L. Mullins, Effect of Stretching on the Properties of Rubber, Rubber Chemistry and Technology, vol.21, issue.2, pp.281-300, 1948.
DOI : 10.5254/1.3546914

L. Mullins, Softening of Rubber by Deformation, Rubber Chemistry and Technology, vol.42, issue.1, pp.339-362, 1969.
DOI : 10.5254/1.3539210

M. E. Gurtin and E. C. Francis, Simple Rate-Independent Model for Damage, Journal of Spacecraft and Rockets, vol.18, issue.3, pp.285-286, 1981.
DOI : 10.2514/3.57817

J. C. Simo, On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects, Computer Methods in Applied Mechanics and Engineering, vol.60, issue.2, pp.153-173, 1987.
DOI : 10.1016/0045-7825(87)90107-1

C. Miehe, Discontinuous and continuous damage evolution in Ogden type large strain elastic materials, Eur. J. Mech., A/Solids, vol.14, issue.5, pp.697-720, 1995.

R. W. Ogden and D. G. Roxburgh, An energy based model of the Mullins effect, Constitutive Models for Rubber I. A. A. Balkema, 1999.

R. W. Ogden, Mechanics of Rubberlike Solids, In XXI ICTAM, 2004.
DOI : 10.1007/1-4020-3559-4_17

J. Diani, M. Brieu, and J. M. Vacherand, A damage directional constitutive model for Mullins effect with permanent set and induced anisotropy, European Journal of Mechanics - A/Solids, vol.25, issue.3, pp.483-496, 2006.
DOI : 10.1016/j.euromechsol.2005.09.011

URL : https://hal.archives-ouvertes.fr/hal-00086217

Y. Merckel, J. Diani, S. Roux, and M. Brieu, A simple framework for full-network hyperelasticity and anisotropic damage, Journal of the Mechanics and Physics of Solids, vol.59, issue.1, pp.75-88, 2011.
DOI : 10.1016/j.jmps.2010.09.010

URL : https://hal.archives-ouvertes.fr/hal-00602466

F. Laraba-abbes, P. Ienny, and R. Piques, A new ???Tailor-made??? methodology for the mechanical behaviour analysis of rubber-like materials: II. Application to the hyperelastic behaviour characterization of a carbon-black filled natural rubber vulcanizate, Polymer, vol.44, issue.3, pp.821-840, 2003.
DOI : 10.1016/S0032-3861(02)00719-X

M. Itskov, E. Haberstroh, A. E. Ehret, and M. C. Vohringer, Experimental observation of the deformation induced anisotropy of the Mullins effect in rubber, KGK-Kautschuk Gummi Kunststoffe, issue.3, pp.59-93, 2006.

G. Machado, D. Favier, and G. Chagnon, Membrane Curvatures and Stress-strain Full Fields of Axisymmetric Bulge Tests from 3D-DIC Measurements. Theory and Validation on Virtual and Experimental results, Experimental Mechanics, vol.28, issue.7, pp.865-880, 2012.
DOI : 10.1007/s11340-011-9571-3

Y. Merckel, M. Brieu, J. Diani, C. , and J. , A Mullins softening criterion for general loading conditions, Journal of the Mechanics and Physics of Solids, vol.60, issue.7, pp.60-1257, 2012.
DOI : 10.1016/j.jmps.2012.04.001

URL : https://hal.archives-ouvertes.fr/hal-00696158

A. Dorfmann and F. Pancheri, A constitutive model for the Mullins effect with changes in material symmetry, International Journal of Non-Linear Mechanics, vol.47, issue.8, pp.47-874, 2012.
DOI : 10.1016/j.ijnonlinmec.2012.05.004

M. Mooney, A Theory of Large Elastic Deformation, Journal of Applied Physics, vol.11, issue.9, pp.582-592, 1940.
DOI : 10.1063/1.1712836

L. R. Treloar, The elasticity of a network of long-chain molecules. I, Transactions of the Faraday Society, vol.39, pp.36-64, 1943.
DOI : 10.1039/tf9433900036

R. W. Ogden, Large deformation isotropic elasticity -on the correlation of theory and experiment for incompressible rubber like solids, Proc. R. Soc. Lond. A, pp.565-584, 1972.

