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1 Introduction

Since the 70's and Lindblom's proposal to “derasggliage from non-language” (Lindblom,
1984, p. 78), phoneticians have developed a nurmbésubstance-based” theories. The
starting point is Lindblom’s Dispersion Theory (eihcrants & Lindblom, 1972) and

Stevens’s Quantal Theory (Stevens, 1972, 1989)¢clwhpen the way to a rich tradition of
works attempting to determine and possibly modek hghonological systems could be
shaped by the perceptuo-motor substance of spesumgnication. These works search to
derive the shapes of human languages from con&raiising from perceptual (auditory and
perhaps visual) and motor (articulatory and cogejti properties of the speech
communication system: we call them “Morphogenesiscdries”.

More recently, a number of proposals were introduce order to connect pre-linguistic

primate abilities (such as vocalization, gestumeastication or deixis) to human language.
For instance, in the “Vocalize-to-Localize” framewahat we adopt in the present work
(Abry & al., 2004), human language is supposedetave from a precursor deictic function,

considering that language could have provided eb#ginning an evolutionary development
of the ability to “show with the voice”. We callithtype of theories “Origins Theories”.

We propose that the principles of Morphogenesisofibe (such as dispersion principles or
the quantal nature of speech) can be incorporatddaaa certain extent derived from Origins
Theories. While Morphogenesis Theories raise qoestsuch as “why are vowel systems
shaped the way they are?” and answer that it indeease auditory dispersion in order to
prevent confusion between them, we ask questionh a8 “why do humans attempt to
prevent confusion between percepts?” and answeittbauld be to “show with the voice”,
that is, to improve the pre-linguistic deictic faioo. In this paper, we present a computational
Bayesian model incorporating the Dispersion andn@alarheories of speech sounds inside
the Vocalize-to-Localize framework, and show howalistic simulations of vowel systems can
emerge from this model.

In Section 2, we present the Morphogenesis andir@righeories on which we shall
concentrate our work, and in Section 3 we proposanaey of previous computer simulations
of the emergence of some properties of language fnteractions between artificial agents.
Section 4 provides all methodological details abmodels and implementations. Section 5
describes simulation results, from simple test €asenore realistic simulations dealing with
vowel systems in human languages. A discussionpamngpectives towards simulations of
more complex phonological sequences are propossdation 6.

2 Deriving Morphogenesis Theories from Origins Theories

In this part, we first expose the principles ofetaMorphogenesis Theories: the Dispersion
Theory (DT), the Quantal Theory (QT), and the Pgtioa-for-Action-Control Theory
(PACT). Then, we expose an Origins Theory that jples our framework: “Vocalize-to-
Localize”. Finally, we propose an integrating framoek to incorporate DT, QT and PACT
into “Vocalize-to-Localize”.

2.1 Morphogenesis Theories

Phonological systems are far from arbitrary comtioms of available phonemes, as showed
by the very limited number of phoneme combinationsuman languages, compared with the
total number of possible combinations provided bgiraple combinatory rule (Boé et al.,

2002). For instance, in the case of vowel systdmas we shall use as a test case in the



following, there is a strong bias in favour of 5aw systems in terms of vowel number, and
whatever this number is, most systems contain Ui éBoé et al., 2002). Morphogenesis
theories attempt to explain this kind of regularitgr this aim, they often propose to relate the
universal tendencies to the minimization of a gldwre characterizing some perceptual or
motor properties of a given system.

2.1.1 The Dispersion Theory

The first quantitative simulations of vowel inven&s are due to Liljencrants and Linblom
(1972), with their Dispersion Theory based on treximization of auditory distances. In this
framework, vowel systems tend to minimize the fiorct

n-1 n 1 2
o534
i=1j=i+ i,j
wheren is the number of vowels ardi; a perceptual distance between the vowelsd).
Various distances were considered. In their sempagder, Liljencrants & Lindblom first
considered distances in the (F1, F2) formant spaté, rather good predictions of vowel
systems. Particularly, this explained why /i a which are at the vertices of the vocalic
triangle in the (F1, F2) space, are present in mastd languages. F2 was then replaced by
F'2, a “perceptual formant” integrating in a nodar way the effects of F2 and higher
formants F3 and F4. Other auditory distances dyrecimputed on the whole spectrum were
also considered (Lindblom, 1986). Schwartz et E9{) later argued that an additional cost
related to local spectral preferences for “focalgts” with close values of either F1 and F2,
or F2 and F3, or F3 and F4, should be introducdtienpredictions (Dispersion-Focalization
Theory).

In 1986, Lindblom suggested to introduce an aréitarly cost in the optimization function
(Lindblom, 1990). Thus, this new version is notyooéntered on the listener’s interest (by the
maximization of perceptual contrasts), but alsalenspeaker’s interest (by the minimization
of articulatory effort). This lead to the “Adapti%ariability Theory” (also known as “Hyper-
Hypo”), in which the function to minimize becomes:
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where Aj; represents the articulatory cost between the phese andj. This allowed
Lindblom to simulate some effects of the numbevaivels on the distribution of sounds in
the vocalic space, with more extreme configuratitorssystems with a larger number of

vowels.

2.1.2 The Quantal Theory

In the Quantal Theory, Stevens (1972, 1989) propdtisat nonlinearities in the articulatory-
to-acoustic or acoustic-to-auditory transformatiosisape the phoneme selection. Such
nonlinearities may contrast regions where artiamatvariations produce small auditory
variations (stability regions, | and Il in Figufg, with on the other hand instability regions
where small articulatory variations lead to largaditory shifts (II). Stevens describes a
number of such potential nonlinearities, and arghes phonological systems might exploit
these patterns to set a contrast around instalvéigyons, with one phoneme in the stable
region I, and the other one in the stable regidnrégion 1l playing the role of a kind of
natural boundary for this contrast.
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Figure 1: Non-linearity in the articulatory to acoustic transfor mation (Stevens, 1989).

