(i)
n is the normalized vector for each direction, i.e. a

(i)
n = a

(i)

‖a(i)‖
and σ(i) is given by

Eq.(15) or Eq.(16) according to the chosen model. The spatial repartition of 42 directions used
and proposed by Bazant and Oh (1986) is represented according to different plans in Fig.2. The

Fig.2(a) represents the directions in the plan (
→

y ,
→

z ). It appears that each direction belong to a

circle. A representation of the different circles is illustrated in the plan (
→

x ,
→

z ) in Fig.2(b).
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Figure 2: Representation of the 42 direction of Bazant and Oh (1986) (a) in the plan (
→

y ,
→

z ), (b) and in the plan

(
→

x ,
→

z ).

3.2.4. Simulation of the sphere unit models

It is proposed in this section to compare the results for a same loading for classical and spher-
ical formulations and for both models at several strain rates. The Fig.3(a) highlights the results

obtained for two cycles tensile tests up to λ = 4 along the direction
→

x for the IVM classical formula-
tion (as presented in Petiteau et al. (2012)) and Fig.3(b) the results with the spherical formulation
for the IVM. For both simulations the parameters used are identical as those used by Petiteau et al.
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(2012): C1 = 1 MPa ; C2 = 9 MPa and η = 1MPa.s. It is observed that the obtained behaviors are
different for the two formulations, the results of the spherical formulation provide a lower response
than the classical formulation for all the different strain rates studied. But the influence of the
strain rate is similar for the two formulations. In the same way it is proposed to highlight the

1 2 3 4

0

100

200

300

1 2 3 4

0

40

80

(a)

C
au

ch
y 

st
re

ss
 (M

P
a)

 =0 s-1

 =1 s-1

 =10 s-1

 =100 s-1

 = s-1

(b)
C

au
ch

y 
st

re
ss

 (M
P

a)

 =0 s-1

 =1 s-1

 =10 s-1

 =100 s-1

 = s-1

Figure 3: Stress strain curve IVM for an isotropic formulation (a) and a sphere unit formulation with 42 directions
(b)

most requests directions for the spherical formulation. A weight stress tensor can be associated to

each direction, i.e. w(i)σ(i)(a
(i)
n ⊗a

(i)
n ), the contribution of the weight stress tensor along the tensile

direction is illustrated in Fig.4 for a strain rate of α = 100 s−1. It is to note that each direction
that belongs to a same circle (cf. Fig.2) presents the same mechanical behavior. Moreover, it is
observed that some directions do not have any influence: directions 2-3-8-9 which belong to the
circle 1 as illustrated in Fig.2. Indeed it is consistent that these directions do not present any
influence since the directions of the circle 1 projected in the direction

→

x (which matches to the
tensile direction) is equal to zero. The other directions present an increasing contribution for the
circles 2, 3, 4 and for the direction 1 which corresponds to the tensile direction.

It is proposed to realize the same two cycles tensile test up to λ = 4 with the classical and spherical
formulations of the CIM. The obtained results are presented in Fig.5. The parameters used are
identical as those used by Petiteau et al. (2012): g0 = 1 MPa, g1 = 9 MPa and τr = 1

36 s. As
previously, both formulations do not predict the same behavior, but the influence of the strain
rate is similar. Indeed the spherical formulation induced a lower stress state than the classical
formulation for the same strain state at different strain rates. The stress state for each direction
can be observed in Fig.6 for a strain rate of α = 100 s−1 and for the same mechanical parameter.
As previously, the most request direction is the direction 1 since it is the direction that corresponds
to the tensile direction

→

x .

3.2.5. Comparison of the two theories with a sphere unit formulation

As proved for the classical formulation by Petiteau et al. (2012), it appears that the two models
exhibit the same response, even if the strengthening is larger for CIM than for IVM. Furthermore,
the hysteresis loop is larger for IVM than for CIM. These differences are more important at high
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Figure 4: Stress strain curves for IVM for the 42 directions of the sphere unit model
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Figure 6: Stress strain curves for CIM for the 42 directions of the sphere unit model

strain rates. With the sphere unit formulation it is observed that both models exhibit also similar
responses, still with some differences, as illustrated in Fig.3(b) and Fig.5(b). Indeed for all strain
rates the two models present a different strengthening (larger for CIM than IVM) and hysteresis
(larger for IVM than CIM). The differences are still more important for high strain rates. It is
to note that the results of the sphere unit formulation are similar to the classical formulation for
both models with a scale factor at each strain rates. This sphere unit formulation provides similar
results as those of Miehe and Göktepe (2005); Diani et al. (2006) for isotropic materials. It is
to note that the sphere unit formulation is based on a Neo Hookean constitutive equation but
could be represented by any phenomenological constitutive equation instead of micro mechanics
model based on Langevin function as proposed by Miehe and Göktepe (2005); Diani et al. (2006).
Anyway, the spherical formulation can be adapted to any strain energy density.

