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Green’s function can be retrieved from cross-correlation of a diffuse field generated by noise

sources. Today, this important result is the fundamental of several passive imaging techniques.

The aim of this paper is to establish the suitability of these methods to detect and locate a defect

in a reverberant elastic plate. The relations between the noise cross-correlation function over a

few number of noise sources and the imaginary part of the Green’s function are derived and

numerically validated. Then we show through numerical experiments that this technique is

exploitable for defect detection and localization in a differential mode, despite a non-perfect

estimation of the Green’s functions. Finally, a filtering technique based on the singular value

decomposition is shown to improve the detection.VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4867522]

I. INTRODUCTION

Structural health monitoring (SHM) is an ensemble of

emerging technologies aiming at helping optimisation in

maintenance, reliability, and structures safety, particularly in

the aeronautical field. Commonly studied SHM systems

involve guided elastic waves, namely Lamb waves, which

can propagate over long distances in plates and shells.1,2

Unlike standard ultrasound methods (conventional methods

or pitch-catch)3 used in the active configuration (active sen-

sors emit waves to interrogate the defect present in the struc-

ture), a passive SHM system based on ambient noise

correlation would not require power-consuming ultrasound

emitters. In an aeronautical application, for instance, useful

noise could be engine noise or aerodynamic noise.

Several theoretical and experimental studies have demon-

strated the possibility of retrieving a relevant information

about a propagation medium by using ambient noise. Indeed,

when it is diffused or more exactly equipartioned, the Green’s

functions between two points of a structure can be recon-

structed by the correlation of noise field recorded in these two

points. Such methods have been studied in several areas such

as civil engineering,4 seismology,5,6 medical imaging,7 under-

water acoustics,8,9 volcanology,10 ultrasound,11–13 helioseis-

mology,14 and nondestructive testing.15–17

The complexity of this application lies on the non-

diffusivity of the ambient field, which leads to an unperfect

convergence of correlations towards the Green’s functions.

As a consequence, localizing, detecting, and imaging defect

is a real challenge.

In this paper, we propose an application of the Green’s

function extraction to passively detect a defect in a thin plate.

To this end, we estimate the cross-correlation matrix of the

flexural waves generated by random sources and measured

on a few sensors. The difference between the matrix obtained

with and without defect (differential mode) allows to detect

and localize the defect. From numerical experiments, we

show that despite the imperfect reconstruction of the Green’s

functions, the detection and localization of a defect might be

achieved with only 8 receivers. Thereafter, to improve the

sensitivity of detection, an emerging technique of physical

acoustic based on time reversal associated to singular value

decomposition (DORT method, French acronym for

Decomposition of the Time Reversal Operator)18–20 is

applied to the correlation matrices of the received signals.

This paper is organized as follows: in Sec. II, we show

how the Green’s functions can be extracted from the aver-

aged correlation matrices when the number of noise sources

is limited. Similarly to the works by Weaver and Lobkis for

bulk acoustic waves,11,21 the derivation is based on a modal

expansion of the flexural waves. A quantitative comparison

between the averaged correlations and the Green’s functions

obtained from numerical simulation is thus obtained. Then in

Sec. III, a back-propagation algorithm is successfully applied

to the correlation matrices for localizing and imaging the

defect. Finally, a filtering technique based on the DORT

method is applied to reduce noise and to improve the quality

of the obtained images.

II. GREEN’S FUNCTION RETRIEVAL FROM A FINITE
NUMBER OF NOISE SOURCES

A. Theoretical relation between correlation and
Green’s function

The normal displacement field w of flexural waves

obeys the Kirchhoff-Love equation,22

DD2wðr; tÞ þ qs @2
t wðr; tÞ þ

1

sa
@twðr; tÞ

� �

¼ �sðr; tÞ; (1)
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where r is the position vector, D ¼ h3E=12ð1� �2Þ is the

bending stiffness, h the plate thickness, qs¼qh the surfacic

mass, q the volume density, E the Young’s modulus, � the

Poisson’s ratio, sa the damping time, and s the normal load.