This is for instance the case when you start frani/avith spread lips (lip rounding being the
controlled articulatory parameter) and then pragjiedy round the lips towards /y/. While the
gesture at the beginning does almost not changsained at all, the shift from an [i]-like to

an [y]-like sound is quite abrupt, before a nevblgtaegion around the rounded [y] (e.g. Abry
et al., 1989).

2.1.3 The Perception for Action Control Theory (PACT)

PACT (Schwartz et al., 2002, 2007) is a sensoryamdteory of speech communication,
which attempts a synthesis inside the long histifrglebates between motor and auditory
theories of speech perception.

On the one hand, motor theories consider that bjects of speech perception are gestures
and not sounds, that is, the listener reconstihetsnotor gesture from the auditory percept
(e.g. Liberman & Mattingly, 1985; Fowler, 1986; kitman & Whalen, 2000).

On the other hand, auditory theories consider gspatch perception functions independently
of the way the speech stimuli are produced by ttieuwdatory system, hence there is no need
to incorporate any knowledge about speech produatithin speech perceptual processing
systems (e.g. Nearey, 1997; Massaro, 1987).

The Perception-for-Action-Control Theory claimsttttzere are problems in both approaches.

First, motor theories fail to provide efficient dretions about regularities of phonological
systems. Let us take an example in oral vowel systdhere are basically three degrees of
freedom for producing oral vowels: height, frontkaosition, and rounding. This results in a
3-D articulatory space, illustrated in Figure Z2aitllwa shrinking of the space for open
configurations, for which the front—back and rourgddimensions play a less important role).
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Figure2: (a) Thearticulatory three-dimension space of oral vowelstogether with (b) itsauditory
projection (Schwartz & al., 2007)

What would be the best three-vowel system in thece? The system /i a u/ is a very good
choice, in terms of articulatory dispersion, anid indeed present in most world languages, as
said previously. However, /yw/ provides as good a choice. It combines articoyateatures
differently, but the difference cannot be assesseatticulatory terms. However, this second
system never appears in human languages. The réastins is obviously an auditory one.
Auditory perception is a kind of lateral projectiohthis 3-D space, in a 2-D (F1, F2) space
(Figure 2b) in which [i u] is of course much betfer terms of dispersion) than fy]. The
prevalence of /i a u/ and the absence of ty/aclearly shows that gestures are shaped by
perception.

On the other way round, auditory theories havaeatiffies to explain a number of phenomena
where speech production leads to principled vditgbh speech stimuli (e.g. Fowler, 1986).
Let us take the example of the vowel reduction ph&mon that is the fact that listeners are
able to recover targets from coarticulated speeuwth garticularly from reduced speech.
Previous work showed that a stable articulatorgdtfa] can be recovered by acoustic-to-
articulatory inversion, in spite of acoustic vaiidp due to reduction in an [iai] sequence
(Leevenbruck and Perrier 1997). This suggests ti@nkers are able to recover the speaker’s
intentions, hence the need to introduce motor kadge in speech perception (see Schwartz,
2008a).

The PACT proposes a synthesis of the motor andt@ydviews (Schwartz et al., 2002,
2007). In this framework, the objects of speeclcggtion are neither purely auditory nor
purely motor. They are rather multi-sensory pereapgularized by knowledge of speech
production, or speech gestures shaped by percepgit@desses. This sensory-motor
conception also has neuroanatomical foundationsugir the so-called “dorsal route” of
speech perception in the human cortex, linking tapareas, considered as specialized in
auditory processing and audiovisual fusion, witligial areas, making the junction with
somatosensory representations and possibly witldalhphonological representations, up to
frontal areas (motor, premotor and prefrontal) emted with speech production and action
understanding (Hickok & Poeppel, 2000, 2007; Skipgel., 2007).

2.2 Origins theories: Vocalize to Localize

After a long period in the Twentieth century duriwhich the question of language origins



was considered as taboo or scientifically unsotinel,last twenty years have seen a strong
emergence of proposals and debates on this togshall not recall here all the elements of
this debate. The present book is largely devotesutth discussions, for example about the
gestural vs. orofacial precursors of human langusige shall only recall here some basic
aspects of the “Vocalize-to-Localize” framework {ket al., 2004) that provides the selected
background for the present work.

Deixis is the ability to show to a partner somebodysomething in the surrounding world.
Deictic abilities have been observed in monkeys apeks, involving both the orofacial and
manual systems (the voice and the hand), as sh@yvimdhe contributions by Zuberbuhler et
al., and Hopkins et al. in the present volume.ha Yocalize-to-Localize framework, it is
assumed that pointing is a precursor of languagergence, providing some bootstrap to the
derivation of language from non-linguistic commuatige abilities in phylogeny. It is
furthermore proposed that pointing allowed a cotinoecbetween the hand and the mouth,
vocalizations enabling to “show with the voice” distance, as is the case for alarm calls.
Language would have thus emerged from the podgibili“localize by vocalizing”.

From an ontogenetic point of view, developmentatigs clearly show the importance of the
coordination between manual and vocal actionsendigvelopment of language (see \olterra,
this volume) and particularly the link between pimig gestures and vocalizations appearing
just before the primary syntactic acquisition o tiwo-words sequence (Goldin-Meadow &
Butcher, 2003; Volterra et al., 2005).

