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Uncalibrated Visual Compass from Omnidirectional Line Images
with Application to Attitude MAV Estimation

Stefano Schegdi Fabio Morbid?, Domenico Prattichizzb

Abstract—This paper presents a new algorithm based on on a known platform, was addressed in [8]. In [9], an aerial
previous results of the authors, for the estimation of the vehicle is localized using a downward-looking monocular
yaw angle of an omnidirectional camergrobot undergoing a  camera. A visual SLAM algorithm tracks the pose of the
6-DoF rigid motion. Our real-time algorithm is uncalibrated hile simult v buildi . tal
robust to noisy data, and it only relies on the projection of camera while simultaneously bullding an incremental map
3-D parallel linesas image features. Numerical and real-world ~ Of the surrounding region. BaS?_d on this pose estimation, a
experiments conducted with an eye-in-hand robot manipulatr, ~ LQG/LTR-based controller stabilizes the vehicle at a debir
which we used to simulate the 3-D motion of aicro unmanned  setpoint and allows the execution of some simple maneuvers,
Aerial Vehicle (MAV), show the accuracy and reliability of our like take-off, landing and hovering.
estimation algorithm. - . . . . .

In [10], a simple technique is described for estimating
. INTRODUCTION the roll and pitch angle of a UAV, based on the detection

In recent years we have witnessed a growing nunP—f the horizon line in a pinhole image. In [11], instead,

ber of applications involvingUnmanned Aerial Vehicles the attitud(_a (roll and pitch angles) .Of a UAV is estimated
(UAVS) [L]-[5]: these applications range from infrastruc—by leveraging the geometric properties of the on-board-cata

ture inspection, mapping of unknown terrains, espionagg,iOp_tric sensor. Since thg horizon line u;ed in [11] becomes
object transportation, to entertainment (film shooting ang" r:nade_qua{(; fer?ture In a urgan e”"'“?dr!mef?" tf?e same
light shows [6], [7]). Several factors have contributedhist 2Ut ors,bln [d 1, have [;]rolpose r‘?” ant')l irectiona V'S'OE
success and to the recent large diffusion of UAVs: decreasir?ySteM based on straight lines, that is able to compute the
cost (cf. AR.Drone’s Parrot quadricopter), enhanced sensi roll and pitch angles. The method consists in finding bundles
and autonomy, as well as the ability to ’carry heavier paﬁf horizontal and vertical parallel lines in order to obtain
loads. Three c:’;ltegories dficro-UAVs (or MAVs, for short) an absolpte reference for thg attitu.de qomputation. Binall
are currently under study or development in the researdf€eNtY in [13] a novel rotation-estimation approach biase

community: fixed-wing aircraft, avian-style flapping Wing_on the extraction o_f vanishing points in omnidirectional
aircraft and rotor craft [4]. Two configurations of rotor ftra Images of urban environments, has been presented. However,

have recently gained wide acceptance: co-axial rotor craft common strong assumption in [101-[13] is that the vision
sensor isfully calibrated.

which are equipped with two counter-rotating co-axial reto o . . )
quipy g As it is known, panoramic cameras have a wider field

and with a stabilizer bar, and multi-rotor aircraft (e.duet X .
(e.qe of view than standard pinhole sensors, but to the best of

popular quadrotors with four propellers). . : .
The localization of MAVs represents a challenging re. our knowledge, relatively few works in the literature have
xplored their potential in aerial robotics (see, e.g.,],[13

search issue: in fact, while Vicon systems or overhead mmegjr4 d the ref therein). Thi build
networks can be employed to precisely localize an aeri ]_an e references therein). This paper builds upon our
gewous work [15], and presents rabust (thanks to our

vehicle in limited workspaces, they are unusable outdoor ANSAC-based implementation) anahcalibrated visual

When GPS information is not available or is too inaccurat VO alaorithm f ) ) h le of
for the application at hand, the only possibility is then tg-ompass (VC) algorithm for estimating the yaw angle o

rely on onboard sensors for vehicle’s position and attitud@ camergir_obot, Wh!Ch onl_y leverages omnl_dlrectlonal Ilne_
estimation. Because of their small size, limited Weight'mages’ widely available in man-made environments. While

affordability and low-power consumptiowision sensors are thet_metho]fjtﬁescrlbed mb [%5] |sthgn|quely valid fc;r p:jla_r;ar
particularly suited for this task. motions of the cameyaobot, in this paper we extend its