The Green’s function is solution of the previous wave equa-

tion with a Dirac source term

DD2GðrSk ; r
R
l ; tÞ þ qs @2

t Gðr
S
k ; r

R
l ; tÞ þ

1

sa
@tGðr

S
k ; r

R
l ; tÞ

� �

¼ �dðrSk � r
R
l ÞdðtÞ; (2)

with rSk and rRl the kth source position and the lth receiver

position, respectively.

Now, we assume a set of Ns decorrelated noise sources

with identical power spectrum hjqðxÞj2i. The Fourier trans-

form of the cross-correlation at frequency x between field at

positions rRl and rRl0 can be expressed in terms of monochro-

matic Green’s functions,

Cll0ðxÞ ¼
X

NS

k¼1

GðrSk ; r
R
l ;xÞG

�ðrSk ; r
R
l0 ;xÞhjqðxÞj

2i: (3)

The function Cll0ðxÞ is also called the cross-spectral den-

sity matrix. In highly reverberating media, the plate vibration

shows strong resonating modes. The mode at angular fre-

quency xn is denoted /nðrÞ. We can show that Green’s func-

tions can be decomposed over these eigen-modes.23 In the

frequency domain, this decomposition yields

GðrSk ; r
R
l ;xÞ ¼

1

qs

X

n

/nðr
S
kÞ/nðr

R
l Þ

x2 � x2
n

� �

� j
x

sa

: (4)

By injecting Eq. (4) into Eq. (3), and remarking that the

imaginary part of GðrSk ; r
R
l ;xÞ is given by

=GðrSk ; r
R
l ;xÞ ¼

x

qssa

X

n

/nðr
S
kÞ/nðr

R
l Þ

x2 � x2
n

� �2
þ
x2

s2a

;

the cross-spectral density matrix can be expressed as

follows:

Cll0ðxÞ ¼ 2j=GðrRl ; r
R
l0 ;xÞFðxÞ þ NðxÞ; (5)

with

FðxÞ ¼
hjqðxÞj2iNS /

2 sa

2jxqs
;

where /2 is the spatial mathematical expectation of

j/nðrÞj
2
, which is close to the inverse of the plate area S

because the modes are normalized, i.e.,
Ð

j/nðrÞj
2
d2r ¼ 1.

The expression of N(x) then corresponds to the remaining

terms that are not included in 2j=GðrRl ; r
R
l0 ;xÞFðxÞ

NðxÞ ¼
X

n 6¼n0;k

/nðr
S
kÞ/nðr

R
l Þ/n0ðr

S
kÞ/n0ðr

R
l0 Þ

x2 � x2
n

� �

� j
x

sa

� �

x2 � x2
n0

� �

þ j
x

sa

� �

0

B

@

þ
X

n¼n0

d/2
n/nðr

R
l Þ/nðr

R
l0 Þ

x2 � x2
n

� �2
þ
x2

s2a

1

C

C

C

A

hjqðxÞj2i

q2s
;

with d/2
n ¼

1
NS

P

k j/nðr
S
kÞj

2 � /2 .

The noise correlation function being the inverse Fourier

transform of the cross-spectral density matrix given by (5), it

can be expressed as

Cll0ðtÞ ¼ GðrRl ; r
R
l0 ; tÞ � GðrRl ; r

R
l0 ;�tÞ

� �

� f ðtÞ þ nll0ðtÞ; (6)

where � is the convolution, nll0 is the inverse Fourier trans-

form of N and

f ðtÞ ¼
NS/

2sa

2qs

ðt

�1

qðsÞ � qð�sÞ ds:

When the noise is sufficiently broadband and the posi-

tions rRl and rRl0 sufficiently distant, the causal GðrRl ; r
R
l0 ; tÞ �

f ðtÞ and anticausal GðrRl ; r
R
l0 ;�tÞ � f ðtÞ responses do not

overlap in time. In such a case, the positive time of the cross

correlation function can be interpreted as the transient

response between the two positions rRl and rRl0 when at one

position, a time dependent load f(t) excites the plate.

However, because the noise is generated by only a finite

number NS of noise sources, the additive parasitic term nll0ðtÞ
degrades the Green’s function extraction. It should be noted

indeed that if the noise sources are uniformly distributed,

nll0ðtÞ is zero because d/2
n ¼ 0 and

P

k /nðr
S
kÞ/n0ðr

S
kÞ / dn;n0 .