Another important component of the “Vocalize-to-bBbze” framework is that the emergence
of a vocal communication system would have requmadefficient system for producing
contrastive vocalizations. This is the point whigre connection is done with MacNeilage and
Davis’s Frame-Content Theory (1998, 2000) derivinig ability from mastication, the jaw
playing a crucial bootstrap role for producing @#nt modulations, naturally swapping
consonants and vowels (see MacNeilage, and Dalis, iolume). Finally, the role of
perceptual shaping of speech gestures, in the xtooit¢he previously described “Perception-
for-Action-Control Theory” (PACT) is considered @ssential for efficient communication.

Thus, in the Vocalize-to-Localize framework, langeawould build up around three basic
components (see e.g. Abry & Ducey, this volume v&ote, 2008b):

e a hand (and a pointing and joint attention systenshow the world and produce
meaning,

e ajaw (and a system for the production of orofaa@ions) to achieve vocal
modulations and naturally and efficiently swap @orents and vowels,

e an ear (and an eye, both connected to an audidystzeption system) for structuring
the sound flow into intelligible perceptual units.

2.3 Anintegrated framework

We claim that Origins Theories should encapsulaterpfiogenesis Theories. While
Morphogenesis Theories explore the conditions plingi an efficient perceptuo-motor
system for sound communication (“how to communiegteOrigins Theories enable to
embed these conditions into a rationale for comuation (“why communicate?”). Instead of
explaining the universals of human languages byemoless ad-hoc constraints, the aim is to
derive universals directly from possible pre-lirgjid functions (Figure 3). This is the purpose
of the present work, in which we intend to show heowociety of interacting agents, equipped
with some pre-linguistics deictic abilities, couket language emerge, display some of its
universal tendencies and analyze its behaviouel@ion with some principles of the three
Morphogenesis Theories described previously.
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Syllable

Mastication

Pre-linguistic abilities (Origins Theories)

Interactions between pre-linguistic abilities

A1

Language emergence from prelinguistic abilities, allowing
principles of Morphogenesis Theories to emerge

Figure3: Principles of Morphogenesis Theories can emerge from Origins Theories
[DT : Dispersion Theory (Lindblom, 1972); QT : Quantal Theory (Stevens, 1989) ; PACT : Perception for
Action Control Theory (Schwartz & al., 2007)]

3 Computational models of language emergence in a

society of interacting agents
The pioneer studies by Steels in the middle 90 &eels, 1996, 1997) opened the route to a
new area of computer simulations towards “evolwrgn linguistics” in which some
properties of language should emerge from compmutaki interactions between
communicating artificial agents. Importantly, theraction paradigms in these simulations
intrinsically combine the “why” and the “how” quests: agents interact in some way, for
some reason and through some means that the pnogramust define, explain and hopefully
relate to an evolutionary scenario.

According to Steels (2006), four steps are involwesetting up computer simulations:

1. Hypotheses about a link between pre-existing cognitnechanisms and external
factors and the emergence of a specific languagare

2. Computational operationalisation of these mechasismo “simulated agents”
endowed with these processes.

3. Definition of an interaction scenario, possibly ewtbed in some simulation of the
surrounding world, and hopefully capturing critipabperties for communication.

4. Experimentation with computer simulations lettirtte tfeatures of interest emerge
through interactions between agents.



Steels makes it clear that “this still does not pranything about human language evolution
because there may be multiple mechanisms to hamellsame communicative challenges, but
at least it shows a possible evolutionary pathway”.

A number of studies were published along theseslinghe past ten years, with a very wide
spectrum of features of interest. Most of these ewéocused on lexicon sharing,

compositionnality, grammar emergence, or symboligding. Very few were concerned with

the emergence of segments and phonology. For mestamorks about lexicon sharing, that
study how a consistent word-meaning map can emniargesociety of agents, often consider
the word as an abstract object not linked to ddiony and auditory features (Kaplan, 2000,
2005; Griffiths 2005). Let us mention however threkevant precursor works dealing with
the emergence of a phonetic code, generally limdedwels.

Glotin, Berrah and colleagues (Berrah, 1999) predoghe first studies involving
communicating sensori-motor agents. In the inteacparadigm they considered, agents
attempt to converge towards a coherent acoustie twmdugh an attraction-repulsion process
involving vocalic items. Initially, each agent hadixed number of items, corresponding to
random points in the vocalic triangle. Then, agdntseract by pairs, the speaking agent
randomly selecting an item in its lexicon and prdg it, and the listening agent perceiving
the item and comparing it with its own set of ptgp®s. The closest item in this set is brought
closer to the perceived sound, according to aaditm principle, while the other items are
moved away, according to a repulsion force. Thistey, closely related to Lindblom’s
Dispersion Theory, predicts the main trends of huwawel systems for a fixed number of
vowels. However, it introduces a rather ad-hocaation-repulsion principle which is not
directly interpretable in terms of pre-existing nagiye function in an evolutionary scenario.

The simulations by de Boer (2000) are more explitithis respect. De Boer considers a
population of agents able to produce and percemwels in a reasonably human-like
plausible way. Perception is categorical: an adousignal is perceived as the nearest
category in an agent’s repertoire. Interactiondasda on so-called “imitation games”, hence
imitation is the driving force in this work (seerfa@i and Fogassi, this volume). Within an
imitation game, one agent selects a vowel fromegertoire, and the other agent attempts to
imitate it through vowels of its own repertoire.eTgame may be successful or not, depending
on the proximity of the speaker’s target and trsteher’s imitation. Depending on this
outcome, the participating agents update their rtepe, so that the expected success of
subsequent imitation games is increased. Integdgtinthe number of items in a given
repertoire is not fixed: an agent may borrow thensbfrom another agent in case of a too
large perceptual distance between a target andatjemt’s repertoire. There is a good
agreement between simulations and data on vowtdragsn human languages, including the
possibility to predict the preference for five-vdwgstems, as in human languages.