D. W. Haines and D. W. Wilson, Strain-energy density function for rubberlike materials, Journal of the Mechanics and Physics of Solids, vol.27, issue.4, pp.345-360, 1979.
DOI : 10.1016/0022-5096(79)90034-6

A. N. Gent, A New Constitutive Relation for Rubber, Rubber Chemistry and Technology, vol.69, issue.1, pp.59-61, 1996.
DOI : 10.5254/1.3538357

A. Dorfmann and R. W. Ogden, A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber, International Journal of Solids and Structures, vol.41, issue.7, pp.1855-1878, 2004.
DOI : 10.1016/j.ijsolstr.2003.11.014

E. M. Arruda and M. C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, Journal of the Mechanics and Physics of Solids, vol.41, issue.2, pp.41-389, 1993.
DOI : 10.1016/0022-5096(93)90013-6

URL : https://hal.archives-ouvertes.fr/hal-01390807

C. Miehe, S. Göktepe, and F. Lulei, A micro-macro approach to rubber-like materials?Part I: the non-affine micro-sphere model of rubber elasticity, Journal of the Mechanics and Physics of Solids, vol.52, issue.11, pp.2617-2660, 2004.
DOI : 10.1016/j.jmps.2004.03.011

C. Miehe and S. Göktepe, A micro???macro approach to rubber-like materials. Part II: The micro-sphere model of finite rubber viscoelasticity, Journal of the Mechanics and Physics of Solids, vol.53, issue.10, pp.2231-2258, 2005.
DOI : 10.1016/j.jmps.2005.04.006

S. Göktepe and C. Miehe, A micro???macro approach to rubber-like materials. Part III: The micro-sphere model of anisotropic Mullins-type damage, Journal of the Mechanics and Physics of Solids, vol.53, issue.10, pp.2259-2283, 2005.
DOI : 10.1016/j.jmps.2005.04.010

M. H. Shariff, An anisotropic model of the Mullins effect, Journal of Engineering Mathematics, vol.42, issue.4, pp.415-435, 2006.
DOI : 10.1007/s10665-006-9051-4

M. Rebouah, G. Machado, G. Chagnon, and D. Favier, Anisotropic Mullins stress softening of a deformed silicone holey plate, Mechanics Research Communications, vol.49, issue.0, pp.49-85, 2013.
DOI : 10.1016/j.mechrescom.2013.02.002

J. Gillibert, M. Brieu, and J. Diani, Anisotropy of direction-based constitutive models for rubber-like materials, International Journal of Solids and Structures, vol.47, issue.5, pp.640-646, 2010.
DOI : 10.1016/j.ijsolstr.2009.11.002

URL : https://hal.archives-ouvertes.fr/hal-00444336

A. E. Ehret, M. Itskov, and H. Schmid, Numerical integration on the sphere and its effect on the material symmetry of constitutive equations-A comparative study, International Journal for Numerical Methods in Engineering, vol.35, issue.2, pp.189-206, 2010.
DOI : 1016/j.ijsolstr.2009.03.022

S. Rickaby and N. Scott, A cyclic stress softening model for the Mullins effect, IJSS, vol.50, issue.1, pp.111-120, 2013.

M. Itskov, A. Ehret, R. Kazakeviciute-makovska, and G. Weinhold, A thermodynamically consistent phenomenological model of the anisotropic Mullins effect, ZAMM, vol.9, issue.3, pp.370-386, 2010.
DOI : 10.1002/zamm.200900279

Y. Merckel, J. Diani, M. Brieu, C. , and J. , Constitutive modeling of the anisotropic behavior of Mullins softened filled rubbers, Mechanics of Materials, vol.57, issue.0, pp.30-41, 2013.
DOI : 10.1016/j.mechmat.2012.10.010

URL : https://hal.archives-ouvertes.fr/hal-00992343

Y. Lanir, A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues, Journal of Biomechanics, vol.12, issue.6, pp.423-436, 1979.
DOI : 10.1016/0021-9290(79)90027-7