In that case, we find the classical result that when the noise

sources are uniformly distributed, the time derivative of the

cross-correlation yields the difference between the causal

and anti-causal Green’s function.

B. Description of the numerical simulation

We use the finite element software Elmer24 to simulate

the propagation of the flexural wave on a thin plate. In Fig. 1

the configuration of the numerical simulation is shown. We

consider a rectangular aluminum plate of dimensions

0.5� 0.3 m2 and 3mm of thickness. The reference state

(without defect) is defined as the case when the material

properties (Young’s modulus, Poisson’s ratio, the volume

density, and local plate thickness) are uniform, whereas a

defect is simulated by a local modification of these material

properties. The sources considered in the simulation are a

time-dependent normal load q(t). The working frequency

band of the sources is between 10 kHz and 30 kHz where the

A0 Lamb mode dominates. We choose a simulation time step

of 2ls and a spatial step of approximately 3.5mm which

corresponds to a tenth of the central frequency wavelength.

The source (Sk) and receiver (Rl) positions are picked at ran-

dom (see Fig. 1). Since FDTD numerical simulation is very

time consuming, instead of continuous noises, the sources

emit successively identical short pulses. From NS simulation

runs, we obtain the NS�NR transient normal responses

FIG. 1. Description of the simulated set-up.
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hðrSk ; r
R
l ; tÞ. From this set of signals, we directly estimate the

cross correlations

Cll0ðtÞ ¼
X

k

hðrSk ; r
R
l ; tÞ � hðrSk ; r

R
l0 ;�tÞ:

Since hðrSk ; r
R
l ; tÞ ¼ GðrSk ; r

R
l ; tÞ � qðtÞ, this expression is

equivalent to Eq. (3) assuming that the noise autocorrelation

is equal to qðtÞ � qð�tÞ. Hence, we simulate the case of per-

fect uncorrelated noise sources that emit the same power

spectrum.

To compare the cross correlation function to the Green’s

function we also estimate the transient responses hðrRl ; r
R
l0 ; tÞ

between the receiver positions. From this set of responses,

we construct the transient response matrix h(t).

In Fig. 2(a), the causal part (positive times) of the auto-

correlation C11(t) for the case of 20 sources randomly distrib-

uted is compared to the transient backscattered response

hðrR1 ; r
R
1 ; tÞ at position rR1 . This figure shows that the general

features of the propagation from rR1 to itself are retrieved by

the correlation process, with the different wavepackets corre-

sponding, respectively, to the direct path and the

random-like part associated to the multiple reflections from

the plate boundaries. However, a time shift is observed

between both signals. This is due to the difference between

f(t) of Eq. (6) and q(t). Contrary to q(t), signal f(t) is an anti-

symmetric signal centered at t¼ 0.

To quantitatively estimate the difference between the

cross correlation and the transient response, we plot

hðrR1 ; r
R
1 ; tÞ �

Ð

gð�tÞdt in Fig. 2(b), where gðtÞ ¼ NS/
2 sa

2qs
qðtÞ.

For time jtj > T0, where T0 is the inverse of the working

bandwidth, the agreement with the autocorrelation is excel-

lent in both phase and amplitude either for the anticausal

response or the causal one. Indeed, in such a case, the causal

and anticausal parts of the autocorrelation do not overlap. On

the contrary, when jtj < T0, the correlation results from the

interference between them. Thus at t¼ 0, the correlation is

dominated by the imaginary part of GðrR1 ; r
R
1 ;xÞ estimated at

the central working frequency. Contrary to the membrane

Green’s function (that is, solution of the Helmoltz equation),

the Green’s function of flexural wave is not singular at the

origin.25 Moreover, the real part of GðrR1 ; r
R
1 ;xÞ is null. That

is why the amplitude of correlation field is twice higher than

the amplitude of the causal (or anticausal) response at the or-

igin. This numerical result is a confirmation of the validity of

Eq. (6). The slight difference is due to the incoherent field

term nll0ðtÞ that is due to the non-perfect convergence of the

correlations towards the Green’s functions.