This work was further extended by Oudeyer (2005p vattempted to reduce as much as
possible the set of cognitive mechanisms necedsamowel systems emergence. Indeed, de
Boer’s work still incorporates rather ad-hoc asstioms about the ability of a pair of agents
to decide whether a game is successful or not. yaudeoposed a number of simulations in
which agents are equipped with sensory-motor magsed on Kohonen’s maps (“Self
Organisation”, Kohonen 1981, 1995) and are abldtpt their own map towards the sounds
they capture from their partners.

This results in very interesting sensory-motor dimgpalgorithms, and Oudeyer shows that
these algorithms enable to converge towards systemmpatible once again with the main
trends of vowel systems in human languages. Furibiey, the evolutionary scenario is now
rather clear: perceptual resonance drives conveegddotice that, though Oudeyer claims



that imitation per se is not involved, this is iacf related with something like implicit
imitation, in which an agent captures a sound amahges its perceptuo-motor repertoire
accordingly.

However, none of these works incorporate a cleawan to the “why communicate?”
guestion. The basis of our answer is the Vocalizkecalize framework, providing us with a
plausible evolutionary route towards language eprag. For this aim, we propose that
agents interact in what we call “deictic gamestpwing an interaction loop between two
agents and objects from the environment. The nestian first describes the deictic game
concept as well as the agents and environmenttgtajcand then proposes a Bayesian
modelling of these principles.

4 Modelling
4.1 General principles

4.1.1 Deictic games
According to the Vocalize-to-Localize framework, wedel a society of agents able to:

e produce vocalizations (as a first step, we shalhsm®er only one articulatory
parameter, then use a realistic model, VLAM (Bo#&eda, 1997)),

e perceive vocalizations (as a first step, we shafiscder only one acoustic parameter,
then use a realistic model, with formants),

e focus their joint attention on objects in their gaament (two agents in front of the
same object identify it in the same way: hence,pwsit the existence of a visual
categorisation process, that is not yet implementedhe present state of the
simulations).

Thus, sensory-motor agents evolve in an environrfidedl with objects they can identify.
Over time, they randomly meet in pairs in fronaof object O. They then proceed to what we
call a “deictic game”, where one agent has a spestlatus, and the other one has a listener
status (Figure 4). In order to “show with the vditles object, the speaking agent proposes a
vocalization by achieving a motor gesture M. Thetgee is transformed by acoustic and
auditory processes into a sensory percept S, petdy both agents. Deictic games occur in
succession over time, each agent randomly takihgrea speaker or a listener status.

anakpr qutpnpr

5?

Figure4: A deictic games between two agents

4.1.2 Agents knowledge
During each deictic game, the agents can updaitekim@wledge state in the following way. If

10



the agent is a speaker, it can update its knowlediget the relation between the considered
object O and the motor gesture M associated td/ét.call this (O,M) relation the Speaker
Model. If it is a listener, it can update the knedde about the relation between O and the
sensory percept S associated to it. We call thiSY@lation the Listener Model.

Concerning the relation between motor gestures d/lsemsory percepts S, we assume that the
agents possess an internal model able to predicsdbnd and hence the percept that should
be produced by a given motor gesture. This kindrtitulatory-to-acoustic efferent copy is
known to be part of the human cognitive abilitiEsith, 1992), and proposed to be consistent
with the mirror neuron system found in monkeys @laani, 2005). We call this (M,S) relation
the Efference Copy Model. It is supposed to be nledrom previous sensory-motor
exploration of the external physical system thatstvall describe now.

4.1.3 Sensory-motor systems

Sensory-motor systems establish how the vocal staape given by the motor configuration
M physically transforms into a sensory percept Byolving acoustical and neural
transformations. In the present study, we use tifflerdnt systems.

As a first step, we will consider a trivial 1-D semi-motor system with one articulatory
parameter and one acoustic parameter, to estdbbsbasic principles of the simulations (for
instance, the role of a nonlinearity in the M tad&sformation). Then, we shall use a realistic
system modelling the vocal tract, tWariable Linear Articulatory Mode{VLAM) which is a
version of theSpeech Maps Interactive Plag8MIP, Boéet al, 1995) that integrates a model
of the vocal tract growth. The core of the SMIPais articulatory model (Maeda, 1989)
delivering sagittal contour and lips shape fromesevwnput parameters which may be
interpreted in terms of phonetic commands, andespely correspond to the jaw)( the
tongue body TB), dorsum TD) and tip {T), the lip protrusionl(P) and separation height
(LH), and the larynx heightk) (Figure 5). The area function of the vocal trigcéstimated
from the midsagittal dimensions with a set of ceoefhts derived from radiographic
measurements and tomographic studies. The fornaadtshe transfer function are calculated
from the area function, and a sound can be gemkritan formant frequencies and
bandwidths.

Sagittal function

|
area (om?)
]
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Figure5: The VLAM interface. a) Articulatory part: avocal tract shapeisgenerated from the seven
articulatory commands; b) Acoustic part: from the area function (top right), the spectrum of the vocal
tract transfer function is computed (bottom right) leading to for mant values positioned in the (F1, F2) and
(F2, F3) spaces (l€ft) .

In the trivial 1-D system, we consider that thetges M produces a sensory percept S in a
deterministic way. For this aim, we defingarceptfunction linking the motor parameter M
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and the sensory parameter S. We use this functontrbnsforming the motor gesture
produced by the speaking agent into the sensoleptheard by the listening agent during
deictic games, possibly adding environmental noise.