Several works have appeared in the recent robotics r'fl_ppl@capility to sensors undergoing a 6'D.0F _motion, thus
terature, dealing with MAV localization using onlisual making it applicable to the MAV attitude estimation problem

. ; : Numerical as well as real-world experimen n with
information. The problem of autonomously landing a MAV umerical as wetl as real-wo d experiments conducted wit
a paracatadioptric camera mounted on the end-effector of
The research leading to these results has received fundorg the a I’ObOt. man,'pUIator (that WQ used to ge”erate accurate
European Union Seventh Framework Programme FP7/2007-20@r 3-D trajectories, thus simulating the motion of a MAV),
grant agreementn288917 of the project "DALI - Devices for Assisted j|lustrate the theory and show the accuracy and robustness

Living”. . . . i
1S. Scheggi and D. Prattichizzo are with the Department afrinétion of our VC algorithm as well as itseal-time capabilities.

Engineering and Mathematics, University of Siena, 53108n&i Italy, It is worth Underlying here that_althOUgh MEM_S gyroscopes
scheggi , prattichi zzo@lii.unisi.it . may represent a valid alternative to panoramic cameras for
2F. Morbidi is with the NeCS team, INRIA Grenoble Rhone-Adpe yaw-angle estimation, in terms of weight, size and priceyth

France,f abi o. norbidi @nria.fr . . .
3D. Prattichizzo is also with the Department of Advanced Riosp &€ known to be sensitive to temperatio®libration and to

Istituto Italiano di Tecnologia, via Morego, 30, 16163 Gemoltaly. suffer from bias errors.



The rest of this paper is organized as follows. Sect. Il L
briefly reviews the basics on paracatadioptric projectibn o
3-D lines. Sect. Ill and Sect. IV describe our VC estimation
algorithm and its main properties. The results of simutatio J
and real-world experiments are discussed in Sect. V. Kinall “ab
in Sect. VI, conclusions are drawn and possible avenues of
future research are highlighted.

Il. BASICS ON PARACATADIOPTRIC PROJECTION : n
OF 3-D LINES

Fig. 1 illustrates the imaging model of a paracatadioptric
camera with mirror focus af: a generic 3-D scene point
X € IR® (expressed in the mirror framg/}), is projected

onto the parabolic mirror surface ate IR® through O. , . o , _ ,
Fig. 2. Projection of a 3-D vertical line £: the interpretation plane intersects

The_n’ an 0rth09raph|c projection _mapsat u (pIX_eIS), onto the mirror at a curve that is orthographically projectedodthie image plane
the image plan&. The transformation frorX to u is analyt-  at a line£ passing through the optical centap and with a slopep with

ically described by a nonlinear function: IR® — IR? that respect to the image horizontal axis.
depends on both the camera intrinsic calibration parameter
and the mirror geometry [16].
Let us now consider the case in which a generic 3-D lin# [18]. We henceforth refer to this category of lin€s as
L is observed by the paracatadioptric camera. We will refefertical lines.

to the interpretation plane as the plane with normal vector [1l. I NVARIANT PARALLEL LINES
n = [ng, ny, n.]7 (in {M}) that passes through and O. The following definition is crucial for the subsequent
developments.
Proposition 1 (Paracatadioptric line imagg17]): Definition 1 (Invariant property): A set of non-vertical

Consider the setup in Fig. 1, where a lideis observed parallel lines isinvariant to a particular camera rotation
by a paracatadioptric camera @&t If n, # 0, then £ and/or translation, if the line joining the centers of thecles
projects onto the image plarie at acircle C with center obtained as the projection of such lines on the camera image

c £ [eg, ¢,]T (pixels) and radius (pixels) given by, plane, does not change its slope.
ne T 5 Remark1: It has been shown in [15], that non-vertical
c=uy—2af {_f, _y} 7 r= af7 parallel lines are invariant to cameteandations. In what
Ny Ny Tz follows, we will simply refer to such lines gwarallel lines. ¢

wherea is the focal parameter of the parabolic mirror (i.e. the In order to estimate the camerarotation angle when the

distance between the focus and the vertex of the parabploiggnsor undergoes a fuliDoF motion, we need to find sets
uy £ [ug, vo]” the optical center (in pixels), angl (pixels) Of parallel lines which arénvariant to rotations about the

