Amplitude Higgs mode in the 2H-NbSe2 superconductor
Marie-Aude Measson, Yann Gallais, Maximilien Cazayous, B. Clair, Pierre Rodiere, Laurent Cario, Alain Sacuto

To cite this version:

HAL Id: hal-00965651
https://hal.archives-ouvertes.fr/hal-00965651
Submitted on 25 Mar 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Amplitude Higgs mode in the $2H\text{-} \text{NbSe}_2$ superconductor

M.-A. Méasson,1,* Y. Gallais,1 M. Cazayous,1 B. Clair,1,2 P. Rodière,3 L. Cario,4 and A. Sacuto1

1Laboratoire Matériaux et Phénomènes Quantiques (UMR 7162 CNRS), Université Paris Diderot-Paris 7, Bâtiment Condorcet, 75205 Paris Cedex 13, France

2Laboratoire Structure Propriété et Modélisation des Solides (CNRS UMR 8580), Ecole Centrale Paris, 92 295 Chatenay Malabry, France

3Institut Néel, CNRS-UJF, 25 Avenue des Martyrs, 38042 Grenoble, France

4Institut des Matériaux Jean Rouxel (IMN), Université de Nantes–CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 03, France

(Received 20 December 2013; revised manuscript received 31 January 2014; published 18 February 2014)

We report experimental evidence for the observation of the superconducting amplitude mode, the so-called “Higgs” mode, in the charge density wave superconductor $2H\text{-} \text{NbSe}_2$ using Raman scattering. By comparing $2H\text{-} \text{NbSe}_2$ and its isostructural partner $2H\text{-} \text{NbS}_2$ which shows superconductivity but lacks the charge density wave order, we demonstrate that the superconducting mode in $2H\text{-} \text{NbSe}_2$ owes its spectral weight to the presence of the coexisting charge density wave order. In addition, temperature dependent measurements in $2H\text{-} \text{NbSe}_2$ show a full spectral weight transfer from the charge density wave mode to the superconducting mode upon entering the superconducting phase. Both observations are fully consistent with a superconducting amplitude mode or Higgs mode.

DOI: 10.1103/PhysRevB.89.060503

PACS number(s): 74.70.Ad, 71.45.Lr, 74.25.nd

While the quest for the Higgs boson in particle physics is reaching its goal and its prediction has been rewarded by the Nobel prize, there is growing interest in the search for an analogous excitation in quantum many body systems where the Higgs boson manifests itself as a fundamental collective mode [1–3]. When a spontaneous breaking of a continuous symmetry takes place, collective excitations of the order parameter emerge: They are the massless Nambu-Goldstone phase modes [4] and the massive amplitude Higgs mode [5]. In quantum many body systems, the Higgs mode was recently identified in ultracold two-dimensional (2D) bosonic ^{87}Rb atoms in an optical lattice [6] and was reported in the dimer antiferromagnet TiCuCl$_3$ [7]. Very recently, it has been unveiled in superconducting Nb$_{1-x}$Ti$_x$N films by using terahertz pump probe spectroscopy [8]. The existence of a Higgs mode was proposed more than 30 years ago in the bulk superconducting phase. Both observations are fully consistent with a superconducting amplitude mode or Higgs mode. However, when superconductivity coexists with a charge density wave (CDW) order, the amplitude mode of the CDW order couples to the Higgs mode by modulating the density of states at the Fermi level, thus “shaking” the SC condensate by modulating the amplitude of the superconducting order parameter. This allows the indirect detection of the “Higgs” mode by spectroscopic probes [9,10]. Experimentally, the Higgs mode becomes active by removing spectral weight from the CDW amplitude mode upon entering the SC state. The requisite of a coexisting CDW mode and the observation of a transfer of spectral weight from the CDW amplitude mode to the Higgs mode in the SC state can thus be considered as key predictions of the Higgs mode scenario.

