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Uncalibrated Visual Compass from Omnidirectional Line Images
with Application to Attitude MAV Estimation

Stefano Scheggi1, Fabio Morbidi2, Domenico Prattichizzo3

Abstract— This paper presents a new algorithm based on
previous results of the authors, for the estimation of the
yaw angle of an omnidirectional camera

/
robot undergoing a

6-DoF rigid motion. Our real-time algorithm is uncalibrated,
robust to noisy data, and it only relies on the projection of
3-D parallel linesas image features. Numerical and real-world
experiments conducted with an eye-in-hand robot manipulator,
which we used to simulate the 3-D motion of aMicro unmanned
Aerial Vehicle (MAV), show the accuracy and reliability of our
estimation algorithm.

I. I NTRODUCTION

In recent years we have witnessed a growing num-
ber of applications involvingUnmanned Aerial Vehicles
(UAVs) [1]–[5]: these applications range from infrastruc-
ture inspection, mapping of unknown terrains, espionage,
object transportation, to entertainment (film shooting and
light shows [6], [7]). Several factors have contributed to this
success and to the recent large diffusion of UAVs: decreasing
cost (cf. AR.Drone’s Parrot quadricopter), enhanced sensing
and autonomy, as well as the ability to carry heavier pay-
loads. Three categories ofMicro-UAVs (or MAVs, for short)
are currently under study or development in the research
community: fixed-wing aircraft, avian-style flapping wing
aircraft and rotor craft [4]. Two configurations of rotor craft
have recently gained wide acceptance: co-axial rotor craft,
which are equipped with two counter-rotating co-axial rotors
and with a stabilizer bar, and multi-rotor aircraft (e.g., the
popular quadrotors with four propellers).

The localization of MAVs represents a challenging re-
search issue: in fact, while Vicon systems or overhead camera
networks can be employed to precisely localize an aerial
vehicle in limited workspaces, they are unusable outdoors.
When GPS information is not available or is too inaccurate
for the application at hand, the only possibility is then to
rely on onboard sensors for vehicle’s position and attitude
estimation. Because of their small size, limited weight,
affordability and low-power consumption,vision sensors are
particularly suited for this task.

Several works have appeared in the recent robotics li-
terature, dealing with MAV localization using onlyvisual
information. The problem of autonomously landing a MAV
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on a known platform, was addressed in [8]. In [9], an aerial
vehicle is localized using a downward-looking monocular
camera. A visual SLAM algorithm tracks the pose of the
camera while simultaneously building an incremental map
of the surrounding region. Based on this pose estimation, a
LQG/LTR-based controller stabilizes the vehicle at a desired
setpoint and allows the execution of some simple maneuvers,
like take-off, landing and hovering.

In [10], a simple technique is described for estimating
the roll and pitch angle of a UAV, based on the detection
of the horizon line in a pinhole image. In [11], instead,
the attitude (roll and pitch angles) of a UAV is estimated
by leveraging the geometric properties of the on-board cata-
dioptric sensor. Since the horizon line used in [11] becomes
an inadequate feature in a urban environment, the same
authors, in [12], have proposed an omnidirectional vision
system based on straight lines, that is able to compute the
roll and pitch angles. The method consists in finding bundles
of horizontal and vertical parallel lines in order to obtain
an absolute reference for the attitude computation. Finally,
recently in [13] a novel rotation-estimation approach based
on the extraction of vanishing points in omnidirectional
images of urban environments, has been presented. However,
a common strong assumption in [10]–[13] is that the vision
sensor isfully calibrated.