the focal length of the camera. m - andy- axes. The next proposition identifies set of lines
In Prop. 1, we have assumed that the ligeis in a Which can be used to estimate theotation angle between
. . . i 3x3 H
orthogonal to the image plan€ (see Fig. 2), the projected Parameters. We will us®; . € IR**” to denote the basic

circle C reduces to an image liné throughu,, as stated rotation matrix about the-axis of an anglex.
Proposition2 (Invariant parallel lines): Consider a set

of parallel lines and suppose that a rigid transformation
(R,t) € SE3) with R = R.yR,sR,, andt =
[tz ty, t.]7 is applied to them:
« If the parallel lines have directiod, = [1, 0, 0]7,
then the set isnvariant to R, s R, o.
« If the parallel lines have directiod, = [0, 1, 0]7,
then the set isnvariant to R, .

Proof: From Remark 1, we know thagiarallel lines are
invariant to camera translations: hence, in the rest of the
proof we will only focus on the rotational motion.

Let us suppose to have a set of parallel lines with direction
d, = [1, 0, 0] and a generic poinP = [z, y, 2]7. The
parabolic mirror interpretation plane passing throuBhwith directiond, has
normal vectorn = d, x P = [0, —z, y]T. By applying

R, ., to n, we obtain,
Fig. 1. Projection of a 3-D line £: the interpretation plane passes through
the focusO of the parabolic mirror and the ling, and intersects the mirror | 1 0 0 0 0
at a curve that is orthographically projected at a cit€lento the image 0
planeZ (with centerc and radiusr).

cosa —sina| |—z| = |—zcosa—ysina|. (1)
0 sina cosa Y —zsina + ycos



From Prop. 1, it follows that such line projects onto a circleSince the centers’ coordinates depend on the line displace-

with center’s coordinates,

. T
—ZCOStx — ysSIin«w

c=u —2af |0, —~ :
—Zzsin o + Y cos «

ment, these lines are notvariant to Ry 3 R, . |

Prop. 2 states that we can ysa&allel lines with direction
d, in the initial camera frame, to recover the yaw angle
when the camera undergoes a ftHDoF motion.

As a consequence, given a set of parallel lines with diractio  From Prop. 1, we know thaparallel lines project onto

d., all lines project onto circles having. = u. In this case

the image plane at circles. In the next proposition, we show

the line joining these centers is always a vertical line i@ thhow a rotation about the—axis influences the slopg of

camera image plane, having slope= cc.
By applyingR, s R, o to n, from (1) we obtain,

cosfp 0 sinpg 0
0 1 0 —zcosa —ysina| =
—sinfB 0 cosfB| |—zsina+ ycosa

)

(—zsina + ycosa) sin 8
—zcosa — ysina
(—zsina + ycosa) cos B
Such line projects onto a circle with center’s coordinates,

. T
—zcosa — ysina

c=uy—2af [tanf, 3)

(—zsina + ycosa)cosf |

the line joining the circles’ centers obtained as projectd
parallel lines with directionsl, andd,, respectively.
Proposition 3:

o If the rigid trasformation(R,t) € SE3) with R =
R.oR, 3R, andt £ [t,, t,, t.]T, is applied to a
set of parallel lines having directiod,., then the slope
of the line joining the circles’ centers is = — cot 6.

o If the rigid trasformation(R,t) € SE3) with R =
R.oR, . andt £ [t,, t,, t,]7, is applied to a set of
parallel lines having directiod,, then the slope of the
line joining the circles’ centers i = tan 6.

Proof: Let us first consider parallel lines with direction
d, = [1, 0, 0]7. By applyingR.. ¢4 to (2) we obtain that

Since ¢, depends on the camera internal parameters ar@ch lines project onto circles having center coordinates,

on the rotation angles, it is constant for all lines having
directiond,. Then, parallel lines with directiod, project
onto circles all having:, = up — 2af tan 8. Also in this

case, the line joining these centers is always a vertical lin ¢

In conclusion, sets of parallel lines having directidp =
[1, 0, 0]T are invariant td®,, s R, because the line joining

(—zsa + yea) cBsp + (zea + ysa) sO
(—zsa + yea) ¢

=ug—2a
0 f (—zsa + yea) s0sp — (zea + ysar) cd

(—zsa + yea) ¢

the circles’ centers does not change its slope when romtiowherec(-), s(-) stand forcos(-) andsin(-), respectively. Let

about thex-, y-axes are applied.