Raman inelastic light scattering experiments allow access to symmetry dependent collective excitations of both CDW and SC orders. Crucially, because the amplitude mode of the CDW order is Raman active [16], it is ideally suited for the detection of the Higgs mode in the SC state. The Raman response of $2H\text{-} \text{NbSe}_2$ has been extensively studied [16–20], including at low temperature, in the superconducting phase [11,12]. On the contrary, $2H\text{-} \text{NbS}_2$ has been little investigated by Raman spectroscopy [21,22] and attempts to perform measurements in the superconducting state have yet to be performed. Because $2H\text{-} \text{NbS}_2$ does not show any CDW order, its comparison with $2H\text{-} \text{NbSe}_2$ provides a stringent test for the Higgs mode scenario.

We show here, by a comparison of quantitative Raman scattering measurements in $2H\text{-} \text{NbSe}_2$ and $2H\text{-} \text{NbS}_2$, that the narrow and intense superconducting mode in $2H\text{-} \text{NbS}_2$ cannot be a simple Cooper-pair-breaking mode. In $2H\text{-} \text{NbS}_2$, only a much weaker Cooper-pair-breaking peak is observable. Clearly, the coexisting CDW mode is necessary for the observation of the intense superconducting mode in $2H\text{-} \text{NbS}_2$. We also report an almost perfect transfer of spectral weight from the CDW mode to the SC mode from T_c down to 2 K in $2H\text{-} \text{NbSe}_2$ in A_{1g} and E_{2g} symmetries, showing that the SC mode draws all its Raman intensity from the coexisting CDW mode. Both experimental observations are strong evidence for the Higgs mode scenario in $2H\text{-} \text{NbSe}_2$.

The dichalcogenide $2H\text{-} \text{NbSe}_2$ offers the unique feature of exhibiting charge density wave and superconducting ordering temperatures of the same order of magnitude ($T_c = 7.1$ K and $T_{CDW} = 33$ K, respectively). This property allows an efficient coupling between the CDW mode and the amplitude mode of the SC order parameter, a prerequisite for the detection of the amplitude SC order or Higgs mode. Whereas $2H\text{-} \text{NbSe}_2$ exhibits coexisting SC and CDW orders, its isostructural and isoelectronic partner $2H\text{-} \text{NbS}_2$ presents only the superconducting state with a comparable T_c. We also report an almost perfect transfer of spectral weight from the CDW mode to the SC mode from T_c down to 2 K in $2H\text{-} \text{NbSe}_2$ in A_{1g} and E_{2g} symmetries, showing that the SC mode draws all its Raman intensity from the coexisting CDW mode. Both experimental observations are strong evidence for the Higgs mode scenario in $2H\text{-} \text{NbSe}_2$.

The dichalcogenide $2H\text{-} \text{NbSe}_2$ offers the unique feature of exhibiting charge density wave and superconducting ordering temperatures of the same order of magnitude ($T_c = 7.1$ K and $T_{CDW} = 33$ K, respectively). This property allows an efficient coupling between the CDW mode and the amplitude mode of the SC order parameter, a prerequisite for the detection of the amplitude SC order or Higgs mode. Whereas $2H\text{-} \text{NbSe}_2$ exhibits coexisting SC and CDW orders, its isostructural and isoelectronic partner $2H\text{-} \text{NbS}_2$ presents only the superconducting state with a comparable T_c.
Recent inelastic x-ray scattering studies have shown that absence of the pancakelike sheet at the T_c indicates the subtraction of the phonon modes along ΓM at the same wave vector than the soft mode which drives the CDW transition in 2H-NbSe_2. Most probably, in 2H-NbSe_2, CDW does not occur only due to large anharmonic effects [31].

The 2H-NbS_2 single crystal was grown using the vapor transport growth technique with a large sulfur excess [32]. It was characterized by inelastic x-ray scattering (IXS) [31], scanning tunneling microscopy (STM) [23], specific heat [24], and crossed polarizations we select the ratio of 39 and the transition to the charge density wave order is clearly visible at 33 K by resistivity measurements, confirming its good quality.

