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Our problem domain is automatic construction of geometric figures which
conform to a logical specification. The specification contains geometric objects
and geometric constraints among the objects. The objects are points, lines, and
circles. and the constraints represent geometric properties such as belonging.
perpendicular, parallel. Our main objective is to provide a system for teaching
geometry which constructs figures efficiently and which, for a given specification,
is capable of constructing all possible figures conforming to the specification,
that is animation. It is also important to provide the system with a natural
notion of completeness.

In this extended abstract, we outline our approach: the introduction of geo-
metric constraints as linear algebraic constraints; the use of the linear equation
solver of Prologlll to resolve these algebraic constraints; and our approach for
handling nonlinear constraints and for providing a notion of completness

Introduction : Currently available software for learning and teaching geom-
etry (for example. the microworlds, Sketchpad and Cabri) permits construction
and animation of geometric figures using the equivalent of an imperative geo-
metric programming language. The user first exhibits a procedural construction
of the figure and afterwards can drag certain initial objects of the figure, pro-
ducing a new figure, which is a displacement of the original one still possessing
t'he same objects and properties as before. The software constructs the new
figure 2'1clc'ordin,§.)J to the procedure given in the first step. The consequences of
SNID ERatiye geomeltric programming are simple: all displacements of the origi-
n:‘a.l figure are not possible, only those starting from initially free objects are.
Consequently, the order in which the figure has been constructed is important,
and, more importantly, the exploration of the figure through the addition or
supression of certain constraints is delicate.
dl1\Il;‘;‘(‘i:::):r:':‘\:::f:lll:!ll;llxlllf:‘f<le the'vélue of defining ‘ancl implen‘leming.a de(-la'r—
gra g language and we have found that Constraint Logic



Programming is the most adequate tool for achieving it.

Resolution: The first idea was to transform all the geomet.r%c cqmtraints il.ll()
algebraic constraints and then to give t.lfem t‘0 PrologllIl. Th|§ smxprle §olut%ou
gives very good results when the equations mtm(.iuced are hr!ear (this being
the case for geometric constraints such as belongmng, perpendicular, pa-rallel)
since Prologlll computes the exact solution of linear systems over rationals.
Moreover, the overconstraints in the specification are verified. In such a systein,
we would like to say that all ruler and square constructions are solved by linear
algebra; yet this is not the case, even for ruler only constructions. In f"cu:f..
't is actually hard to find a notion of completness which corresponds to this
particular restricted case.

For the first approach, problems appear with the introduction of distances
and circles since they correspond to second degree equations. Such equations
introduce floating point numbers and the correctness of the resolution of linear
systems is no longer assured since an overconstraint may be not numerically
satisfied because of accumulated error in the processing of real numbers. Since
overconstraints arise naturally in geometry, it is important that they be treated
satisfactorily. In the present design, overconstraints are assumed to be always
satisfied. In the next implementation we are considering verifying them sym-
bolically with a geometry theorem prover like the one proposed by Wu, or at
least verifying that there are satisfied with interval arithmetic.

Technically, each geometric constraint 1s associated with an algebraic equa-
tion. and each equation is associated with a process whose purpose is to solve the
equation; that is, every linear equation is introduced into the Prologlll linear
equation solver and every second degree equation like (a?—1'0)2+(y—yu)2—r'~' =
are solved in a classical way when all variables appearing in it are linearly
dependant of an unique one X, that is when the equation can be rewrite in
aX? +bX + ¢ = 0. The program consists of two parts. The first part anal-
yses the specification and creates all the processes by means of the ProloglIl
built-in predicate freeze(s,B) which delays the evaluation of the predicate B un-
til the instanciation of s. The second part is the control part which activates
the processes by means of previously created triggers. There are two triggers,
one for each class of equations. The control part starts the activation of first
degree equations. First degree equations are only considered for solution when
they are truly linear. Note that an equation like Y —a* X + b = 0 is not
always linear, since a and X may be both not known; such an equation is said
t‘_-) h“_ pseudo-linear. If an awakened equation be not linear, then its introduc-
!,‘L.()‘Il ml'o the solver is delayed again. On the other hand, when all variables are
il e aer 3 e e ool SR ST
exact. Second (lt‘g‘l‘eé t-(‘.uali(ms(a,{jre'e “}_"l"‘-“’;‘“)' dl“‘l““-h“’-“' 15 {iSSUll“t‘d ‘ -

SP T Bt ria imolt i %0]-. re '( onsidered only a..[l‘er a,lll possible insertions
s nt solver have been accomplished; in order to activate



cecond degree equations the control part verifies that the activation of first de-
gree equations has not lead to results. If a first degree equation is introduced,
then control activates the remaining first degree equations one more time. If an
awakened second degree equation can be solved, then it is effectively solved and
the control part tries again to introduce linear equations. The resolution stops
when every geometric element is computed or when all processes are blocked.

(Concerning completeness of this system, we can say that, under the unique
name assumption for the specification, if a construction with ruler and compass
exists using only the elements occuring in the specification, then a construction
is provided by the system and all possible animations can thus be obtained.
Otherwise nothing is guaranteed. It is important to recall that from our ed-
ucational perspective, the essential goal is to provide a system with increased
power over imperative geometric programming.

Development and perspectives : Certain problems have led us to improve
our resolver. Many specifications require supplementary constructions to permit
overall construction of the figure. Consequently, we systematically add the
common chord of two circles when some point of the specification belongs to
it. Likewise, we could have added other objects which can be considered as
overconstraints or as help for the resolution of the problem. But it is hard to
guarantee that the unique name assumption will be retained with those new
objects (note that this overconstraint would be always verified).

The general resolution of the intersection of a line and a circle requires a
predicate which indicates whether two variables are in linear dependance or
not. At the present moment, Prologlll only indicates if a variable has been
instantiated or not. It doesn’t say if it is linearly dependant with another
one. So we had to built such a predicate which is not straightforward and uses
side-effecting. We think it would be of general interest if ProloglII would offer a
predicate ResLin( X, Y, a, b, ¢) which succedeed if a X +bY +c = 0 at the moment
of the evaluation. with some restrictions for a, b, c.

The representation of lines have been chosen considering the priority given
to first degree equations: the line & : aX +bY +¢ = 0 is represented by
& : (a.b,¢) and the triple (a,b,c) is defined by (1,b,c) or (0,1,¢). It is quite
easy to do with Prolog, and exotic in algebra. Normally. in algebra, a line is
uniquely described by (a,b. ¢) with a® + 2 — 1. which introduces second degree
equation. The disadvantage of such a definition is in the possible introduction of
a exponential explosion of the complexity of the Prolog program. The existence
of the predicate ResLin(X,Y,a,b,¢) may lead to improvments in this domain
LtOo.

Existing implementations execute in reasonable time and we anticipate fu-

ture implementations to handle more complicated specifications as well as un-
proved execution times.