Let us now repeat the previous considerations wlijh=
[0, 1, 0]7. The interpretation plane passing throughwith
directiond, has normal vecton =d, x P = [z, 0, —z]7.
By applyingR; , to n, we obtain,

1 0 0 z z
0 cosa —sina|| 0 | =| zsina (4)
0 sina cosa —T — COS (
Such line projects onto a circle with center’s coordinates,
T
c=u—2a [7 —tana
0 ! —zcosa’

As a consequence, parallel lines with directidp project
onto circles all having, = vo+2 a f tan o, which is constant

for all lines. In this case the line joining these centers i

always an horizontal line, being the slope= 0.
By applyingR, g R, t0 n, from (4) we end up with,

cosf 0 sinf z
0 1 0 rsina | =
—sinf 0 cosfB| |—zcosa
zcos 3 — xsin S cosa
T sin«

—zsin 8 + x cos 3 cos a
Such line projects onto a circle with center’s coordinates,
zcos 8 — xsin 3 cos a

—zsin 8 + x cos 3 cos a
c=u —2af .
T sin «

—zsin 8 + x cos 3 cos a

us consider two parallel lines; and £;, having the same
direction d,. From [18], £; and £, project onto circles
whose centers are collinear. Let the centers of the image
circles bec’ £ [c, ¢1]7, ¢ £ [¢], |7, and let us compute
the slopey of the line joining these centers as,

Ci — G
p=—"T—". ®)
. ¢ —c
Since,
F (o' +21y7) o
v (—zisa + yica)(—zisa + yica) cf’
d ¢ = 2af —(Cy' + 2y o
v (—zisa + yica)(—zisa + yica) cf’
?nengp = — cot §. As a consequencé,is the angle between

such a line and thg-axis of the camera image plane.
Let us now consider the directioth, = [0, 1, 0]7. By
applyingR 4 to (4), we obtain that,

T

¢ = uy—2af zc@—xs@sa, 2860 + xch sa . (6)
—T CX —X CX

By plugging (6) in (5), we getp = tan6. |

As we will see in the next section, Prop. 2 and Prop. 3
are at the core of our visual compass algorithm.

IV. VISUAL COMPASS ALGORITHM

In this section we present a VC algorithm which allows us
to estimate the camera yaw anglevhen it undergoes a full
6-DoF motion. The algorithm relies on Prop. 2, Prop. 3 and



Algorithm 1 Implementation of the VC algorithm
Phase 1[Feature Detection]:

1: Automatically detect sets gfarallel lines as described
in [15]. Such lines project at circles onto the camera
image plane.

Phase 2[Initialization]:

1: Select one set gbarallel lines and ensure that the line
joining the circles’ centers;; in the image plane at
the initial time instant, has slopg = oo and passes
throughug (cf. Remark 2).

Phase 3[Estimation]:

1: while the camerﬁrobot movesdo

2:  Use the VISP software [19] to track circles from the
@ previous to the current fram_e_ _ _
R 3:  Use the tracked and the initial (Phase 2) circles’

T centers in Th. 1, and determimeusing a RANSAC-

r AR based approach (see [15]).
ic/ T 4: if some of the3-D lines are no more visibléhen
‘ i/'z;z ‘ 5: Go to Phase 1.
”””””””””””””””””””””””””” 6: Add only the 3-D lines that are parallel to the initial
N set selected in Phase 2.
Cr 7. end if
B N N ¢ 8: end while

ReferenceZ Current:Z/
Prop. 2 it follows that sets of parallel lines with direction
d, areinvariant to rotations about ther-, y-axes. As a

(b) ©
Fig. 3. Estimation of the rotation about the z-axis: (a) Two paracatadioptric  consequence, owing to Prop. 3 it follows that the slgpe
cameras are displaced dR( t) and observe two generi&D parallel lines / . . ;)
L; and Lj; (b)-(c) The two lines pI’OjeCt onto each image plahandZ’, of vector €ji depend_s Only (_)n the mamRz,Gv /'-e- ¥ =
at two ciicle pairs ¢, C;) and €}, C’), respectively. From the centers of — cot(—0) = cot 6. Finally, sincep = oo and ¢’ = cot 6,

the circles we obtain the unit-norm vectoas§ andej; which are rotated we obtain (7). |

of an anglef) € (—m/2,7/2]. Algorithm 1, summarizes the different phases of our VC
algorithm for the estimation of the-rotation angle during the

on the extension of thelisparity-circles constraint in [15], camera motion. At each time frame the algorithm estimates

reported in next theorem. 0 between the current and the initial view.