A Raman scattering investigation has been carried out at low temperature down to 2 K. Single crystals of 2H-NbSe_2 and 2H-NbS_2, freshly cleaved, were cooled down in a 4He pumped cryostat during the same experiment to be able to quantitatively compare the intensity of the Raman signals. The samples were kept in 4He exchange gas, allowing reduced laser heating [33]. The reported temperatures include the laser heating [33]. The samples were kept in 4He exchange gas, allowing reduced laser heating [33]. The reported temperatures include the laser heating [33]. The samples were kept in 4He exchange gas, allowing reduced laser heating [33]. The reported temperatures include the laser heating [33]. The samples were kept in 4He exchange gas, allowing reduced laser heating [33]. The reported temperatures include the laser heating [33]. The samples were kept in 4He exchange gas, allowing reduced laser heating [33]. The reported temperatures include the laser heating [33].

Raman scattering measurements have been performed in a quasibackscattering geometry with a triple spectrometer Jobin Yvon T64000 equipped with a liquid-nitrogen-cooled CCD detector. We have used the 514 nm excitation line from a Kr^+ laser heating [33]. The reported temperatures include the laser heating [33]. The samples were kept in 4He exchange gas, allowing reduced laser heating [33]. The reported temperatures include the laser heating [33]. The samples were kept in 4He exchange gas, allowing reduced laser heating [33]. The reported temperatures include the laser heating [33]. The samples were kept in 4He exchange gas, allowing reduced laser heating [33]. The reported temperatures include the laser heating [33]. The samples were kept in 4He exchange gas, allowing reduced laser heating [33]. The reported temperatures include the laser heating [33]. The samples were kept in 4He exchange gas, allowing reduced laser heating [33]. The reported temperatures include the laser heating [33].

Raman scattering measurements have been performed in a quasibackscattering geometry with a triple spectrometer Jobin Yvon T64000 equipped with a liquid-nitrogen-cooled CCD detector. We have used the 514 nm excitation line from a Ar^+-Kr^+ mixed gas laser. The polarizations for the incoming and outgoing light are in the (ab) plane of the sample. In the 2H-dichalcogenides, four Raman active symmetries are expected, one A_{1g}, one E_{1g}, and two E_{2g}. In our configuration ($\vec{E} \in (ab)$), we detect the A_{1g} and the two E_{2g}. In parallel and crossed polarizations we select the $A_{1g} + E_{2g}$ and the E_{2g} modes, respectively. By scaling the E_{2g} phonon mode at about 250 cm$^{-1}$, the A_{1g} pure symmetry scattering is deduced by the subtraction of the E_{2g} signal from the $A_{1g} + E_{2g}$ signal.

Figure 1 shows the Raman spectra in the superconducting state, at 2 K, and just above T_c in 2H-NbSe_2 and 2H-NbS_2 and in the $A_{1g} + E_{2g}$ symmetry channel. In NbSe_2, the peak at ~ 40 cm$^{-1}$, labeled the CDW mode, has been attributed to the amplitude mode of the CDW order [16]. A narrow and intense peak at ~ 19 cm$^{-1}$, labeled the SC mode, develops below T_c, thus clearly relating its origin to the superconducting state [11,12]. Both modes are present in the A_{1g} and the E_{2g} symmetry channels. As shown in the inset of Fig. 1, in NbSe_2, a small peak develops below T_c at 14 cm$^{-1}$. Contrary to the SC mode in NbSe_2, it is broad, spreading up to 30 cm$^{-1}$. Its energy matches the largest SC gap measured by STM [23]. In this compound with a single electronic SC order, it is most likely due to a Cooper-pair-breaking excitation [34–37]. By comparing the quantitative Raman signals, it is clear that the intensities of both SC excitations differ drastically. By subtracting the background obtained just above T_c, the Cooper-pair-breaking excitation in NbS_2 is more than 20 times smaller than the SC mode in NbSe_2. We conclude that the intense and narrow SC mode in NbSe_2 owes its Raman intensity to the presence of the coexisting CDW order. The huge difference between the intensity of the SC mode in the two compounds clearly demonstrates that in NbSe_2, the SC mode cannot be a simple Cooper-pair-breaking peak as in NbS_2. On the other hand, our observation is fully consistent with the Higgs mode scenario [10] whereby, in NbSe_2, the SC amplitude mode, or Higgs mode, is activated via its coupling to the CDW amplitude mode. In this scheme, the absence of CDW order in NbS_2 makes the Higgs mode unobservable, leaving only a much weaker Cooper-pair-breaking peak, as observed experimentally.

