J. Adams, N. Tuchman, and P. Moore, ), Journal of the North American Benthological Society, vol.22, issue.3, pp.410-422, 2003.
DOI : 10.2307/1468271

J. Alan and M. Castillo, Stream ecology Structure and function of running waters The freezer defrosting: global warming and litter decomposition rates in cold biomes, Dordrecht Aerts R J Ecol, vol.94, pp.713-724, 2006.

T. Arsuffi and K. Suberkropp, Leaf Processing Capabilities of Aquatic Hyphomycetes: Interspecific Differences and Influence on Shredder Feeding Preferences, Oikos, vol.42, issue.2, pp.144-154, 1984.
DOI : 10.2307/3544786

T. Arsuffi and K. Suberkropp, Selective feeding by shredders on leaf-colonizing stream fungi: comparison of macroinvertebrate taxa, Oecologia, vol.36, issue.1, pp.30-37, 1989.
DOI : 10.1007/BF00378236

F. Bärlocher, The ecology of aquatic hyphomycetes Sporulation by aquatic hyphomycetes Methods to study litter decomposition. A practical guide, Ecological Monographs, vol.94, pp.185-187, 1992.

F. Bärlocher and M. Schweizer, Effects of Leaf Size and Decay Rate on Colonization by Aquatic Hyphomycetes, Oikos, vol.41, issue.2, pp.205-210, 1983.
DOI : 10.2307/3544265

F. Bärlocher, S. Seena, K. Wilson, and D. Williams, Raised water temperature lowers diversity of hyporheic aquatic hyphomycetes, Freshwater Biology, vol.67, issue.0, pp.368-379, 2008.
DOI : 10.1007/BF00007178

Y. Bekku, T. Nakatsubo, A. Kume, M. Adachi, and H. Koizumi, Effect of warming on the temperature dependence of soil respiration rate in arctic, temperate and tropical soils, Applied Soil Ecology, vol.22, issue.3, pp.205-210, 2003.
DOI : 10.1016/S0929-1393(02)00158-0

J. Brown, J. Gilloly, A. Allen, V. Savage, and G. West, TOWARD A METABOLIC THEORY OF ECOLOGY, Ecology, vol.85, issue.7, pp.1771-1789, 2004.
DOI : 10.1073/pnas.012579799

E. Chauvet and K. Suberkropp, Temperature and sporulation of aquatic hyphomycetes, Appl Environ Microbiol, vol.64, pp.1522-1525, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00949684

H. Chergui and E. Pattee, The influence of season on the breakdown of submerged leaves, Arch Hydrobiol, vol.120, pp.1-12, 1990.

N. Chung and K. Suberkropp, (Trichoptera: Limnephilidae), Freshwater Biology, vol.84, issue.11, pp.2212-2224, 2009.
DOI : 10.1111/j.1365-2427.2009.02260.x

R. Conant, R. Drijber, M. Haddix, W. Parton, E. Paul et al., Sensitivity of organic matter decomposition to warming varies with its quality, Global Change Biology, vol.131, issue.4, pp.868-877, 2008.
DOI : 10.1111/j.1365-2486.2008.01541.x

R. Conant, J. Steinweg, M. Haddix, E. Paul, A. Plante et al., EXPERIMENTAL WARMING SHOWS THAT DECOMPOSITION TEMPERATURE SENSITIVITY INCREASES WITH SOIL ORGANIC MATTER RECALCITRANCE, Ecology, vol.108, issue.9, pp.2384-2391, 2008.
DOI : 10.1111/j.1365-2389.2006.00809.x

M. Cotrufo, M. Briones, and P. Ineson, Elevated CO2 affects field decomposition rate and palatability of tree leaf litter: Importance of changes in substrate quality, Soil Biology and Biochemistry, vol.30, issue.12, pp.1565-1571, 1998.
DOI : 10.1016/S0038-0717(98)00032-7

M. Cotrufo, P. Ineson, and J. Roberts, Decomposition of birch leaf litters with varying C-to-N ratios, Soil Biology and Biochemistry, vol.27, issue.9, pp.1219-1221, 1995.
DOI : 10.1016/0038-0717(95)00043-E