As it is known, panoramic cameras have a wider field
of view than standard pinhole sensors, but to the best of
our knowledge, relatively few works in the literature have
explored their potential in aerial robotics (see, e.g., [13],
[14] and the references therein). This paper builds upon our
previous work [15], and presents arobust (thanks to our
RANSAC-based implementation) anduncalibrated visual
compass (VC) algorithm for estimating the yaw angle of
a camera

/
robot, whichonly leverages omnidirectional line

images, widely available in man-made environments. While
the method described in [15] is uniquely valid for planar
motions of the camera

/
robot, in this paper we extend its

applicability to sensors undergoing a 6-DoF motion, thus
making it applicable to the MAV attitude estimation problem.
Numerical as well as real-world experiments conducted with
a paracatadioptric camera mounted on the end-effector of
a robot manipulator (that we used to generate accurate
3-D trajectories, thus simulating the motion of a MAV),
illustrate the theory and show the accuracy and robustness
of our VC algorithm as well as itsreal-time capabilities.
It is worth underlying here that although MEMS gyroscopes
may represent a valid alternative to panoramic cameras for
yaw-angle estimation, in terms of weight, size and price, they
are known to be sensitive to temperature

/
calibration and to

suffer from bias errors.



The rest of this paper is organized as follows. Sect. II
briefly reviews the basics on paracatadioptric projection of
3-D lines. Sect. III and Sect. IV describe our VC estimation
algorithm and its main properties. The results of simulation
and real-world experiments are discussed in Sect. V. Finally,
in Sect. VI, conclusions are drawn and possible avenues of
future research are highlighted.

II. BASICS ON PARACATADIOPTRIC PROJECTION

OF 3-D LINES

Fig. 1 illustrates the imaging model of a paracatadioptric
camera with mirror focus atO: a generic 3-D scene point
X ∈ IR3 (expressed in the mirror frame{M}), is projected
onto the parabolic mirror surface atx ∈ IR3 through O.
Then, an orthographic projection mapsx at u (pixels), onto
the image planeI. The transformation fromX tou is analyt-
ically described by a nonlinear functionη : IR3 → IR2 that
depends on both the camera intrinsic calibration parameters
and the mirror geometry [16].

Let us now consider the case in which a generic 3-D line
L is observed by the paracatadioptric camera. We will refer
to the interpretation plane as the plane with normal vector
n = [nx, ny, nz]

T (in {M}) that passes throughL andO.

Proposition1 (Paracatadioptric line image[17]):
Consider the setup in Fig. 1, where a lineL is observed
by a paracatadioptric camera atO. If nz 6= 0, then L
projects onto the image planeI at a circle C with center
c , [cx, cy]

T (pixels) and radiusr (pixels) given by,

c = u0 − 2 af
[nx

nz
,
ny

nz

]T
, r =

2 a f

nz
,

wherea is the focal parameter of the parabolic mirror (i.e. the
distance between the focus and the vertex of the paraboloid),
u0 , [u0, v0]

T the optical center (in pixels), andf (pixels)
the focal length of the camera. �

In Prop. 1, we have assumed that the lineL is in a
generic 3-D configuration. In the special case of a line
orthogonal to the image planeI (see Fig. 2), the projected
circle C reduces to an image lineℓ throughu0, as stated
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z

Fig. 1. Projection of a 3-D line L: the interpretation plane passes through
the focusO of the parabolic mirror and the lineL, and intersects the mirror
at a curve that is orthographically projected at a circleC onto the image
planeI (with centerc and radiusr).
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Fig. 2. Projection of a 3-D vertical line L: the interpretation plane intersects
the mirror at a curve that is orthographically projected onto the image plane
at a lineℓ passing through the optical centeru0 and with a slopeϕ with
respect to the image horizontal axis.

in [18]. We henceforth refer to this category of linesL, as
vertical lines.

III. I NVARIANT PARALLEL LINES

The following definition is crucial for the subsequent
developments.

Definition 1 (Invariant property): A set of non-vertical
parallel lines is invariant to a particular camera rotation
and/or translation, if the line joining the centers of the circles
obtained as the projection of such lines on the camera image
plane, does not change its slope.

Remark1: It has been shown in [15], that non-vertical
parallel lines are invariant to cameratranslations. In what
follows, we will simply refer to such lines asparallel lines. ⋄

In order to estimate the cameraz-rotation angle when the
sensor undergoes a full6-DoF motion, we need to find sets
of parallel lines which areinvariant to rotations about the
x- andy- axes. The next proposition identifies set of lines
which can be used to estimate thez-rotation angle between
two views, without the knowledge of the camera calibration
parameters. We will useRx,α ∈ IR3×3 to denote the basic
rotation matrix about thex-axis of an angleα.