Theorem1 (Extended disparity-circles constraint Remark2: The proposed algorithm needs a bundle of
Consider the two-views setup shown in Fig. 3(a) in whiclparallel lines with directiord, = [1, 0, 0]7 in the camera
the current view at O is rotated about ther,y, z-axes of frame at thenitial time. Such a requirement can be satisfied
an anglex, f, 6, respectively, witho, 3,6 € (—m/2, /2], by ensuring that the line joining the circles’ centers in the
and translated ot € IR® (with respect to thereference initial image has slope = oo and passes through (recall
view at O’). Let the rotation between the two cameras b&q. (3) and see Fig. 7). Although this step might seem ctitica
R = R;.R,sR.p, and let us assume that tw&D in practice, in the next section we provide experimental
parallel linesC; and £; having directiond, = [1, 0, 0]” in  evidence that the proposed algorithm is robust againstémag

O project onto the image plan@&sandZ’, at two circle pairs noise and initial camera alignment errors. o
(CZ,C ) and (C;,C’), respectively, with centerge;, c;) and
(ci,c}) (see F|gs 3(b)-(c)). Then, the following constraint V. EXPERIMENTAL VALIDATION
holds true: In order to test the effectiveness of the proposed VC
i = R?® e, (7) algorithm, we conducted extensive numerical simulations
Where ’ (see Sect. V-A) and experimental tests (see Sect. V-B).
A. Smulation
o GG N cj— ¢ R2D, & [cosf —sin6 S u.atos. o .
€ji = c; —ci|’ €ji = [ —cl||” ~»  Lsino coso The simulation results reported in this section have been
] )

obtained using thé=pipolar Geometry Toolbox (EGT) for
Proof: SinceL;, £; areinvariant to translation (recall Re- MATLAB. For the sake of generality, we implemented the
mark 1), we can focus our attention on the unknown rotationnified panoramic-camera imaging model by Geyer and
R between the two views. Beingj, = [1, 0, 0]7 in O, from  Daniilidis [16] which describes any central panoramic ca-
Prop. 3 it follows that the slope of vecter;; is ¢ = co. mera projection as a projection between a sphere and a
Vector d, can be expressed i’ as,d, = R~'d, = plane. In order to assess the accuracy and robustness of our
(Rz,aRy 8 RZVH)T d. = R, 4R, _sR,;_,d,. From algorithm to noisy data, we added Gaussian image noise with



Paracatadioptric
=< camera

increasing standard deviation € {0, 0.5, ...,2} pixels.
The two views are rotated AR = R, /4 Ry »/6 R r/3
and translated of = [1, 2, 1]7 meters. A set of 4 parallel
lines was considered in our test, and we did not assume t
know the correspondences (cf. [15, Cor. 1]).

Fig. 4 shows the mean and the standard deviation of th
rotation-estimation errgd — 6| (deg.) obtained from the VC
algorithm. These values have been computed by averaging x
the rotation errors over 100 realizations. From Fig. 4, we @ ()
ob_serve that th_e _proposed _algorlthm_ IS rc_)bUSt against 'mag%. 6. (a) The paracatadioptric camera is mounted on thee#adtor of
noise and exhibits a maximum estimation error of aboufKukA manipulator; (b) Camera view with detected circlese).

1.4 deg. forc = 2 pixels. We also tested the robustness

of the proposed algorithm against an initial misalignment o

the camera with respect to the set of parallel lines (recall _

Remark 2). To this end, we introduced independent randofh EXPeriments

rotations with zero mean and standard deviatign about In the experiments described in this section, we used a Re-

the camera’s-, y- and z-axes (the standard deviation of themote Reality NetVision360 paracatadioptric mirror scréwe

image noise isr = 1.5 pixels). Fig. 5 shows the mean andon a Lumenera LUO71C pinhole camera. The camera was

the standard deviation of the rotation-estimation efflor | mounted on the end-effector of a 6-DoF KUKA KR 3

over 100 realizations: despite the initial misalignmehg t manipulator (see Fig. 6) We decided to use this robot

mean of the error is always smaller than 4 deg. because of its highly-accurate measurements of the camera
pose (in the order of millimeters/tenths of degree), that
we adopted as our ground truth. As aforementioned, the

3 manipulator was used to simulate the 3-D motion of a

MAV. Space constraints prevent us to provide here a detailed

description of the computer-vision algorithms that we used

2} for the automatic detection of the image circles and their

tracking as the camera moves. For more information, the

25+

|0 — 0] [deg ]

15 reader is referred to [15].
1 Figs. 7(a)-(c) show the motion of the camera with respect
¢ to the initial pose, that we considered in our two experi-
0.5 mental tests. In particular, Fig. 7(a) and Fig. 7(b) repbet t
0 time evolution of the camera position and orientation, and

Fig. 7(c) its 3-D trajectory. A maximum number 6f3-D
lines for the VC algorithm, was considered in our two tests.
The algorithm run at an average frame rate of aldxps.