M. Cotrufo, A. Raschi, M. Lanini, and P. Ineson, Decomposition and nutrient dynamics of Quercus pubescens leaf litter in a naturally enriched CO2 Mediterranean ecosystem, Functional Ecology, vol.13, issue.3, pp.343-351, 1999.
DOI : 10.1016/0038-0717(92)90035-V

K. Cummins and M. Klug, Feeding Ecology of Stream Invertebrates, Annual Review of Ecology and Systematics, vol.10, issue.1, pp.147-172, 1979.
DOI : 10.1146/annurev.es.10.110179.001051

P. Curtis and X. Wang, A meta-analysis of elevated CO 2 effects on woody plant mass, form, and physiology, Oecologia, vol.113, issue.3, pp.299-313, 1998.
DOI : 10.1007/s004420050381

C. Dang, M. Schindler, E. Chauvet, and M. Gessner, Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition, Ecology, vol.11, issue.1, pp.122-131, 2009.
DOI : 10.1073/pnas.0508798102

URL : https://hal.archives-ouvertes.fr/hal-00425950

J. Eaton and R. Scheller, Effects of climate warming on fish thermal habitat in streams of the United States, Limnology and Oceanography, vol.41, issue.5, pp.1109-1115, 1996.
DOI : 10.4319/lo.1996.41.5.1109

J. Elser, M. Bracken, E. Cleland, D. Gruner, W. Harpole et al., Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems, Ecology Letters, vol.11, issue.12, pp.1135-1142, 2007.
DOI : 10.1126/science.289.5480.759

E. Fabre and E. Chauvet, Leaf breakdown along an altitudinal stream gradient, Arch Hydrobiol, vol.141, pp.167-179, 1998.
DOI : 10.1127/archiv-hydrobiol/141/1998/167

V. Ferreira, E. Chauvet, V. Ferreira, A. Gonçalves, D. Godbold et al., Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi, Global Change Biology, vol.3, issue.1, pp.551-5643284, 2010.
DOI : 10.1111/j.1365-2486.2010.02185.x

URL : https://hal.archives-ouvertes.fr/hal-00942851

V. Ferreira, V. Gulis, and M. Graça, Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates, Oecologia, vol.16, issue.374, pp.718-729, 2006.
DOI : 10.1007/s00442-006-0478-0

A. Finzi, A. Allen, E. Delucia, D. Ellsworth, and W. Schlesinger, Forest Litter Production, Chemistry, and Decomposition Following Two Years of Free-Air CO 2 Enrichment, Ecology, vol.82, issue.2, pp.470-484, 2001.
DOI : 10.2307/2679873

S. Francoeur, Meta-analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses, Journal of the North American Benthological Society, vol.20, issue.3, pp.358-368, 2001.
DOI : 10.2307/1468034

M. Gessner, Ergosterol as a measure of fungal biomass Methods to study litter decomposition. A practical guide, pp.189-195, 2005.

M. Gessner and E. Chauvet, Ergosterol-to-biomass conversion factors for aquatic hyphomycetes, Appl Environ Microbiol, vol.59, pp.502-507, 1993.
URL : https://hal.archives-ouvertes.fr/hal-01494940

M. Gessner and E. Chauvet, Importance of Stream Microfungi in Controlling Breakdown Rates of Leaf Litter, Ecology, vol.75, issue.6, pp.1807-1817, 1994.
DOI : 10.2307/1939639

M. Gessner, E. Chauvet, and M. Dobson, A Perspective on Leaf Litter Breakdown in Streams, Oikos, vol.85, issue.2, pp.377-383, 1999.
DOI : 10.2307/3546505

J. González and M. Graça, Conversion of leaf litter to secondary production by a shredding caddis-fly, Freshwater Biology, vol.34, issue.9, pp.1578-159275, 2000.
DOI : 10.1126/science.277.5322.102

V. Gulis, Are there any substrate preferences in aquatic hyphomycetes?, Mycological Research, vol.105, issue.9, pp.1088-1093, 2001.
DOI : 10.1016/S0953-7562(08)61971-1

V. Gulis and K. Suberkropp, Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability, Aquatic Microbial Ecology, vol.30, pp.147-157, 2003.
DOI : 10.3354/ame030149