In strong reverberating media, a weak defect will induce

only a very tiny modification of the acoustic response.

Assuming an acquisition system with sufficiently high

dynamic and sensitivity, the subtraction of the acoustic

responses with and without defect will reveal the difference.

This differential approach is perfectly adapted to SHM

where one monitors the apparition of defects. We therefore

consider the differential matrices Dh and DC, whose ele-

ments are defined as

DhijðtÞ ¼ hdefðrRi ; r
R
j ; tÞ � hrefðrRi ; r

R
j ; tÞ;

DCijðtÞ ¼ CdefðrRi ; r
R
j ; tÞ � CrefðrRi ; r

R
j ; tÞ;

(7)

where the upper scripts def and ref denote the cases with and

without defect, respectively.

Here, the defect is a blind hole. It is a circular region of

diameter 0.5 cm and 3mm of thickness, introduced in the

finite element meshing (see Fig. 1). In Fig. 3, an example of

comparison between Dh27ðtÞ �
Ð

gð�tÞdt and DC27ðtÞ is

shown. We clearly observe on Dh27ðtÞ �
Ð

gð�tÞdt the echo

of the first reflection on the defect that arrives at time 350 ls.

However, the term nll0ðtÞ in Eq. (6) appears to overcome the

defect echo on the noise correlation function. Nevertheless,

it will be shown in Sec. III that thanks to the incoherent

structure of nll0ðtÞ, we can mitigate its contribution by per-

forming spatial matched-filtering and localize the defect.

FIG. 2. (a) Comparison between the averaged correlations C11(t) over 20

random source positions (black curve) and the transient back-scattered

response hðrR1 ; r
R
1 ; tÞ (red curve), (b) Comparison between the averaged cor-

relations C11(t) over 20 random source positions (black curve), the corrected

causal response hðrR1 ; r
R
1 ; tÞ �

Ð

gð�tÞdt (red curve) and the corrected anti-

causal response hðrR1 ; r
R
1 ;�tÞ �

Ð

gðtÞdt (blue curve).
FIG. 3. Comparison between Dh27ðtÞ �

Ð

gð�tÞdt (black curve) and DC27(t)

(green curve).
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III. LOCALIZATION OF THE DEFECT

In this section, we apply an algorithm that is intended

both to minimize the non-coherent parts in the correlation

functions, while finding the defect position.

A. Description of the localization algorithm

The principle of the algorithm used in the following is

similar to what is described, for example, by Michaels and

Michaels,26 except here Lamb wave dispersion is taken into

account. The principle is to take the element of indexes (i, j)

of either the Dh (active case) or DC (passive case) matrices

and back-propagate it according to the current pixel position

(x, y). The back-propagation function (bpf) of Dh is esti-

mated from

bpfðx;yÞðxÞ ¼
X

NR;NR

i¼1;j¼1ði 6¼jÞ

DhijðxÞ exp½j½diðx; yÞ þ djðx; yÞ�kðxÞ�;

(8)

where di(x, y) is the distance between the ith receiver and the

pixel at position (x, y) (Fig. 4). The wavenumber k obeys to

the dispersion relation of A0 mode. Matrix element Dhij(x)

is the Fourier transform of Dhij(t). Only the time interval that

includes the direct propagation between the defect and the

receivers is kept. In practice, due to the electronic setup, the

response of the transducers toward themselves cannot be

measured. For this reason, the diagonal elements Dhii are not

considered to compute bpf.

After returning to the time domain through an inverse

Fourier transform, the pixel intensity at position (x, y) is then

obtained by integrating the back-propagation function over

time T0.

Iðx; yÞ ¼

ðT0=2

�T0=2

jbpfðx;yÞðtÞj
2
dt; (9)

where T0 is typically the inverse of the bandwidth. For pixels

located on the defect, this process will be equivalent to a nu-

merical backpropagation of the signals to zero time (instant

of the emission) followed by a coherent summation of the

backpropagated signals. This will lead to a constructive sum

and a maximum of the pixel intensity. As for pixels located

elsewhere, the obtained intensity will be made up of a sum-

mation of non-coherent contributions corresponding both to

the reverberations at the plate boundaries and, in the passive

imaging case, the correlation residue nll0ðtÞ. Exactly the same

procedure can be performed by replacing Dh(t) by the causal

part of DC(t). But, contrary to the active case, the diagonal

elements of DC(t) (the autocorrelations) are taken into

account to work out the bpf.