Proposition2 (Invariant parallel lines): Consider a set
of parallel lines and suppose that a rigid transformation
(R, t) ∈ SE(3) with R = Rz,θ Ry,β Rx,α and t ,

[tx, ty, tz]
T is applied to them:

• If the parallel lines have directiondx = [1, 0, 0]T ,
then the set isinvariant to Ry,β Rx,α.

• If the parallel lines have directiondy = [0, 1, 0]T ,
then the set isinvariant to Rx,α.

Proof: From Remark 1, we know thatparallel lines are
invariant to camera translations: hence, in the rest of the
proof we will only focus on the rotational motion.

Let us suppose to have a set of parallel lines with direction
dx = [1, 0, 0]T and a generic pointP = [x, y, z]T . The
interpretation plane passing throughP with directiondx has
normal vectorn = dx × P = [0, −z, y]T . By applying
Rx,α to n, we obtain,


1 0 0
0 cosα − sinα
0 sinα cosα






0
−z
y


 =




0
−z cosα− y sinα
−z sinα+ y cosα


 . (1)



From Prop. 1, it follows that such line projects onto a circle
with center’s coordinates,

c = u0 − 2 af

[
0,

−z cosα− y sinα

−z sinα+ y cosα

]T
.

As a consequence, given a set of parallel lines with direction
dx, all lines project onto circles havingcx = u0. In this case
the line joining these centers is always a vertical line in the
camera image plane, having slopeϕ = ∞.

By applyingRy,β Rx,α to n, from (1) we obtain,



cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ






0

−z cosα− y sinα

−z sinα+ y cosα


 =



(−z sinα+ y cosα) sinβ

−z cosα− y sinα

(−z sinα+ y cosα) cos β


 .

(2)

Such line projects onto a circle with center’s coordinates,

c = u0 − 2 af

[
tanβ,

−z cosα− y sinα

(−z sinα+ y cosα) cosβ

]T
. (3)

Since cx depends on the camera internal parameters and
on the rotation angleβ, it is constant for all lines having
directiondx. Then, parallel lines with directiondx project
onto circles all havingcx = u0 − 2 af tanβ. Also in this
case, the line joining these centers is always a vertical line.
In conclusion, sets of parallel lines having directiondx =
[1, 0, 0]T are invariant toRy,β Rx,α because the line joining
the circles’ centers does not change its slope when rotations
about thex-, y-axes are applied.

Let us now repeat the previous considerations withdy =
[0, 1, 0]T . The interpretation plane passing throughP with
directiondy has normal vectorn = dy × P = [z, 0, −x]T .
By applyingRx,α to n, we obtain,



1 0 0
0 cosα − sinα
0 sinα cosα






z
0
−x


 =




z
x sinα
−x cosα


 . (4)

Such line projects onto a circle with center’s coordinates,

c = u0 − 2 af
[ z

−x cosα
, − tanα

]T
.

As a consequence, parallel lines with directiondy project
onto circles all havingcy = v0+2 af tanα, which is constant
for all lines. In this case the line joining these centers is
always an horizontal line, being the slopeϕ = 0.

By applyingRy,β Rx,α to n, from (4) we end up with,



cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ






z

x sinα

−x cosα


 =




z cosβ − x sinβ cosα

x sinα

−z sinβ + x cos β cosα


 .

Such line projects onto a circle with center’s coordinates,

c = u0 − 2 af




z cosβ − x sinβ cosα

−z sinβ + x cosβ cosα

x sinα

−z sinβ + x cosβ cosα


.

Since the centers’ coordinates depend on the line displace-
ment, these lines are notinvariant to Ry,β Rx,α. �

Prop. 2 states that we can useparallel lines with direction
dx in the initial camera frame, to recover the yaw angleθ
when the camera undergoes a full6-DoF motion.

From Prop. 1, we know thatparallel lines project onto
the image plane at circles. In the next proposition, we show
how a rotation about thez−axis influences the slopeϕ of
the line joining the circles’ centers obtained as projection of
parallel lines with directionsdx anddy, respectively.