Y. Lanir, Constitutive equations for fibrous connective tissues, Journal of Biomechanics, vol.16, issue.1, pp.1-12, 1983.
DOI : 10.1016/0021-9290(83)90041-6

Y. C. Fung, Biomechanics, Mechanical properties of living tissues, 1993.

G. A. Holzapfel, Nonlinear solid mechanics -A continuum approach for engineering, 2000.

V. Geest, J. P. Sacks, M. S. Vorp, and D. A. , The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta, Journal of Biomechanics, vol.39, issue.7, pp.1324-1334, 2006.
DOI : 10.1016/j.jbiomech.2005.03.003

E. Maher, A. Creane, C. Lally, K. , and D. J. , An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue, Journal of the Mechanical Behavior of Biomedical Materials, vol.12, issue.0, pp.12-21, 2012.
DOI : 10.1016/j.jmbbm.2012.03.001

P. Alastrué, E. Martinez, M. A. Doblaré, and M. , Experimental study and constitutive modelling of the passive mechanical properties of the ovine infrarenal vena cava tissue, Journal of Biomechanics, vol.41, issue.14, pp.3038-3045, 2008.
DOI : 10.1016/j.jbiomech.2008.07.008

E. Peña, B. Calvo, M. A. Martinez, P. Martins, T. Mascarenhas et al., Experimental study and constitutive modeling of the viscoelastic mechanical properties of the human prolapsed vaginal tissue, Biomechanics and Modeling in Mechanobiology, vol.85, issue.1, pp.35-44, 2010.
DOI : 10.1007/s10237-009-0157-2

A. N. Natali, E. L. Carniel, and H. Gregersen, Biomechanical behaviour of oesophageal tissues: Material and structural configuration, experimental data and constitutive analysis, Medical Engineering & Physics, vol.31, issue.9, pp.1056-1062, 2009.
DOI : 10.1016/j.medengphy.2009.07.003

G. Franceschini, D. Bigoni, P. Regitnig, and G. A. Holzapfel, Brain tissue deforms similarly to filled elastomers and follows consolidation theory, Journal of the Mechanics and Physics of Solids, vol.54, issue.12, pp.2592-2620, 2006.
DOI : 10.1016/j.jmps.2006.05.004

C. O. Horgan and G. Saccomandi, A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids, Journal of the Mechanics and Physics of Solids, vol.53, issue.9, pp.1985-2015, 2005.
DOI : 10.1016/j.jmps.2005.04.004

V. Alastrué, M. A. Martinez, M. Doblaré, and A. Menzel, Anisotropic micro-sphere-based finite elasticity applied to blood vessel modelling, Journal of the Mechanics and Physics of Solids, vol.57, issue.1, pp.178-203, 2009.
DOI : 10.1016/j.jmps.2008.09.005

D. Balzani, P. Neff, J. Schroder, and G. A. Holzapfel, A polyconvex framework for soft biological tissues. Adjustment to experimental data, International Journal of Solids and Structures, vol.43, issue.20, pp.6052-6070, 2006.
DOI : 10.1016/j.ijsolstr.2005.07.048

N. L. Nerurkar, R. L. Mauck, E. , and D. M. , Modeling interlamellar interactions in angle-ply biologic laminates for annulus fibrosus tissue engineering, Biomechanics and Modeling in Mechanobiology, vol.39, issue.310, pp.973-984, 2011.
DOI : 10.1007/s10237-011-0288-0

B. Calvo, E. Peña, M. A. Martinez, and M. Doblaré, An uncoupled directional damage model for fibred biological soft tissues. Formulation and computational aspects, International Journal for Numerical Methods in Engineering, vol.7, issue.10, pp.69-2036, 2007.
DOI : 10.1002/nme.1825

F. C. Caner and I. Carol, Microplane Constitutive Model and Computational Framework for Blood Vessel Tissue, Journal of Biomechanical Engineering, vol.128, issue.3, pp.419-427, 2006.
DOI : 10.1115/1.2187036

