Convolution of orbital measures on symmetric spaces of type $C_p$ and $D_p$

Abstract : We study the absolute continuity of the convolution $\delta_{e^X}^\natural \star\delta_{e^Y}^\natural$ of two orbital measures on the symmetric spaces ${\bf SO}_0(p,p)/{\bf SO}(p)\times{\bf SO}(p)$, $\SU(p,p)/{\bf S}({\bf U}(p)\times{\bf U}(p))$ and $\Sp(p,p)/{\bf Sp }(p)\times\Sp(p)$. We prove sharp conditions on $X$, $Y\in\a$ for the existence of the density of the convolution measure. This measure intervenes in the product formula for the spherical functions.
Document type :
Preprints, Working Papers, ...
Liste complète des métadonnées

Cited literature [9 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00965263
Contributor : Piotr Graczyk <>
Submitted on : Monday, March 24, 2014 - 8:23:00 PM
Last modification on : Wednesday, December 19, 2018 - 2:08:04 PM
Document(s) archivé(s) le : Tuesday, June 24, 2014 - 12:57:04 PM

Files

CpDp_LAST.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00965263, version 1
  • ARXIV : 1403.6098

Collections

Citation

Piotr Graczyk, Patrice Sawyer. Convolution of orbital measures on symmetric spaces of type $C_p$ and $D_p$. 2014. 〈hal-00965263〉

Share

Metrics

Record views

290

Files downloads

128