A. Heagle, J. Burns, D. Fisher, and J. Miller, Effects of Carbon Dioxide Enrichment on Leaf Chemistry and Reproduction by Twospotted Spider Mites (Acari: Tetranychidae) on White Clover, Environmental Entomology, vol.31, issue.4, pp.594-601, 2002.
DOI : 10.1603/0046-225X-31.4.594

J. Irons, M. Oswood, R. Stout, and C. Pringle, Latitudinal patterns in leaf litter breakdown: is temperature really important?, Freshwater Biology, vol.2, issue.2, pp.401-411, 1994.
DOI : 10.2307/1936741

J. Kelly, A. Basal, J. Winkelman, L. Janus, S. Hell et al., Alteration of Microbial Communities Colonizing Leaf Litter in a Temperate Woodland Stream by Growth of Trees under Conditions of Elevated Atmospheric CO2, Applied and Environmental Microbiology, vol.76, issue.15, pp.4950-49591000221, 1128.
DOI : 10.1128/AEM.00221-10

J. King, K. Pregitzer, D. Zak, M. Kubiske, W. Holmes et al., Correlation of foliage and litter chemistry of sugar maple, Acer saccharum, as affected by elevated CO2 and varying N availability, and effects on decomposition, Oikos, vol.94, issue.3, pp.403-416298, 1038.
DOI : 10.1034/j.1600-0706.2001.940303.x

J. Kominoski, P. Moore, R. Wetzel, and N. Tuchman, alters leaf-litter-derived dissolved organic carbon: effects on stream periphyton and crayfish feeding preference, Journal of the North American Benthological Society, vol.26, issue.4, pp.663-672, 2007.
DOI : 10.1899/07-002.1

A. Lecerf and E. Chauvet, Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream, Basic and Applied Ecology, vol.9, issue.5, pp.598-605, 2008.
DOI : 10.1016/j.baae.2007.11.003

URL : https://hal.archives-ouvertes.fr/hal-01312780

C. Leroy, T. Whitham, S. Wooley, and J. Marks, Within-species variation in foliar chemistry influences leaf-litter decomposition in a Utah river, Journal of the North American Benthological Society, vol.26, issue.3, pp.426-438, 2007.
DOI : 10.1899/06-113.1

A. Li, L. Mg, and D. Dudgeon, Effects of leaf toughness and nitrogen content on litter breakdown and macroinvertebrates in a tropical stream, Aquatic Sciences, vol.71, issue.1, pp.80-93, 2009.
DOI : 10.1007/s00027-008-8117-y

P. Miranda, F. Coelho, A. Tomé, and M. Valente, 20th century Portuguese climate and climate scenarios Climate change in Portugal. Impacts and adaptation measures, pp.23-83, 2002.

R. Norby, T. Long, J. Hartz-rubin, O. Neill, and E. , Nitrogen resorption in senescing tree leaves in a warmer, CO 2 -enriched atmosphere, Plant and Soil, vol.224, issue.1, pp.15-29, 2000.
DOI : 10.1023/A:1004629231766

R. Norby, M. Cotrufo, P. Ineson, O. Neill, E. Canadell et al., Elevated CO2, litter chemistry, and decomposition: a synthesis, Oecologia, vol.127, issue.2, pp.153-165, 2001.
DOI : 10.1007/s004420000615

N. Poff, M. Brinson, J. Day, J. Quinn, G. Burrell et al., Aquatic ecosystems and global climate change. Potential impacts on inland freshwater and coastal wetland ecosystems in the United States. Pew Center on Global Climate Change Influences of leaf toughness and nitrogen content on in-stream processing and nutrient uptake by litter in a Waikato, New Zealand, pasture stream and streamside channels, NZJ Mar Freshw Res, vol.34, pp.253-271, 2000.

M. Rajashekar and K. Kaveriappa, Effects of temperature and light on growth and sporulation of aquatic hyphomycetes, Hydrobiologia, vol.441, issue.1/3, pp.149-153, 2000.
DOI : 10.1023/A:1017591109362

A. Rey and P. Jarvis, Growth Response of Young Birch Trees (Betula pendulaRoth.) After Four and a Half Years of CO2Exposure, Annals of Botany, vol.80, issue.6, pp.809-816, 1997.
DOI : 10.1006/anbo.1997.0526