N. J. Driessen, B. C. Baaiens, F. T. Ens, and F. P. , A Structural Constitutive Model For Collagenous Cardiovascular Tissues Incorporating the Angular Fiber Distribution, Journal of Biomechanical Engineering, vol.127, issue.3, pp.494-503, 2005.
DOI : 10.1115/1.1894373

E. Peña, P. Martins, T. Mascarenhasd, R. M. Jorge, A. Ferreirae et al., Mechanical characterization of the softening behavior of human vaginal tissue, Journal of the Mechanical Behavior of Biomedical Materials, vol.4, issue.3, pp.275-283, 2011.
DOI : 10.1016/j.jmbbm.2010.10.006

E. Peña and M. Doblaré, An anisotropic pseudo-elastic approach for modelling Mullins effect in fibrous biological materials, Mech. Res. Comm, vol.36, p.784790, 2009.

G. Machado, G. Chagnon, and D. Favier, Induced anisotropy by the Mullins effect in filled silicone rubber, Mechanics of Materials, vol.50, pp.70-80, 2012.
DOI : 10.1016/j.mechmat.2012.03.006

M. Kaliske, A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains, Computer Methods in Applied Mechanics and Engineering, vol.185, issue.2-4, pp.225-243, 2000.
DOI : 10.1016/S0045-7825(99)00261-3

S. Govindjee and J. C. Simo, Mullins' effect and the strain amplitude dependence of the storage modulus, International Journal of Solids and Structures, vol.29, issue.14-15, pp.14-15, 1992.
DOI : 10.1016/0020-7683(92)90167-R

Z. P. Bazant and B. H. Oh, Efficient Numerical Integration on the Surface of a Sphere, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift f??r Angewandte Mathematik und Mechanik, vol.146, issue.1, pp.37-49, 1986.
DOI : 10.1002/zamm.19860660108

A. E. Zuñiga and M. F. Beatty, A new phenomenological model for stress-softening in elastomers, Z. Angew. Math. Mech, vol.53, pp.794-814, 2002.

B. D. Coleman and M. E. Gurtin, Thermodynamics with Internal State Variables, The Journal of Chemical Physics, vol.47, issue.2, pp.597-613, 1967.
DOI : 10.1063/1.1711937

J. Schröder, P. Neff, and D. Balzani, A variational approach for materially stable anisotropic hyperelasticity, International Journal of Solids and Structures, vol.42, issue.15, pp.4352-4371, 2005.
DOI : 10.1016/j.ijsolstr.2004.11.021

D. Li and A. M. Robertson, A structural multi-mechanism constitutive equation for cerebral arterial tissue, International Journal of Solids and Structures, vol.46, issue.14-15, pp.2920-2928, 1415.
DOI : 10.1016/j.ijsolstr.2009.03.017

A. E. Ehret and M. Itskov, Modeling of anisotropic softening phenomena: Application to soft biological tissues, International Journal of Plasticity, vol.25, issue.5, p.901919, 2009.
DOI : 10.1016/j.ijplas.2008.06.001

E. Peña, Prediction of the softening and damage effects with permanent set in fibrous biological materials, Journal of the Mechanics and Physics of Solids, vol.59, issue.9, pp.1808-1822, 2011.
DOI : 10.1016/j.jmps.2011.05.013

H. Demiray, A note on the elasticity of soft biological tissues, Journal of Biomechanics, vol.5, issue.3, pp.309-311, 1972.
DOI : 10.1016/0021-9290(72)90047-4

A. Delfino, N. Stergiopulos, M. Jr, J. E. Meister, and J. J. , Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation, Journal of Biomechanics, vol.30, issue.8, pp.777-786, 1997.
DOI : 10.1016/S0021-9290(97)00025-0

G. A. Holzapfel, T. C. Gasser, and R. W. Ogden, A new Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models, J. Elast, vol.61, pp.1-48, 2000.
DOI : 10.1007/0-306-48389-0_1

URL : https://hal.archives-ouvertes.fr/hal-01297725