Fig. 4. Smulation results with image noise: mean and standard deviation In the first test (See”deo 1)’ the VC algorlthm was

of the rotation-estimation errdé — 0|. The reported values are obtained by ac_cur_ately initialized (i.e., there \_/vas not an appreciable
averaging the rotation errors over 100 realizations. misalignment between the orientation of the camera and the

selected set of parallel lines at the initial time). As shown
in Fig. 7(d), the maximum estimation error of the angles
about1.3 deg. in this case.

In the second test (seddeo 2), we violated on purpose
the initial camera alignment by adding a spurious rotatibn o
4 deg. about ther-, y-, z-axes (as shown in Fig. 7(f), this
misalignment can be easily noticed in the image). In spite
of this uncertainty, the maximum estimation er{ér— 6| is
lower than4.6 deg. (see Fig. 7(e)).

0 0.5 1 1.5 2
o [pixels]

|0 — 0] [deg.]

~

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new algorithm for
‘ ‘ ‘ ‘ ‘ estimating the yaw angle of an omnidirectional carjeshot
1 2 3 4 5 moving in a 3-D environment. The proposed VC algorithm
ou [deg] has a number of attractive features: iuizcalibrated, robust
Fig. 5. Simulation results with image noise and initial camera misalign-  t0 Nnoisy data, capable afeal-time operation and it only
ment: mean and standard deviation of the rotation-estimatioar éf — 6| relies on the projection 08-D paralléel lines on the image

when normally-distributed random rotations (with zero mead standard ; ; ; ; ;

deviation o) about thez-, y-, z-axes are introduced, and an image noiseplane’ which are widely available in urban environments.

with standard deviation ofi..5 pixels is used. The reported values are

obtained by averaging the rotation errors over 100 readiast 1The videos of the real-time experiments are available at:
http://sirslab.dii.unisi.it/research/vision/6dofsuial-compass/




te . @
'g' 100 g 50
50 - O
I S, v
= o -50
0 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
1000 ty — 60 B Ze Ze
= S 4 100 :
E s ) ; :
£ S 2 £ v
= 0 0 £ 0 c Ye
0 10 20 30 40 50 60 70 8 90 100 0 10 20 30 40 50 6 70 80 90 100 ¥
t ) : Xe
50 z o -100 Xe
’g 0 o -20 -100
e %0 % -40 0
= -100 = -60 100 400
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 X[mm] 200 200 Y [mm]
# sample # sample 0
(@) (b) (c)
5 5
4.5 45
— 4 — 4
g' 35 oS 35
(]
= 2 S ° 7
__ 25 ___ 25 X
o
le 2 Q|> 2 &
<E 15 : : i (> 15
1 V ‘ - 1
0.5 0.5
0 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 100 200 300 400 500 600 700 800
# sample # sample [pixels]

(d) @)

®

Fig. 7. Experiments with the KUKA robot: Time history of (a) the translational and (b) the rotatiodiaplacement of the camera; (c) 3-D trajectory of the
camera (the initial position is depicted in dark blue); (#n& evolution of the estimation err¢f — 0| with accurate initial alignment; (e) Time evolution
of the estimation erroff — 6| when a spurious rotation af deg. about the:-, y-, z-axes was introduced in the initial camera pose: (f) the lgisament
can be easily noticed in the image (the blue line joining tineles’ centers and the red line should coincide).

Simulations as well as real-world experiments have demong]
strated the effectiveness of our algorithm, and its poaénti [8]
for attitude estimation in aerial robotics.

Although our results are promising, an effort still needs to[9]
be done in order to implement our VC algorithm onboard
a real MAV. In particular, it will be necessary to tailor 10
our algorithm to the stringent memory and computational
requirements of commercial MAVs, and to make it robushl]
against propellers-induced vibrations. Finally, work s i
progress to relax the starting alignment condition, in orde
to enlarge the set of possible initial camera orientatioits w [12]
respect to the environment.
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