S. Rier, N. Tuchman, R. Wetzel, and J. Teeri, Elevated-CO<sub>2</sub>-Induced Changes in the Chemistry of Quaking Aspen (Populus tremuloides Michaux) Leaf Litter: Subsequent Mass Loss and Microbial Response in a Stream Ecosystem, Journal of the North American Benthological Society, vol.21, issue.1, pp.16-27, 2002.
DOI : 10.2307/1468296

S. Rier, N. Tuchman, and R. Wetzel, and the implications for microbial utilization in a stream ecosystem, Canadian Journal of Fisheries and Aquatic Sciences, vol.62, issue.1, pp.185-194, 2005.
DOI : 10.1139/f04-148

A. Rosemond, C. Pringle, A. Ramírez, M. Paul, and J. Meyer, Landscape variation in phosphorus concentration and effects on detritus-based tropical streams, Limnology and Oceanography, vol.47, issue.1, pp.278-289, 2002.
DOI : 10.4319/lo.2002.47.1.0278

S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis et al., Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change How does elevated carbon dioxide (CO 2 ) affect plant-herbivore interaction? A field experiment and meta-analysis of CO 2 -mediated changes on plant chemistry and herbivore performance, IPCC (Intergovernmental Panel on Climate Change) Global Change Biol, vol.13, pp.1823-1842, 2007.

K. Suberkropp, Relationships between growth and sporulation of aquatic hyphomycetes on decomposing leaf litter, Mycological Research, vol.95, issue.7, pp.843-850, 1991.
DOI : 10.1016/S0953-7562(09)80048-8

K. Suberkropp, T. Arsuffi, and J. Anderson, Comparison of degradative ability, enzymatic activity, and palatability of aquatic hyphomycetes grown on leaf litter, Appl Environ Microbiol, vol.46, pp.237-244, 1983.

G. Taylor, M. Tallis, C. Giardina, K. Percy, F. Migliettas et al., Future atmospheric CO2 leads to delayed autumnal senescence, Global Change Biology, vol.106, issue.2, pp.264-2751051, 2003.
DOI : 10.1111/j.1365-2486.2007.01473.x

C. Ter-braak, P. Smilauer, N. Tuchman, R. Wetzel, S. Rier et al., CANOCO reference manual and user's guide to CANOCO for windows: software for canonical community ordination, version 4. Microcomputer Power Elevated atmospheric CO 2 lowers leaf litter nutritional quality for stream ecosystem food webs, Global Change Biol, vol.8, pp.163-170, 1998.

N. Tuchman, K. Wahtera, R. Wetzel, N. Russo, G. Kilbane et al., Nutritional quality of leaf detritus altered by elevated atmospheric CO2: effects on development of mosquito larvae, Freshwater Biology, vol.69, issue.8, pp.1432-1439, 2003.
DOI : 10.1146/annurev.ecolsys.17.1.567

N. Tuchman, K. Wahtera, R. Wetzel, and J. Teeri, Elevated atmospheric CO 2 alters leaf litter quality for stream ecosystems: an in situ leaf decomposition study, Hydrobiologia, vol.495, issue.1/3, pp.203-211, 2003.
DOI : 10.1023/A:1025493018012

R. Vannote, G. Minshal, K. Cummins, J. Sedall, and C. Cushing, The River Continuum Concept, Canadian Journal of Fisheries and Aquatic Sciences, vol.37, issue.1, pp.130-137, 1980.
DOI : 10.1139/f80-017

C. Vogel, P. Curtis, and R. Thomas, Growth and nitrogen accretion of dinitrogen-fixing Alnus glutinosa (L.) Gaertn. under elevated carbon dioxide, Plant Ecology, vol.130, issue.1, pp.63-70, 1997.
DOI : 10.1023/A:1009783625188

J. Webster, S. Moran, and R. Davey, Growth and sporulation of Tricladium chaetocladium and Lunulospora curvula in relation to temperature, Transactions of the British Mycological Society, vol.67, issue.3, pp.491-549, 1976.
DOI : 10.1016/S0007-1536(76)80177-5

H. Weyers and K. Suberkropp, Fungal and Bacterial Production during the Breakdown of Yellow Poplar Leaves in 2 Streams, Journal of the North American Benthological Society, vol.15, issue.4, pp.408-420, 1996.
DOI : 10.2307/1467795

J. Zar, Biostatistical analysis, 1999.