B. Localization results

The localization algorithm is applied to the same numer-

ical test-case as described above. The defect coordinates are

(0.3m, 0.1m), with the origin taken at the left bottom corner

of the plate, and its location is indicated by a small black

circle on Figs. 5–7. The locations of the receivers Ri are indi-

cated by white crosses.

First, the “active” signal matrix Dh(t) is used as an input

of the algorithm. The resulting image (Fig. 5) shows a clear

spot on the defect location. Since the plate is of finite dimen-

sions, additional noise associated to the reverberated echoes

is inevitably observed. Indeed, since the knowledge of the

plate properties and geometry would possibly be imperfect

in a practical application, the measured field is back-

propagated as though it were acquired in an unbounded

plate. This will limit the impact of slight discrepancies in the

plate properties (in particular the wavenumber k), because

the involved distances will remain moderate. In such a case,

however, the few reflections that would be included in the

beginning of Dhij(t) will produce secondary lobes (i.e., spuri-

ous spots on the image). Still, the contrast of the image is

very good.

Second, the algorithm is applied to the correlation ma-

trix DC(t) averaged over 20 random source positions

(Fig. 6). The image quality is naturally lower than in the

FIG. 4. Illustration of the localization algorithm principle.

FIG. 5. Defect localization image obtained from Dh(t).

FIG. 6. Defect localization image obtained from DC(t) (20 random sources).
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active case. However, the canceling of the non-coherent

parts outside the defect is sufficiently efficient to make the

defect clearly visible.

Finally, in order to test a more challenging case, Fig. 7

shows the image obtained with a correlation matrix con-

structed from only 3 random sources. Though the defect is

still visible, additional secondary lobes of equivalent ampli-

tudes are present.

In Sec. III C, it will be shown how the DORT method

can be applied to filter the correlation matrices in order to

reduce the level of secondary lobes.

C. Filtering using the DORT method

One application of the DORT method is to reduce the

effect of noise when one wants to detect/localize one or a

few targets. Here by noise, we mean every process that gen-

erates “incoherent” fields such as electronic noise, clutter

scattering, etc. For instance, in nondestructive testing,

DORT method drastically decreases the contribution due to

the scattering on grain in titanium that scrambles the ultra-

sonic wave reflection off the defect.27 In underwater acous-

tics, DORT method cancels the reverberation due to

scattering on rough sea floor.28

Here, there are two main sources of “noise” that are

added to the imaginary part of the Green’s function. First

when the correlation is not sufficiently averaged over time,

i.e., the noise is not integrated over a sufficiently long time

windows, the sources of noise are seen as correlated and it

adds to Eq. (3), a double sum over each pair of random sour-

ces. Second, even when the random sources are uncorrelated,

a noise term nll0 in Eq. (6) is present because there is only a

finite number of random sources. To take benefit of DORT

method, a singular value decomposition (SVD) is applied to

the Fourier transforms of the (time-domain) propagation and

correlation matrices DH(x) and DC(x), respectively. For

each frequency x, SVD can be written as

DHðxÞ ¼
X

NR

i¼1

U
i
DHðxÞS

i
DHðxÞ

~V
i

DHðxÞ; (10)

where � stands for the Hermitian conjugation, Ui
DH and V

i
DH

are the ith singular vector associated to the ith singular

value Si
DH. The same decomposition can be operated on

DC(x),

DCðxÞ ¼
X

NR

i¼1

U
i
DCðxÞS

i
DCðxÞ

~V
i

DCðxÞ: (11)

Figure 8 represents the singular value distribution aver-

aged over the whole frequency range and normalized accord-

ing to the first one. The green curve shows that the first

singular value k1 is largely dominant and therefore DH(x) is

close to a rank-one matrix. This is a typical result obtained

with the DORT method when a single scatterer is considered,

which is the case here whenever the defect-free response is

subtracted from the response with the defect. This means

concretely that the information about the scatterer is essen-

tially contained in the first singular vector.

