Core decomposition in Directed Networks: Kernelization and Strong Connectivity

Abstract : In this paper, we propose a method allowing decomposition of directed networks into cores, which final objective is the detection of communities.We based our approach on the fact that a community should be composed of elements having communication in both directions. Therefore, we propose a method based on digraph kernelization and strongly p-connected components. By identifying cores, one can use based-centers clustering methods to generate full communities. Some experiments have been made on three real-world networks, and have been evaluated using the V-Measure, having a more precise analysis through its two sub-measures: homogeneity and completeness. Our work proposes different directions about the use of kernelization into structure analysis, and strong connectivity concept as an alternative to modularity optimization.
Type de document :
Communication dans un congrès
Springer International Publishing. Complex Networks, Mar 2014, Bologne, Italy. 549, pp.129-140, 2014, 〈10.1007/978-3-319-05401-8_13〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00961165
Contributeur : Vincent Levorato <>
Soumis le : mercredi 19 mars 2014 - 15:29:35
Dernière modification le : jeudi 7 février 2019 - 16:18:47
Document(s) archivé(s) le : jeudi 19 juin 2014 - 11:58:19

Fichier

CompleNet-14-VL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Vincent Levorato. Core decomposition in Directed Networks: Kernelization and Strong Connectivity. Springer International Publishing. Complex Networks, Mar 2014, Bologne, Italy. 549, pp.129-140, 2014, 〈10.1007/978-3-319-05401-8_13〉. 〈hal-00961165〉

Partager

Métriques

Consultations de la notice

241

Téléchargements de fichiers

1428