In the VLAM system, as we have seen, an articyatmmmand defines an area function
which delivers a sound together with its acousiitriants. These should then be transformed
into some adequate perceptual representation (sdénee et al., 2005, for a discussion
about realistic perceptual and motor representatiminspeech gestures in an articulatory
model). For the need of reducing the complexityhef simulations, we use only three motor
parameters, the tongue bodyBj, dorsum TD) and the lips separation height (LH),
everything else being set to a neutral positionis Tdllows to provide a realistic vocalic
triangular space in the plan of the first and theosid formants. We then consider that the
motor gesture M is transformed into a sensory ger8en a probabilistic way, because of the
discretization of the motor command space. Thuseézh 3-D motor command region, we
compute the mono-modal 2-D distribution of the tedlasensory percepts in the formants
plan. This provides a P(S|M) conditional distribati that we use for drawing the sensory
percept heard by the listening agent given the mgésture produced by the speaking agent
during deictic games. We also test the effect obiporating environmental noise, by adding
randomAS values drawn from a Gaussian distribution.

For sake of simplification, we assume that therimdk Efference Copy Model described in
Section 4.1.2 and the external system described bexr one and the same model. The
hypothesis is hence that the agents are able feqtlgrlearn the relation between gestures
and percepts and that exhaustive learning hasdgireecurred for each agent in a previous
phase, not considered here. Thus, in the caseedif- trivial system, we assume that agents
know theperceptfunction. In the case of the realistic VLAM systeme assume that the
agents know the P(S|M) conditional distribution.

To summarize:

* The sensory-motor system defining how the motorfigaration M physically
transforms into a sensory percept S, involving atioal and neural transformations, is

0 deterministic in the 1D case: S=percept(M),
0 probabilistic in the VLAM case due to motor spacktisation: P(S|M).

» The Efference Copy Model allowing the agent to ptethe corresponding percept S
of a given motor gesture M corresponds to the kedge by the agent of:

o the percept function in the 1D case,
o the P(S|M) distribution in the VLAM case.

* During communication in a Deictic Game, a Gaussiaise can be added to the
sensory-motor system.

4.2 Bayesian modelling

Our modelling is based on the Bayesian Robot Progniag paradigm (BRP) (Lebeltel & al.,
2004). This method aims at specifying the behaviotirsensory-motor agents in the
framework of the Bayesian probability theory. Thiows to clearly express both the
hypotheses and the lack of knowledge about whabisontained inside the hypotheses set.
Operations about knowledge are made by means oédiay inference. Moreover, this
paradigm provides a clear mathematical framewas&ble in order to analyze the outcomes.
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4.2.1 Mathematical requirements

BRP is based on a few simple rules from the prdiabheory that we quickly recall here
under.

The product rule [R1] (or Bayesrule) allows to express a joint distribution as a prachfc
elementary distributions:

P(A B)=P(B).P(A|B)=P(A).P(B|A)

The normalization rule [R2] expresses the fact that the probabilities of esible cases
sumto 1:

D> P(A)=1
A
The marginalization rule [R3] is derived from [R1] and [R2] and is also frequgnised:
> P(AB)=P(B)
A

Given these rules and a set of variables V, wetlban express all conditional distributions
over the variables in V as a function of the jadrgtribution P(V). Typically, V is separated
into three disjoint sets: the searched variabldhe&Sknown variables K, and the free variables
F. The aim is then to compute the probability disttion over the search variables, knowing
the known variables, that is P(S|K). For instanbs, could serve a robot in order to answer
the question “knowing the value of a few sensorgialdes (known variables K, given by
sensors), what is the probability distribution owey motor variables (search variables S,
corresponding to the robot commands)?”. In thie ctige free variables F could correspond to
the unspecified sensory variables, or to interaailables unobserved.

Let us suppose that the robot is able to compugdinmt distribution P(V)=P(S K F). It can
then answer any question P(S|K) using the follovergression (derived from [R1], [R2] and
[R3]):

Equation 1:
> P(S,K,F)

P(SlK):ZF:P(S,K,F)

In this mathematical framework, the BRP method iwe® two phases. The first one is

declarative and describes the model of a cognitigent. In this phase, the programmer
defines the knowledge, relevant for the domaint tha agent refines through parameters
learning, in order to compute the joint probabiliigtribution over the variables of interest

(typically, motor, sensory and internal variablésh® agent). The second one is procedural
and describes the agent behaviour. In that phaseagent uses its knowledge (the joint
distribution) to compute any conditional distritmutiover its variables (for instance, what is
the distribution over my motor variables, knowing sensory variables).

4.2.2 The inference model (declarative phase)
We choose four variables of interest for each agetite society:

e Osrepresents the objects in front of which the agantbe in a speaker status,
e M represents the motor gestures that the agenrcaiuce,
e S represents the sensory percepts that the agepeceeive,
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e O, represents the objects in front of which the agean be in a listener status
(typically the Q domain is the same as the @he).

