The potential energy of biased random walks on trees

Abstract : Biased random walks on supercritical Galton--Watson trees are introduced and studied in depth by Lyons (1990) and Lyons, Pemantle and Peres (1996). We investigate the slow regime, in which case the walks are known to possess an exotic maximal displacement of order $(\log n)^3$ in the first $n$ steps. Our main result is another --- and in some sense even more --- exotic property of biased walks: the maximal potential energy of the biased walks is of order $(\log n)^2$. More precisely, we prove that, upon the system's non-extinction, the ratio between the maximal potential energy and $(\log n)^2$ converges almost surely to $\frac12$, when $n$ goes to infinity.
Type de document :
Pré-publication, Document de travail
43 pages. 2014
Liste complète des métadonnées
Contributeur : Yueyun Hu <>
Soumis le : mardi 12 avril 2016 - 22:53:38
Dernière modification le : lundi 29 mai 2017 - 14:23:39
Document(s) archivé(s) le : mercredi 13 juillet 2016 - 13:30:16


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00962241, version 3
  • ARXIV : 1403.6799



Yueyun Hu, Zhan Shi. The potential energy of biased random walks on trees. 43 pages. 2014. <hal-00962241v3>



Consultations de
la notice


Téléchargements du document