Proposition3:

• If the rigid trasformation(R, t) ∈ SE(3) with R =
Rz,θ Ry,β Rx,α and t , [tx, ty, tz]

T , is applied to a
set of parallel lines having directiondx, then the slope
of the line joining the circles’ centers isϕ = − cot θ.

• If the rigid trasformation(R, t) ∈ SE(3) with R =
Rz,θ Rx,α andt , [tx, ty, tz ]

T , is applied to a set of
parallel lines having directiondy, then the slope of the
line joining the circles’ centers isϕ = tan θ.

Proof: Let us first consider parallel lines with direction
dx = [1, 0, 0]T . By applyingRz,θ to (2) we obtain that
such lines project onto circles having center coordinates,

c = u0 − 2 af




(−zsα+ ycα) cθsβ + (zcα+ ysα) sθ

(−zsα+ ycα) cβ

(−zsα+ ycα) sθsβ − (zcα+ ysα) cθ

(−zsα+ ycα) cβ


,

wherec(·), s(·) stand forcos(·) andsin(·), respectively. Let
us consider two parallel linesLi andLj , having the same
direction dx. From [18], Li and Lj project onto circles
whose centers are collinear. Let the centers of the image
circles beci , [cix, c

i
y]

T , cj , [cjx, c
j
y]

T , and let us compute
the slopeϕ of the line joining these centers as,

ϕ =
ciy − cjy

cix − cjx
. (5)

Since,

ciy − cjy = 2 af
(−yizj + ziyj) cθ

(−zisα+ yicα)(−zjsα+ yjcα) cβ
,

cix − cjx = 2 af
−(−yizj + ziyj) sθ

(−zisα+ yicα)(−zjsα+ yjcα) cβ
,

thenϕ = − cot θ. As a consequence,θ is the angle between
such a line and they-axis of the camera image plane.

Let us now consider the directiondy = [0, 1, 0]T . By
applyingRz,θ to (4), we obtain that,

c = u0 − 2 af

[
zcθ − xsθ sα

−x cα
,

zsθ + xcθ sα

−x cα

]T
. (6)

By plugging (6) in (5), we getϕ = tan θ. �

As we will see in the next section, Prop. 2 and Prop. 3
are at the core of our visual compass algorithm.

IV. V ISUAL COMPASS ALGORITHM

In this section we present a VC algorithm which allows us
to estimate the camera yaw angleθ, when it undergoes a full
6-DoF motion. The algorithm relies on Prop. 2, Prop. 3 and
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Fig. 3. Estimation of the rotation about the z-axis: (a) Two paracatadioptric
cameras are displaced of (R, t) and observe two generic3-D parallel lines
Li andLj ; (b)-(c) The two lines project onto each image planeI andI′,
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i
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), respectively. From the centers of

the circles we obtain the unit-norm vectorse′ji andeji which are rotated
of an angleθ ∈ (−π/2, π/2].

on the extension of thedisparity-circles constraint in [15],
reported in next theorem.

Theorem1 (Extended disparity-circles constraint):
Consider the two-views setup shown in Fig. 3(a) in which
the current view at O is rotated about thex, y, z-axes of
an angleα, β, θ, respectively, withα, β, θ ∈ (−π/2, π/2],
and translated oft ∈ IR3 (with respect to thereference
view at O′). Let the rotation between the two cameras be
R = Rx,αRy,β Rz,θ, and let us assume that two3-D
parallel linesLi andLj having directiondx = [1, 0, 0]T in
O project onto the image planesI andI ′, at two circle pairs
(Ci, Cj) and (C′

i, C
′

j), respectively, with centers(ci, cj) and
(c′i, c

′

j) (see Figs. 3(b)-(c)). Then, the following constraint
holds true:

eji = R
2D
z,θ e

′

ji, (7)

where

eji ,
cj − ci

‖cj − ci‖
, e

′

ji ,
c
′

j − c
′

i

‖c′j − c′i‖
, R

2D
z,θ ,

[
cos θ − sin θ

sin θ cos θ

]
.