In order to compute the joint distribution (M, P, Q), we use Bayes rule [R1] to
decompose it in a product of simpler terms:

P(Gs M, S, Q)=P(Cs).P(M| &;).P(SIM, @Q).P(Q |S, M, Q)

Then, using general principles described in Sectidnand making conditional independence
hypotheses, we specify each of these terms. Thus:

e P(Oy) is uniform (considering that objects are equiaitab in the environment)

e P(M| Os) corresponds to the Speaker Model and so carabet ey each agent when it
is a speaker during deictic games. We consides ia &aussian distribution family
(one for each ©value). Learnt parameters are megns and variances/,_, re-

estimated after each deictic game.

e P(S|M,Q) is simplified into P(S|M), by considering thatisSentirely defined by the
knowledge of M. This distribution corresponds te tifference Copy Model and so is
supposed to be known by the agents. As a first, stefhe 1-D simplified sensori-
motor system (section 4.1.3), we consider it agrd@histic, and hence defined by a
Dirac distribution: P(S|M)=1 if S=percept(M), 0 etiwise. Then, using the realistic
VLAM sensory-motor system, we shall consider itaafixed Gaussian distribution
family, previously learnt by discretised motor spaxploration.

e P(Q]|S,M,0) simplifies in p(Q|S), considering that the listener estimates thecbb
entirely from S, as M and are not directly accessible to the listener. This
distribution corresponds to the Listener Model anctan be learnt by the agent when
it is a listener during deictic games. Using the&arule [R1], and considering R(O

P(SI0,)

as uniform, we haveP(O, |S) = =———.
P(SIO,)
OZL ]

P(S|Q) is considered as a Gaussian distribution fanaihe(for each Qvalue). Learnt
parameters are meapg, and variancey, , re-estimated after each deictic game.

Thus, we obtain the following simplified expressiointhe joint distribution, schematized on
Figure 6:

Equation 2:
P(Os,M, S,0,)0P(M|Og).P(SM).P(O, |S)

P
where P(O, |S) = ZBIo)
Y P(S|0,)
O,
Os O.
Listener model
g?ﬁﬁokse)r modei T P(QJS)

M —— S

Efference Copy model
P(SIM)

Figure6: Joint distribution structure of an agent.
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Given this joint distribution, each agent is alWecompute any conditional distribution over
the four involved variables, using Bayesian infeenA conditional distribution is called a
“question” to the model. Note that the two term@d4p and P(S|M), are constant over time,
and the two others, p(MKD p(Q.|S) are learnt by the agents. Thus the joint thgtion
evolves during deictic games. The following subsecexposes three distinct behaviours that
we elaborated for the agents, depending on howphaker selects a motor gesture in front of
an object, that is depending on which questiosksdo its joint distribution.

4.2.3 The interaction behaviours (procedural phase)

Here, we expose several behaviours for the agdnthware, as we shall see later, more or
less likely to lead to a common speech code betvagents. A behaviour is defined as the
way the speaker selects a motor gesture in fronarofobject during deictic games. In
probabilistic terms, this corresponds to the disiiion according to which it selects the
variable M, that is the question it asks to the elatkescribed previously. We present three
behaviours increasing in complexity: the reflexdagbur which takes into consideration only
the Speaker Model, the communicative behaviour wkignsiders only the Listener Model,
and the hybrid behaviour which takes into accowti bhe Speaker and the Listener Models.

4.2.3.1 Reflex behaviour

In this first behaviour, the speaker takes intostderation only its Speaker Model. Therefore,
in front of an object pit selects a motor gesture M according to thé&ibdigion P(M|Q=0)).
Thus, the agent simply selects motor gesturesitha@s already produced in front of the
corresponding object, in a kind of “reflex” moodithmout taking into account the listener’s
expectations. We shall see that taking into accouiyt the speaker’s interests cannot lead to
the emergence of a common speech code betweegehtsa

4.2.3.2 Communicative behaviour

This behaviour consists, for the speaker, of attepnds much as possible to the listener’s
expectations, by taking into consideration thednstr Model. Actually, in a deictic game, the
speaker selects a motor gesture which would hdveed himself tdnfer the correct objett
Therefore, in front of an object oi, the speakerkseto maximize the probability P(€o|M)
over M. In fact, according to Equation 1 and Equa® we have:
Y 0u.s P(M | Og).P(S | M).P(O;, = 0; | 5)
Yog.s0, P(M [ 0g).P(S| M).P(O | S)
o Zos PM[05). Xs PS | M).P(OL = 0| 5)

Yog P(M | 0s). Zs (P(S | M). o, P(OL | 5))
x Y P(S|M).P(O, =0,| S)

|IP(Op =0, | M)

Thus, the speaker selects a motor gesture prodacipgrcept which should have the best
communicative value. For example, in the 1D caserP(S|M) is a Dirac distribution, we

have P(S|M).P(O, =0, |S) =P(O, =0, | S= percep(M))

! It is worth noting that it is exactly what achiewiae deictic function: pointing consists of
producing a hand gesture which produces a visuatpe(by following the finger direction)
which corresponds to the pointed object.
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4.2.3.3 Hybrid behaviour

This behaviour seeks to maximize both the motor sesory qualities of the speaker’s
gesture by satisfying both the Speaker and theehest Models. Thus, the speaker selects a
motor gesture which it has already often selectedHe object, and which in the same time
would have allowed itself as a listener to eadilfeii it. Hence, in front of an object oi, the
guestion asked to the model is P(Mf® O,= g), which can be decomposed into:

Ss P(M | Os).P(S| M).P(Or, =0; | S)
Sars P(M | Og).P(S | M).P(Oy, | S)
ox P(M|0s).Y P(S| M).P(OL=0;|5)

P(J[ ‘ ()u = Ou()L = O;) x

Therefore, it can be seen that the speaker sedeetstor gesture according to a distribution
which is the product of those of the two previowhdwiours. This behaviour could thus
model the relation between production and percepticspeech, where a gesture is selected
both for its motor and sensory qualities, as in PASection 2.1.3).