To confirm this result, we back-propagate the first

eigen-vector, i.e.,

sbpðx;yÞðxÞ ¼ S1
DH

X

i

U1
DH

� �

i
ejdiðx;yÞk

� 	

�
X

i

~V
1

DH

h i

i
ejdiðx;yÞk

 !

: (12)

Actually, we have constructed in this way a filtered ver-

sion of DH(x), in which the contributions of all singular vec-

tors except the first one are canceled. As expected, the

application of the localization algorithm to this filtered ma-

trix provides a very similar result (Fig. 9) to the obtained

image in Fig. 5 because the rank of DH(x) was almost equal

to 1.

FIG. 7. Defect localization image obtained from DC(t) (3 random sources).
FIG. 8. Normalized and averaged over frequencies singular values of,

respectively: DH(x) (green curve), DC(x) with 20 random sources (red

curve) and DC(x) with 3 random sources (blue curve).

FIG. 9. Defect localization image obtained from the filtered version of

DH(x).
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As for DC(x), though the first singular value k01 is here

again dominant over the next ones (see red and blue curves

in Fig. 8), the ratio between it and the next ones is signifi-

cantly lower than in the case of DH(x). Especially for 3 ran-

dom sources, where it appears almost three times lower. This

behavior is a direct consequence of the imperfect reconstruc-

tion of the Green’s functions by the correlation process.

Indeed, as already shown in Sec. II, the correlation matrix

DC(x) can be seen as a replica of DH(x), scrambled by a

non-coherent residual part. Then the lower the number of

random sources, the less accurate the Green’s functions

reconstruction, the more DC(x) differ from a rank-one ma-

trix. In these conditions, only keeping the most significant

eigen-value from DC(x) to construct the bpf should remove

a large part of the incoherent noise and improve the target

localization. Indeed, one can show that29 assuming the noise

level is a fraction � of the signal one (�< 1), the amplitude of

the side lobes compared to the main one when the bpf is clas-

sically computed [Eq. (8)] is proportional to � whereas it

drops to �2 when only the first eigenvector is used [Eq. (12)].

Figures 10 and 11 show the images obtained from fil-

tered sbp function for 20 and 3 random source positions,

respectively. In the case of 20 random sources, the improve-

ment of the image quality (compared to the image of Fig. 6)

is marginal because the reconstruction was already fairly

good.

The case of 3 random sources is more illustrative. A

comparison between Figs. 11 and 7 shows a clear reduction

of the spurious spots and therefore a better localization of the

defect. The imperfections that remain on the image are due

to the residual noise that still affected a little the first singular

vector of the correlation matrix.

IV. CONCLUSION

In this paper, the theoretical relationship between the

correlation of signals received on a set of sensors and the

Green’s function in a reverberant plate has been established.

This has allowed to introduce a simple means to quantita-

tively compare the correlations to the emission-reception

responses. It is shown, in particular, that even in conditions

where the correlations converge fairly well towards the

active responses, it might not be so in a differential mode

(differences between the case with defect and the healthy

case). Despite this non-perfect convergence of the differen-

tial correlations, application of a backpropagation and coher-

ent summation algorithm has allowed the detection and

localization of a defect. Indeed, the algorithm has been dem-

onstrated to be efficient not only in localizing the defect but

also in reducing sufficiently the anomalies in the Green’s

functions reconstruction. Finally, we have shown the effi-

ciency of the DORT method for filtering the differential cor-

relation matrices with as few as three random sources.

ACKNOWLEDGMENTS

This work has been supported by the French National

Research Agency (ANR): No. ANR2011 BS0903901,

PASNI Project.