Proof: SinceLi, Lj areinvariant to translation (recall Re-
mark 1), we can focus our attention on the unknown rotation
R between the two views. Beingdx = [1, 0, 0]T in O, from
Prop. 3 it follows that the slope of vectoreji is ϕ = ∞.
Vector dx can be expressed inO′ as, d′

x = R
−1

dx =
(Rx,αRy,β Rz,θ)

T
dx = Rz,−θ Ry,−β Rx,−α dx. From

Algorithm 1 Implementation of the VC algorithm
Phase 1[Feature Detection]:

1: Automatically detect sets ofparallel lines as described
in [15]. Such lines project at circles onto the camera
image plane.

Phase 2[Initialization]:
1: Select one set ofparallel lines and ensure that the line

joining the circles’ centerseji in the image plane at
the initial time instant, has slopeϕ = ∞ and passes
throughu0 (cf. Remark 2).

Phase 3[Estimation]:
1: while the camera

/
robot movesdo

2: Use the ViSP software [19] to track circles from the
previous to the current frame.

3: Use the tracked and the initial (Phase 2) circles’
centers in Th. 1, and determineθ using a RANSAC-
based approach (see [15]).

4: if some of the3-D lines are no more visiblethen
5: Go to Phase 1.
6: Add only the3-D lines that are parallel to the initial

set selected in Phase 2.
7: end if
8: end while

Prop. 2 it follows that sets of parallel lines with direction
dx are invariant to rotations about thex-, y-axes. As a
consequence, owing to Prop. 3 it follows that the slopeϕ′

of vector e′ji depends only on the matrixRz,θ, i.e. ϕ′ =
− cot(−θ) = cot θ. Finally, sinceϕ = ∞ andϕ′ = cot θ,
we obtain (7). �

Algorithm 1 , summarizes the different phases of our VC
algorithm for the estimation of thez-rotation angle during the
camera motion. At each time frame the algorithm estimates
θ between the current and the initial view.

Remark2: The proposed algorithm needs a bundle of
parallel lines with directiondx = [1, 0, 0]T in the camera
frame at theinitial time. Such a requirement can be satisfied
by ensuring that the line joining the circles’ centers in the
initial image has slopeϕ = ∞ and passes throughu0 (recall
Eq. (3) and see Fig. 7). Although this step might seem critical
in practice, in the next section we provide experimental
evidence that the proposed algorithm is robust against image
noise and initial camera alignment errors. ⋄

V. EXPERIMENTAL VALIDATION

In order to test the effectiveness of the proposed VC
algorithm, we conducted extensive numerical simulations
(see Sect. V-A) and experimental tests (see Sect. V-B).

A. Simulations

The simulation results reported in this section have been
obtained using theEpipolar Geometry Toolbox (EGT) for
MATLAB. For the sake of generality, we implemented the
unified panoramic-camera imaging model by Geyer and
Daniilidis [16] which describes any central panoramic ca-
mera projection as a projection between a sphere and a
plane. In order to assess the accuracy and robustness of our
algorithm to noisy data, we added Gaussian image noise with



increasing standard deviationσ ∈ {0, 0.5, . . . , 2} pixels.
The two views are rotated ofR = Rx,π/4Ry,π/6Rz,π/3

and translated oft = [1, 2, 1]T meters. A set of 4 parallel
lines was considered in our test, and we did not assume to
know the correspondences (cf. [15, Cor. 1]).

Fig. 4 shows the mean and the standard deviation of the
rotation-estimation error|θ̂−θ| (deg.) obtained from the VC
algorithm. These values have been computed by averaging
the rotation errors over 100 realizations. From Fig. 4, we
observe that the proposed algorithm is robust against image
noise and exhibits a maximum estimation error of about
1.4 deg. forσ = 2 pixels. We also tested the robustness
of the proposed algorithm against an initial misalignment of
the camera with respect to the set of parallel lines (recall
Remark 2). To this end, we introduced independent random
rotations with zero mean and standard deviationσu, about
the camera’sx-, y- andz-axes (the standard deviation of the
image noise isσ = 1.5 pixels). Fig. 5 shows the mean and
the standard deviation of the rotation-estimation error|θ̂−θ|
over 100 realizations: despite the initial misalignment, the
mean of the error is always smaller than 4 deg.