Interestingly, the question asked in the Hybridaabur, P(M|Q=0, O_.=0), allows to unify
the three behaviours into a coherent framework,dl®abling either the Speaker or the
Listener Model. Disabling a model consists in setii to a uniform distribution. Thus:

The Reflex behaviour corresponds to the questivi|®=0; O, =0) where the Listener
Model is disabled, that is P(QS) is considered as uniform by the speaker.igncdsse:

P(M|Os=0,0p =0,) o« S P(M|Os).P(S| M)
S

The Communicative behaviour corresponds to the topued$(M|G=0; O.=0) where the
Speaker Model is disabled, that is P(M)|@ considered as uniform by the speaker. In this
case :

P(M|Og =0, 0 =0;) x Y P(S|M).P(Op =0;|85)
S

In the Hybrid behaviour, no model is disabled.

The next section describes the functioning of thbebaviours, and their link with the
Morphogenesis Theories introduced in Section 2.

5 Results

5.1 Technical details

Each simulation is run for a given number of ageéwis a given number of objectsoNa
given behaviour B (either Reflex, CommunicativeHybrid), a given sensory-motor system
SM (either 1D or VLAM, see 4.1.3) and during a giveumber of deictic gamesgNFor each
deictic game, we uniformly draw one speaker ageng listener agent (different from the
speaker) and one object. Then, the speaker agawsd motor gesture M in a domag
according to the behaviour B (see 4.2.3 above Her dorresponding distribution of each
behaviour). This gesture is transformed into a @gnpercept S in a domains@ccording to
the sensory-motor system SM, that is according foeeptfunction in a deterministic
manner in the 1D case, wherg,@2nd Ik are unidimensional or according to a P(S|M)
distribution in a probabilistic manner in the VLAb&se, where p is 3-dimensional (Body,
Drsm and LipH, see 4.1.3) ands 3 2-dimensional (first and second formants). Agsan
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noise with a standard deviation SD is added to &dimension, expressed as a percentage of
Ds range.

In the 1-D case, we define the percept functiom aggmoid (considering that ;M= -Mmax
andSnin= -Snax for simplification):

5 mar — 5 min

percept(M) =

.arctan(NL.(M — D))
2. arctan (NL_—"‘fm.t-;-"lfmm ) ' ' ’

where NL is a non-linearity coefficient (when NLpmpaches 0, percept can be considered as
linear; it increasingly draws away from linearith@&n NL increases) and D is the position of
the inflection point. The aim will be to analyseethffect of a non-linearity on the common
speech code, with regard to the Quantal TheoryrEig proposes four percept functions for
different values of NL and D.

a) b)

c) d)

Figure 7: percept function for a) NL=10"°, D=0 (linear case); b) NL=1, D=0; c) NL=1, D=-10; d) NL=1,
D=10.

At the end of each deictic game, both the speakeiiatener agents update their knowledge,
that is the P(M|g=0) gaussian distribution for the speaker and the £¢)p gaussian
distribution for the listener,;deing the object involved in the deictic gametidtly, each
distribution is set with the means and variancésutated from a uniformly drawn sample of
Np points (generally M=1000), each with a weight set to 1. Then, durimg deictic games,
distributions are updated by adding a new poirthensample with a weight corresponding to
a percentage F of the total weight of the samphesTall the values from the beginning of the
simulation are taken into account with an incregsireight for the more recent ones. F is
called the forgetting coefficient (generally setdtd) because the higher it is, the lower the
influence of the oldest values.

During the simulation, we compute what we call timelerstanding rate in the society. This
corresponds to the percentage of successful degjatites during the \Nlast deictic games
(generally Ni=1000). A successful deictic game correspondsdarae in which the listener
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was able to correctly infer the involved object jixtem the sensory percepprovided by the
speaker, using the question P[®s). We display the understanding rate during a satirh
in order to evaluate the ability of a behaviouletad to a common speech code.

To summarize, for each simulation we shall proadeet of parameters which define it:
e Na: the number of agents,
e No: the number of objects,

e Ng: the number of deictic games (thus correspondingthte duration of the
simulation),

e B: the behaviour of the agents (either Reflex, Camicative or Hybrid),
e Dy, Ds: the domain of M and S, respectively.

e SM: the sensory-motor system, transforming the mgtsture M emitted by the
speaker into a sensory percept S (either throudgterministic “percept” function in
the 1D model, or through a probabilistic P(S|M}riiition in the VLAM model, see
4.1.3),

e NL, D: the non-linearity coefficient and the poaiti of the inflection point of the
percept function, provided only if SM=1D (in the XM case, P(S|M) is provided by
the VLAM model as explained in 4.1.3),

e SD: the standard deviation of the gaussian envieotat noise, added to each S
dimension (expressed as a percentage of Ds range),

e F: the forgetting coefficient, defining the weigiftnew values compared to old values
in the updating of the P(M|O) and P(P|O) distrito,

e Ny: the number of the last deictic games used forprding the understanding rate.

5.2 Simulations

Here we expose and analyse the results for the thedaviours described previously. The
simulation window in which we observe these resigltdisplayed on Figure x. In the upper
part, there are as many windows as agents in thelaion. In each of these windows, there
are as many gaussian curves as objects in the aionl Thus, each gaussian curve
corresponds either to the P(MD;) or to the P(S|(3=0) distribution for a given;at the end
of the simulation, according to what we want toevle (specified on the figures). The lower
part of the simulation window corresponds to theletion with time of the understanding
rate in the society of agents, as it is definedipresly.

We consider that a common speech code emerges thbeR(S|Q) distributions are both
different and well separated from one object to éleer, and similar from one agent to
another. A consequence is a high value of the siaiedling rate in the society, which ensures
that one agent is able to correctly infer the dbjeen a sensory percept provided by another
agent.