1W. Luo, J. L. Rose, and H. Gao, “A peak frequency shift method for

guided wave thickness measurement and its realization by different trans-

ducer techniques,” in 16th WCNDT 2004-World Conference on NDT, 30

August-September 3, 2004-Montreal, Canada, 2004.
2A. Pilarski and J. L. Rose, “Lamb wave mode selection concepts for inter-

facial weakness analysis,” Nondestr. Eval. 11, 237–249 (1992).
3J.-B. Ihn and F.-K. Chang, “Pitch-catch active sensing methods in struc-

tural health monitoring for aircraft structures,” Struct. Health Monit. 7,

5–19 (2008).
4P. Gueguen, M. Langlais, P. Foray, C. Rousseau, and J. Maury, “A natural

seismic isolating system: The buried mangrove effects,” Bull. Seismol.

Soc. Am. 101(3), 1073–1080 (2011).
5M. Campillo and A. Paul, “Long-range correlations in the diffuse seismic

coda,” Science 299, 547–549 (2003).
6N. M. Shapiro and M. Campillo, “Emergence of broadband Rayleigh

waves from correlations of the ambient seismic noise,” Geophys. Res.

Lett. 31, L07614, doi:10.1029/2004GL019491 (2004).
7T. Gallot, “Imagerie acoustique en milieux reverberants,” Ph.D. disserta-

tion (Universite de Grenoble, 2010).
8K. G. Sabra, E. S. Winkel, D. A. Bourgoyne, B. R. Elbing, S. L. Ceccio,

M. Perlin, and D. R. Dowling, “Using cross correlations of turbulent flow-

induced ambient vibrations to estimate the structural impulse response.

Application to structural health monitoring,” J. Acoust. Soc. Am. 121,

1987 (2007).
9P. Roux, W. A. Kuperman, and The NPAL Group, “Extracting coherent

wavefronts from acoustic ambient noise in the ocean,” J. Acoust. Soc. Am.

116, 1995–2003 (2004).
10F. Brenguier, D. Clarke, Y. Aoki, N. M. Shapiro, M. Campillo, and V.

Ferrazzini, “Monitoring volcanoes using seismic noise correlations,” C. R.

Geosci. 343(8), 633–638 (2011).
11R. L. Weaver and O. I. Lobkis, “Ultrasonics without a source: Thermal

fluctuation correlations at mhz frequencies,” Phys. Rev. Lett. 87(13),

134301 (2001).
12R. L. Weaver and O. I. Lobkis, “Elastic wave thermal fluctuations, ultra-

sonic waveforms by correlation of thermal phonons,” J. Acoust. Soc. Am.

113, 2611 (2003).

FIG. 10. Defect localization image obtained from the filtered version of

DC(x) (20 random sources).

FIG. 11. Defect localization image obtained from the filtered version of

DC(x) (3 random sources).

104901-6 Chehami et al. J. Appl. Phys. 115, 104901 (2014)

http://dx.doi.org/10.1007/BF00566414
http://dx.doi.org/10.1177/1475921707081979
http://dx.doi.org/10.1785/0120100129
http://dx.doi.org/10.1785/0120100129
http://dx.doi.org/10.1126/science.1078551
http://dx.doi.org/10.1029/2004GL019491
http://dx.doi.org/10.1029/2004GL019491
http://dx.doi.org/10.1121/1.2710463
http://dx.doi.org/10.1121/1.1797754
http://dx.doi.org/10.1016/j.crte.2010.12.010
http://dx.doi.org/10.1016/j.crte.2010.12.010
http://dx.doi.org/10.1103/PhysRevLett.87.134301
http://dx.doi.org/10.1121/1.1564017


13A. Derode, E. Larose, M. Tanter, J. de Rosny, A. Tourin, M. Campillo,

and M. Fink, “Recovering the green’s function from field-field correla-

tions in an open scattering medium,” J. Acoust. Soc. Am. 113, 2973

(2003).
14S. M. Efferies, M. A. Pomerantz, T. L. Duvall, and J. W. Harvey, Jr.,

“Helioseismology from the south pole: Closer connections with geo-

seismology,” Antarct. J. 28(5), 328–329 (1993).
15E. Larose, O. I. Lobkis, and R. L. Weaver, “Passive correlation imaging of

a buried scatterer,” J. Acoust. Soc. Am. 119, 3549–3552 (2006).
16N. A. Leyla, E. Moulin, and J. Assaad, “Influence of a localized defect on