Additional evidence for the Higgs mode scenario can be obtained from the temperature dependence of the SC and CDW modes of NbSe_2. Figure 2 displays the Raman response of the electronic modes at various temperatures from 2 K up to 8 K above T_c and in $A_{1g} + E_{2g}$ and E_{2g} symmetry channels. At 2 K, the SC modes are at 18.8 \pm 0.5 and 16.2 \pm 0.5 cm$^{-1}$ in $A_{1g} + E_{2g}$ and E_{2g} symmetry, respectively; it is extracted to be at 19.2 \pm 0.5 cm$^{-1}$ in A_{1g} symmetry, consistent with Sooryakumar et al. [11]. The SC mode softens with increasing temperature whereas the position of the CDW mode stays almost constant in $A_{1g} + E_{2g}$ symmetry and slightly shifts to lower energy (~ 3 cm$^{-1}$) in E_{2g} symmetry. Crucially, the SC and CDW modes develop in an opposite way: When superconductivity is gradually destroyed, the SC mode intensity collapses while the CDW mode intensity recovers. A quantitative analysis of the spectral weight transfer as a
We note here that a similar transfer of spectral weight was observed by Sooryakumar et al. [11,12] upon applying a magnetic field. They calculated the total spectral weight in the A_{1g} symmetry as $S = \int^{\infty}_{-\infty} \chi''(\omega)\omega d\omega$ and found it to be constant to within ±7%. In our case, however, the SC and CDW orders are tuned using temperature, without any ambiguous consideration due to the physics of the vortex with spatially varying SC order parameter. It should also be emphasized that our spectral weight transfer is observed in both A_{1g} and E_{2g} symmetries and that it is calculated as $S = \int^{\infty}_{-\infty} \chi''(\omega)\omega d\omega$, which is the one expected to be preserved in the Higgs mode scenario [10].

There are still aspects of our experimental results which deserve further scrutiny. In particular, our results show a symmetry dependence of the “Higgs” mode energies and widths, as well as symmetry dependent spectral weight transfer upon entering the SC state. Such symmetry dependence certainly deserves further theoretical investigation, by including the k-space distribution of the energy of the SC gap [39] and/or the symmetry dependence of the coupling strength. Generally, even if the SC amplitude mode has a

function of temperature in both A_{1g} and E_{2g} symmetries is displayed in Fig. 3. The pure A_{1g} symmetry response is shown in the Supplemental Material [38]. The spectral weight is obtained by integrating the imaginary part of the susceptibility $\chi''(\omega)$, i.e., $\langle S \rangle = \frac{1}{2} \int^{\infty}_{-\infty} \chi''(\omega)\omega d\omega$. The spread of the spectral weight is defined as the deviation from the average value $\langle S \rangle$, i.e., $\frac{1}{2} \langle S \rangle$. (c) Percentage of spread of the total spectral weight (CDW mode+SC mode) calculated between 8 and 60 cm$^{-1}$ in E_{2g} and A_{1g} symmetries vs temperature.

The almost perfect transfer of spectral weight from the CDW mode to the SC mode below T_c is strong evidence that the SC mode draws all its Raman intensity from the coexisting CDW mode, in full agreement with the Higgs mode scenario.

FIG. 2. (Color online) Temperature dependence of the Raman susceptibility of the charge density wave mode and the superconducting mode in 2H-NbSe$_2$. (a) In the $A_{1g} + E_{2g}$ symmetry. (b) In the E_{2g} symmetry. The isosbestic point is a phenomenological symmetry. Ph-E_{2g} is the interlayer phonon mode. The black arrows depict the spectral weight transfer from the CDW mode to the SC mode upon entering the SC state. The insets show the Raman spectra subtracted data (cf. the insets of Fig. 2) from 8 cm$^{-1}$ up to the isosbestic point and from the isosbestic point up to 60 cm$^{-1}$ for the SC and the CDW modes, respectively. (a) E_{2g} symmetry. (b) A_{1g} symmetry.

