A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification Under the Fréchet Distance

Isabelle Sivignon 1
1 GIPSA-AGPIG - AGPIG
GIPSA-DIS - Département Images et Signal
Abstract : In this paper, we propose an algorithm that, from a maximum error and a digital curve (4- or 8-connected), computes a simplification of the curve (a polygonal curve) such that the Fréchet distance between the original and the simplified curve is less than the error. The Fréchet distance is known to nicely measure the similarity between two curves. The algorithm we propose uses an approximation of the Fréchet distance, but a guarantee over the quality of the simplification is proved. Moreover, even if the theoretical complexity of the algorithm is in O(n log(n)), experiments show a linear behaviour in practice.
Type de document :
Article dans une revue
Image Processing Online, 2014, pp.116-127. <10.5201/ipol.2014.70>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00962600
Contributeur : Isabelle Sivignon <>
Soumis le : mercredi 26 mars 2014 - 09:59:30
Dernière modification le : mercredi 17 juin 2015 - 01:15:19
Document(s) archivé(s) le : jeudi 26 juin 2014 - 10:46:30

Fichier

preprint.pdf
Accord explicite pour ce dépôt

Identifiants

Collections

Citation

Isabelle Sivignon. A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification Under the Fréchet Distance. Image Processing Online, 2014, pp.116-127. <10.5201/ipol.2014.70>. <hal-00962600>

Partager

Métriques

Consultations de
la notice

186

Téléchargements du document

93