4. Comparison of the classical formulations and the sphere unit formulations for dif-

ferent mechanical loadings

In this part, it is proposed to compare the results obtained with a classical formulation and a
spherical formulation for the IVM and the CIM according to different loadings states. For each
formulation and model, it is proposed to simulate a two cycles test up to λ = 4 for uniaxial (UT),
planar (PT) and equibiaxial (ET) tests. The stress equations for planar and equibiaxial tests are
easily deduced from Eq.(5) and Eq.(8) for the IVM and from the Eq.(10) for the CIM. The Fig.7
illustrates the results obtained for the IVM and the CIM with the classical formulation. It is ob-
served that the three mechanical tests provide approximately the same response, the first load and
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the beginning of the first unload. For the ET it is observed that the models cannot truly take into
account the viscoelasticity since the tests present highly compressive stress during the unloading,
these results are not consistent with the experimental observations. It is also expected to obtain
a stress state more important for an equibiaxial test compare to uniaxial or planar state (Treloar,
1943; Marckmann and Verron, 2006; Boyce and Arruda, 2000). This phenomenon can be explained
by the unidirectional modeling used for the classical models.
The same cyclic tensile tests were performed with the sphere unit formulation for the IVM and
CIM as illustrated in Fig.8. It appears that the equibiaxial tests provide a stress state more im-
portant than the uniaxial or planar tensile tests for a same strain state with the same elementary
hyperelastic models. Furthermore with the sphere unit formulation, it is observed that there is
only a few compressive stress during the unloading. These results are more consistent than those
obtained with the classical formulation for the both models. These results highlight that the sphere
unit formulation is more adapted to describe an equibiaxial test than the classical formulation for
this type of viscoelastic models for classical formulations. The uniaxial and planar tensile tests are
also well described by the sphere unit formulation.
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Figure 7: Stress-strain curves for uniaxial (UT), planar (PT) and equibiaxial (ET) tension for isotropic formulation
with the IVM and the CIM

In conclusion, these simulations prove that simple tensorial form models cannot be easily used to
represent biaxial loading, and leads to inconsistent results. At the opposite the use of spherical
approach to represent three dimensional loadings is efficient even if the three dimensional homog-
enization is based on simple tensorial form issue from uniaxial development.

5. Extension to anisotropic viscoelasticity

By means of the spatial repartition of the directions used previously, an isotropic viscoelas-
tic formulation was written. It is proposed now to use the sphere unit formulation to obtain an
anisotropic response by a parametric study of the different directions. That means that each direc-
tion is no longer represented by the same mechanical parameter. With the sphere unit formulation,
the directions are homogeneously distributed in space, a projection of this distribution was pre-
sented in Fig.2. This homogenous repartition of the directions induces a quasi isotropic behavior
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Figure 8: Stress-strain curves for uniaxial (UT), planar (PT) and equibiaxial (ET) tension for sphere unit formulation
with the IVM and the CIM

(Gillibert et al., 2010). Thus, the results obtained for a tensile test along the direction
→

x or
→

y are
identical.

5.1. Variation of the viscoelastic parameter (η and τr)

5.1.1. Presentation

It is proposed to induce a variation of the viscoelastic parameters η for the IVM and τr for the
CIM. The variation of the viscoelastic terms do not change the expressions of the stress described
previously. Except that, it is considered that this parameter depends on the considered directions
as illustrated in Fig.9. To highlight the influence of an anisotropic formulation compared to an
isotropic formulation, several numerical simulations are performed:

• First, a cyclic tensile test along the direction
→

x until a stretch of λ = 4 is performed for a
sphere unit formulation where the viscoelastic term is constant in each direction: η(i) = 1
MPa.s and τr(i) =

1
36 s ∀i, these tests are denoted (dir1− isotropic).

• Then the same cyclic test along
→

x is performed for a variation of the viscoelastic term for
each direction as described previously and illustrated in Fig.9: η(i) = η0 cos(θi) and τr(i) =
τr0 cos(θi) where η0 = 1 MPa.s and τr0 =

1
36 s, these tests are denoted (dir1− anisotropic).

• Finally the same cyclic tensile test, with the variation of the viscoelastic parameters (η(i) =

η0 cos(θi) and τr(i) = τr0 cos(θi)), is performed along the direction
→

y , these tests are denoted
(dir2− anisotropic).