FIG. 3. (Color online) (a) and (b) Spectral weight of the SC and CDW modes of 2H-NbSe$_2$ vs temperature, calculated on the subtracted data (cf. the insets of Fig. 2) from 8 cm$^{-1}$ up to the isosbestic point and from the isosbestic point up to 60 cm$^{-1}$ for the SC and the CDW modes, respectively. (a) E_{2g} symmetry. (b) A_{1g} symmetry. (c) Percentage of spread of the total spectral weight (CDW mode+SC mode) calculated between 8 and 60 cm$^{-1}$ in E_{2g} and A_{1g} symmetries vs temperature.

FIG. 3. (Color online) (a) and (b) Spectral weight of the SC and CDW modes of 2H-NbSe$_2$ vs temperature, calculated on the subtracted data (cf. the insets of Fig. 2) from 8 cm$^{-1}$ up to the isosbestic point and from the isosbestic point up to 60 cm$^{-1}$ for the SC and the CDW modes, respectively. (a) E_{2g} symmetry. (b) A_{1g} symmetry. (c) Percentage of spread of the total spectral weight (CDW mode+SC mode) calculated between 8 and 60 cm$^{-1}$ in E_{2g} and A_{1g} symmetries vs temperature.
full A_{1g} symmetry (for s-wave superconductors), there is no discrepancy for experimental observation in the higher irreducible representation E_{2g} [40].

The observation of the Higgs mode in bulk superconductors may not be the prerogative for $2H$-NbSe$_2$. Indeed, in the A15 family, Nb$_3$Sn and V$_3$Si present a particularly intense and narrow SC mode in the E_g symmetry [41,42]. In both compounds, this SC mode seems coupled to the phonon mode of the same symmetry. Particularly, in Nb$_3$Sn, the spectral weight of the SC mode and the E_g phonon mode is constant at $\pm3\%$, reminiscent of our results on NbSe$_2$. Interestingly, in Nb$_3$Sn, the pure pair-breaking effect occurs in the A_{1g} symmetry, without any spectral weight transfer from a phonon as expected. Even if not pointed out at that time, it is likely that a similar mechanism as in $2H$-NbSe$_2$ is at play in these A15 compounds. We note that, in V$_3$Si, it is surprising that such large spectral weight transfer occurs whereas the ratio between the E_g phonon mode energy (~280 cm$^{-1}$) and the SC mode energy (~40 cm$^{-1}$) is large, in contradiction with the theoretical prediction [9]. The fact that the SC modes were not observed in the samples without a martensitic transition, the proximity of the superconducting and martensitic transitions in V$_3$Si, the implication of the E_g mode in the tetragonal distortion [43] might point to the martensitic instability as an essential ingredient for the observation of the Higgs mode.

In conclusion, we have reported a Raman scattering investigation of the superconducting mode of the charge density wave superconductor $2H$-NbSe$_2$. By comparing $2H$-NbSe$_2$ with its SC partner $2H$-NbS$_2$ which lacks the CDW order, we have shown that the coexisting CDW mode is a requisite to the observation of the SC mode. 2H-NbS$_2$ exhibits only a weak Cooper-pair-breaking peak. In addition, we have precisely measured the spectral weight transfer from the amplitude mode of the CDW to the SC mode in $2H$-NbSe$_2$ with decreasing temperature and in both A_{1g} and E_{2g} symmetries. The SC mode draws all its Raman intensity from the coexisting CDW mode. Our experimental findings are fully consistent with the scenario of a SC amplitude mode of “Higgs” type. Additional evidence might come from the pressure dependency of the SC and the CDW modes with a continuous change of their coupling.

The authors would like to especially thank C. M. Varma for very fruitful discussions and suggestions. We acknowledge B. Doucet, M. Cacciari, and V. Lahoco for enlightening us about the Standard Model and G. Blumberg, A. Mialitsin, and M. Leroux for stimulating discussions on $2H$-NbSe$_2$. We acknowledge I. Paul and C. Ciuti for fruitful discussions. We thank S. Bourmand for her help in sample preparation.

[29] T. Takahashi (private communication).

[39] $2H$-NbSe$_2$ is believed to be a multigap superconductor. No feature related to the presence of the small gap in the Raman spectra of $2H$-NbSe$_2$ has been detected.