acoustic field correlation in a reverberant medium,” J. Appl. Phys. 110(8),

084906 (2011).
17E. Moulin, N. A. Leyla, J. Assaad, and S. Grondel, “Applicability of

acoustic noise correlation for structural health monitoring in nondiffuse

field conditions,” Appl. Phys. Lett. 95(9) 094104 (2009).
18C. Prada and J. L. Thomas, “Experimental sub-wavelength localization of

scatterers by decomposition of the time reversal operator interpreted as a

covariance matrix,” J. Acoust. Soc. Am. 114, 235–243 (2003).
19J.-G. Minonzio, F.-D. Philippe, C. Prada, and M. Fink, “Characterization

of elastic cylinder and sphere with the time-reversal operator: Application

to the sub-resolution limit,” Inverse Probl. 24, 025014 (2008).
20C. Prada, S. Manneville, D. Spoliansky, and M. Fink, “Decomposition of

the time reversal operator: Detection and selective focusing on two

scatterers,” J. Acoust. Soc. Am. 99, 2067 (1996).

21O. I. Lobkis and R. L. Weaver, “On the emergence of the green’s function

in the correlations of a diffuse field,” J. Acoust. Soc. Am. 110, 3011 (2001).
22A. E. H. Love, “The small free vibrations and deformation of a thin elastic

shell,” Philos. Trans. R. Soc., A 179, 491–546 (1888).
23G. Barton, Elements of Green’s Functions and Propagation: Potentials,

Diffusion, and Waves (Oxford Science Publications, Clarendon Press, 1989).
24Elmer is an open source multiphysical simulation software mainly devel-

oped by CSC - IT Center for Science (CSC). It includes Finite Element so-

lution of plate equations. See http://www.csc.fi/english/pages/elmer.
25For unbounded plates, the monochromatic Green’s function is equal to

1
D8k2

Y0ðkRÞ þ
2
p
K0ðkRÞ þ jJ0ðkRÞ

� �

where k4 ¼ qSx
2

D
and R is the distance

between the two position entries of the Green’s function.
26J. E. Michaels and T. E. Michaels, “Guided wave signal processing and

image fusion for in situ damage localization in plates,” Wave Motion 44,

482–492 (2007).
27C. Prada, E. Kerbrat, D. Cassereau, and M. Fink, “Time reversal techni-

ques in ultrasonic nondestructive testing of scattering media,” Inverse

Probl. 18(6), 1761 (2002).
28C. Prada, J. de Rosny, D. Clorennec, J.-G. Minonzio, A. Aubry, M. Fink,

L. Berniere, P. Billand, S. Hibral, and T. Folegot, “Experimental detection

and focusing in shallow water by decomposition of the time reversal oper-

ator,” J. Acoust. Soc. Am. 122, 761 (2007).
29The demonstration is out of the scope of the current paper. An article

devoted to this particular point is in preparation.

104901-7 Chehami et al. J. Appl. Phys. 115, 104901 (2014)

http://dx.doi.org/10.1121/1.1570436
http://dx.doi.org/10.1121/1.2200049
http://dx.doi.org/10.1063/1.3652907
http://dx.doi.org/10.1063/1.3200240
http://dx.doi.org/10.1121/1.1568759
http://dx.doi.org/10.1088/0266-5611/24/2/025014
http://dx.doi.org/10.1121/1.415393
http://dx.doi.org/10.1121/1.1417528
http://dx.doi.org/10.1098/rsta.1888.0016
http://www.csc.fi/english/pages/elmer
http://dx.doi.org/10.1016/j.wavemoti.2007.02.008
http://dx.doi.org/10.1088/0266-5611/18/6/320
http://dx.doi.org/10.1088/0266-5611/18/6/320
http://dx.doi.org/10.1121/1.2749442

	s1
	s2
	s2A
	d1
	n1
	d2
	d3
	d4
	d5
	d6
	s2A
	s2B
	f1
	s2B
	d7
	f2a
	f2b
	f2
	f3
	s3
	s3A
	d8
	d9
	s3B
	f4
	f5
	f6
	s3C
	d10
	d11
	d12
	f7
	f8
	f9
	s4
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	f10
	f11
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29