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

|θ̂
−
θ|

[d
eg

.]

σ [pixels]

Fig. 4. Simulation results with image noise: mean and standard deviation
of the rotation-estimation error|θ̂−θ|. The reported values are obtained by
averaging the rotation errors over 100 realizations.
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Fig. 5. Simulation results with image noise and initial camera misalign-
ment: mean and standard deviation of the rotation-estimation error |θ̂ − θ|
when normally-distributed random rotations (with zero mean and standard
deviationσu) about thex-, y-, z-axes are introduced, and an image noise
with standard deviation of1.5 pixels is used. The reported values are
obtained by averaging the rotation errors over 100 realizations.

Paracatadioptric
camera

x y

z

(a) (b)

Fig. 6. (a) The paracatadioptric camera is mounted on the end-effector of
a KUKA manipulator; (b) Camera view with detected circles (green).

B. Experiments

In the experiments described in this section, we used a Re-
mote Reality NetVision360 paracatadioptric mirror screwed
on a Lumenera LU071C pinhole camera. The camera was
mounted on the end-effector of a 6-DoF KUKA KR 3
manipulator (see Fig. 6)1. We decided to use this robot
because of its highly-accurate measurements of the camera
pose (in the order of millimeters/tenths of degree), that
we adopted as our ground truth. As aforementioned, the
manipulator was used to simulate the 3-D motion of a
MAV. Space constraints prevent us to provide here a detailed
description of the computer-vision algorithms that we used
for the automatic detection of the image circles and their
tracking as the camera moves. For more information, the
reader is referred to [15].

Figs. 7(a)-(c) show the motion of the camera with respect
to the initial pose, that we considered in our two experi-
mental tests. In particular, Fig. 7(a) and Fig. 7(b) report the
time evolution of the camera position and orientation, and
Fig. 7(c) its 3-D trajectory. A maximum number of6 3-D
lines for the VC algorithm, was considered in our two tests.
The algorithm run at an average frame rate of about10fps.

In the first test (seevideo 1), the VC algorithm was
accurately initialized (i.e., there was not an appreciable
misalignment between the orientation of the camera and the
selected set of parallel lines at the initial time). As shown
in Fig. 7(d), the maximum estimation error of the angleθ is
about1.3 deg. in this case.

In the second test (seevideo 2), we violated on purpose
the initial camera alignment by adding a spurious rotation of
4 deg. about thex-, y-, z-axes (as shown in Fig. 7(f), this
misalignment can be easily noticed in the image). In spite
of this uncertainty, the maximum estimation error|θ̂ − θ| is
lower than4.6 deg. (see Fig. 7(e)).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new algorithm for
estimating the yaw angle of an omnidirectional camera

/
robot

moving in a 3-D environment. The proposed VC algorithm
has a number of attractive features: it isuncalibrated, robust
to noisy data, capable ofreal-time operation and it only
relies on the projection of3-D parallel lines on the image
plane, which are widely available in urban environments.

1The videos of the real-time experiments are available at:
http://sirslab.dii.unisi.it/research/vision/6dof-visual-compass/
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Fig. 7. Experiments with the KUKA robot: Time history of (a) the translational and (b) the rotational displacement of the camera; (c) 3-D trajectory of the
camera (the initial position is depicted in dark blue); (d) Time evolution of the estimation error|θ̂− θ| with accurate initial alignment; (e) Time evolution
of the estimation error|θ̂− θ| when a spurious rotation of4 deg. about thex-, y-, z-axes was introduced in the initial camera pose: (f) the misalignment
can be easily noticed in the image (the blue line joining the circles’ centers and the red line should coincide).

Simulations as well as real-world experiments have demon-
strated the effectiveness of our algorithm, and its potential
for attitude estimation in aerial robotics.

Although our results are promising, an effort still needs to
be done in order to implement our VC algorithm onboard
a real MAV. In particular, it will be necessary to tailor
our algorithm to the stringent memory and computational
requirements of commercial MAVs, and to make it robust
against propellers-induced vibrations. Finally, work is in
progress to relax the starting alignment condition, in order
to enlarge the set of possible initial camera orientations with
respect to the environment.
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