These simulations are performed for both models (IVM and CIM) and the same sets of mechanical
parameters defined previously are used (cf. paragraph 3.2.4). All the results are simulated for a
strain rate α = 100 s−1.
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Figure 10: Variation of the viscoelastic parameter τr and η for the both model IVM and CIM, the other parameters
are identical for a cyclic uniaxial tensile test.
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5.1.2. Analysis

The results of the tests described previously for the IVM and the CIM are presented in Fig.10.
It is observed that the results are similar for the CIM (variation of τr), and for the IVM (variation
of η). Indeed the stress strain curves obtained for (dir1− isotropic) and (dir1− anisotropic)
are very similar, the predominant direction in the spherical approach is the closest one from the
loading direction. As the viscoelastic parameters were not changed in direction 1 the mechanical
behavior is not so modified. At the opposite, the stress strain curve (dir2− anisotropic) is very

lower than the stress strain curves corresponding to a tensile test along the direction
→

x . Thus, it
proves that with the spherical formulation the two models can easily represent a multidirectional
anisotropic viscoelastic behavior.

5.2. Variation of the hyperelastic parameter of the inelastic part (g1 and C2)

5.2.1. Presentation

It is proposed for this second study to vary a second material parameter. The C2 (IVM) or
g1 (CIM) parameters, are not the same in all directions. Thus, the variation of the parameters
is expressed in the same way as previously, that means that C2 and g1 are now depending on
the orientation of the directions in space as illustrated in Fig.11. As previously several tests are
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Figure 11: Representation of the spatial distribution of Bazant and Oh directions in the plan (
→

y ,
→

z )

performed:

• First a tensile test along
→

x until a stretch of λ = 4 for a constant value of the param-
eters in each direction: C2(i) = 9 MPa and g1(i) = 9 MPa ∀i, these tests are denoted
(dir1− isotropic).

• Then the same tensile test in the direction
→

x with varying values of the parameters: C2 =
C2−0 cos(θi) and g1 = g1−0 cos(θi) where C2−0 = 9 MPa and g1−0 = 9 MPa, these tests are
denoted (dir1− anisotropic).
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• Finally, still the same tensile test along the direction
→

y with also varying values (dir2− anisotropic)
is performed.

5.2.2. Analysis

The results can be observed in Fig.12, where g1 and C2 are varying and the other mechanical
parameters are constant, the simulations are presented for a strain rate α = 100 s−1. As previously
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Figure 12: Variation of g1 and C2 for the both models IVM and CIM, the other parameters are still the same (where
η and τ are constant) for a cyclic uniaxial tensile test.

it is observed that for a tensile test along the direction
→

x the results are quite similar for the both
models, even if the anisotropic spherical formulation (dir1− anisotropic) provides lower results

as the isotropic spherical formulation (dir1− isotropic). The tensile tests along the direction
→

y

for the anisotropic spherical formulation (dir2− anisotropic) present results lower than the two
other stress strain curves for both models. Thus, by varying these other mechanical parameters it
is also possible to obtain an anisotropic behavior for both models, and the behavior of the chain
oriented in the loading direction is still predominant.

5.3. Conclusions

According to this study, it was observed that, by means of a sphere unit formulation, it is
easy to obtain an anisotropic behavior. The anisotropy of a material was induced by means of the
mechanical parameters. All the parameters do not induce the same anisotropic response. Thus,
it is possible to turn a material anisotropic as wished. The results presented in this paragraph
where performed at α = 100s−1, but the conclusions are identical for other strain rates. Compared
to others pre-existent models about viscoelasticity, it is to note that there is only a few proposed
models in literature (Miehe and Göktepe, 2005; Diani et al., 2006) to take into account a multidi-
rectional anisotropic viscoelastic behavior. Miehe and Göktepe (2005) proposed an adaptation of
its initial model to take into account anisotropic behavior and Diani et al. (2006) proposed a model
to take into account the induced anisotropy due to the stress softening. Most of the anisotropic
models are developed for soft tissues but they only present two different directions, due mainly
to the fiber reinforcement in the material Peña et al. (2007); Taylor et al. (2009). The model
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presented here allows to take into account the initial anisotropy of a material by the simple way
of a sphere unit formulation and can thus represented a multidirectional anisotropy by means of a
simple phenomenological model.

6. Viscoelasticity and Mullins effect

As explained previously the viscoelasticity is one of the non linear phenomenon associated to
rubberlike materials and soft tissues. Nevertheless other phenomena as Mullins effect or permanent
set are also current for this materials. It is proposed in this part to add the phenomenological
stress softening model developed by Rebouah et al. (2013) at the CIM and IVM to take into
account the Mullins effect in the previous sphere unit viscoelastic models. It is to note that
any other constitutive equation for describing the Mullins effect can also be used, especially the
micromechanics-based model as De Tommasi et al. (2006); Diani et al. (2006); Miehe and Göktepe
(2005). The main equations are recalled here where a repartition of n initial spatial directions A(i)

is also used. The general form of the strain energy is:

W = Wcc(I1) +
n
∑

i=1

ω(i)F (i)W
(i)
cf (I

(i)
4 ). (18)

where Wcc represents the hyperelastic Neo Hookean model already used in the viscoelastic model,
and F (i) is the Mullins effect evolution function similar as the one proposed by Zuñiga and Beatty

(2002) and W
(i)
cf is the strain energy associated with each direction. The energy proposed by

Kaliske (2000) is chosen:

W
(i)
cf =

K

4
(I

(i)
4 − 1)2 (19)

and the evolution function is:

F (i) = 1− ηm

√

I1max − I1
I1max − 3

(

I
(i)
4max − I

(i)
4

I
(i)
4max − 1

)(

I
(i)
4max

I4max

)4

(20)

where ηm is a mechanical parameter that represents the intensity of the stress softening between

the first and the second loadings, and I1max, I4
(i)
max and I4max are respectively the maximum values

of I1, I4
(i) for the direction i and I4

(i) for all directions.

6.1. IVM

The Mullins effect model was added to the viscoelastic part and thus the rheological scheme
is modified as illustrated in Fig.13. The final expression of the IVM and Mullins effect model is
expressed as:

σ =
42
∑

i

ω(i)

(

2C1

(

λ(i)2 −
1

λ(i)

)

+ 2C2

(

λ(i)
e

2
−

1

λ
(i)
e

)

+ 2λ(i)2F (i)∂Wcf

∂I
(i)
4

(i)
)

a(i)n ⊗ a(i)n (21)

It is proposed to simulate a tensile test defined by 5 cycles until λ = 2, then 5 cycles until λ = 3
and finally 5 cycles until λ = 4. A strain rate of α = 15 s−1 is imposed and the chosen parameter
are: g0 = 1 MPa, g1 = 9 MPa, η=1 MPa.s, K=0.5 MPa and ηm=4.5. The results are illustrated in
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Figure 13: Representation of the viscoelastic and Mullins effect modeling

Fig.14. The behavior of the viscoelastic part (visco) and stress softening (Mullins) are represented
independently and finally the sum of these two behaviors is represented (total). It is observed
that for each cycle the Mullins effect is well taken into account and can be very well treated
independently of the viscous effects. The global behavior is finally composed of hyperelasticity,
viscoelasticity and stress softening.

6.2. CIM

The Mullins effect part is added to the viscoelastic part of the CIM in the same way as described
for the IVM. The evolution function, and the strain energy are the same. Thus, the following ex-
pression of the stress is obtained:

σ =
42
∑

i

ω(i)

(

[2g0(λ
(i)2(t)−

1

λ(i)(t)
)] +

∫ t

−∞

2g1 exp

(

−
t− τ

τr

)

[

1

λ(i)(τ)

∂λ(i)(t)

∂τ

(

2
λ(i)2(t)

λ(i)2(τ)
+

λ(i)(t)

λ(i)(τ)

)]

dτ

+2λ(i)2F (i)∂Wcf

∂I
(i)
4

(i)
)

a(i)n ⊗ a(i)n (22)

It is also proposed to simulate the same test as the one described in paragraph 6.1. The results
are obtained for a strain rate of α = 15 s−1 and the material parameters are: g0 = 1 MPa, g1 = 9
MPa, τr=

1
36 s, K=0.5 MPa and ηm=4.5. The results are illustrated in Fig.15. As for the IVM it is

observed that for cycles until a same strain state that the Mullins effect is well described and can
be also very well treated independently as the viscous effects.

7. Conclusion

This paper has presented first an extension of Petiteau et al. (2012) study by proposing an
adaptation of classical viscoelastic model to spherical approaches to realize a three directional
homogenization in an incompressible framework. This formulation can be adapted to rubber like
materials and soft tissues. Two classical models of viscoelasticity (IVM and CIM) were written
by means of a spherical formulation and compared to a classical formulation. It appears that, if a
homogeneous repartition of directions in space is used (isotropic behavior), the sphere unit model
allows to describe better different loadings state (uniaxial, planar and equibiaxial tension) than a
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Figure 14: Simulation of 15 cycles with the IVM sphere unit model coupled with the Rebouah et al. (2013) stress
softening model
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classical formulation by correctly describing the equibiaxial extension. This permits to use these
simple constitutive equations in a tridimensional framework and to be able to simulate any loading
state even with simple constitutive equations.
Then, the sphere unit formulation was used to induce an initial anisotropy by imposing different
mechanical parameters in each direction. It was observed that an anisotropic behavior could be
easily created in this way, simply by a parameter variation along the directions. Finally, a stress
softening model was added to the spherical formulation to also take into account the Mullins effect.
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