5.2.1 Results for the 1-D sensory-motor system

These simulations are run with SM=1Da®M, Ns=150 000, [y=Ds=[-20,20], SD=0.01,
F=0.1, N;=1000. The other parameters are provided in thediglegends.
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5.2.1.1 Reflex behaviour
Results about the Reflex behaviour are displaygdrEi8.

Agent 1 Agant 2

S oot 0.005 A0
& ; & 7NN
1] a =

20 -10 a} 10 - -

=
Agent 3

Undergtanding rate
|

.
0 50 100 150
Deictic games {x 1000)

Figure 8: Simulation resultsfor B=Reflex, No=4, NL=10" (linear Percept function), D=0.

We observe that the P(S)Qistributions are neither separated between thjgar coherent
between agents. Indeed, the agents draw gestuatsirth already often drawn for a given
object (by drawing according to the distributionMfDs=0)) for a given g see 4.2.3.1),
without taking into account the listener's expeotet. Thus, distributions stay around their
initial values and deictic games cannot lead to éheergence of a common speech code
between the agents. In consequence, we observehthainderstanding rate in the society
stays around chance level, which is 25% for foyects.

5.2.1.2 Communicative behaviour

Results about the Communicative behaviour witmadrPerceptfunction are displayed on
Figure 9.
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Figure 9: Simulation resultsfor B=Communicative, No=4, NL=10" (linear Percept function), D=0.

We observe the emergence of a common speech cowedmeagents. Indeed, during the
simulation the agents converge towards similar@(Sfistributions, very different from one
object to another. In consequence, the understgmdte in the society reaches around 80%. It
does not reach 100% because, as we observe, thaebit of overlapping of P(S|D
distributions.

This fits quite well with predictions of the Disgegsn Theory, observing that the means of
P(S|Q) distributions seem to be scattered rather evesitly a trend of maximal dispersion
between percepts. Actually, it seems possible tovsthat the Communicative Behaviour
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should converge towards a state in Wh@% P(S|0O,) approximates a uniform distribution,

which results in a principle of maximal dispersitmdeed, let us consider a simple case where
S=M (Percept is the identity function). The selected motor gest then
P(M|O,)
> PMIO,)
of M values according to this distribution does matange dramatically the P(M|O
distributions. This results in having similar vaduer P(M|Q) and P(Q |M), that is when the
denominator ZO P(M |O,) approximates a uniform distribution. The solutisrto place

maximizeP(O, |M) = . After convergence, the system is stable if treevihg

the P(M|Q) gaussian distributions uniformly in the availaldpace, as realized by the
simulation in Figure 9 (though an analytical sofviof this optimization problem is not
trivial). This shows that the Bayesian frameworkety provides a mathematically link
between hypotheses from Origins Theories and opéitiein problems from Morphogenesis
Theories.

Considering the Quantal Theory, let us analyzeetfect of a non-linearity in th@ercept
function transforming motor gestures M into sengoeycepts S. Figure 10 displays how the
position of the non-linearity shapes the speecte dmetween agents (Figure 10a, Figure 10b
and Figure 10c correspond to percept functiongirs Figure 7b, Figure 7c and Figure 7d,
respectively). Indeed, we observe that shiftinggbsition of the non-linearity (by changing
D) results in shifting accordingly the boundaryvibe¢n gestures associated with objects, thus
producing categories driven by the nonlinearityifimss, as predicted by the Quantal Theory.
Moreover, the non-linearity allows to create a speeode with better quality (the
understanding rate reaches 100%).
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Figure 10: Simulation results for B=Communicative, No=2, SD=0.1, NL=1 (nonlinear Percept function)
and three positions of the nonlinearity, a) D=0; b) D=-10; c) D=10. Observation of the P(M|O_) for each

5.2.1.3 Hybrid behaviour

agent.

Results about the Hybrid behaviour are displaye#igare 11 for a lineaPerceptfunction:
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Figure 11: Simulation resultsfor B=Hybrid, No=4, NL=10" (linear Percept function), D=0.

We observe the emergence of a common speech cddedreagents. With respect to the
Communicative behaviour, adding the P(MH@) term in the distribution setting the
behaviour leads to reducing the variance of thecsetl sensory percepts in a conservative
manner. This results in a faster convergence anbetter code quality with 100%
understanding rates. Moreover, this behaviour keéps good properties of the
Communicative Behaviour with respect to both thepersion Theory (sensory percepts for
each object are dispersed, see Figure 11) andhatuantal Theory.

5.2.1.4 Conclusion for the 1-D sensory-motor results

We suggest that the hybrid behaviour is the mdstciive one in terms of both performance
and theoretical basis. On one hand, it provides fstest convergence and the highest
understanding rate. On the other hand, the questidhe joint distribution used for motor
gesture selection, P(M§S0,0.=0)=P(M|Gs=0)).P(Q.=0i|S=percept(M)), provides a
statistical implementation of a mechanism asso@atnotor gestures conservation and
sensory percepts dispersion. This is in line with Perception for Action Control Theory
developed in the last years for which gesturessalected for both their intrinsic motor and
sensory properties (see Schwartz et al., 2007).

5.2.2 Results for the VLAM sensory-motor system

Starting from this conclusion, we “embodied” thebhg behaviour into a realistic sensory-

motor system: VLAM, of which the motor and senseariables, as well as the P(S|M)

distribution definition were described previouslhe motor space is discretised into 1000
sections (10 for each dimension: Tongue Body, TenQorsum and Lips Height). For each
section, the P(S|M) distribution is provided byfarmly drawing 100 points in the section,

obtaining the associate percepts thanks to the VitAddlel and computing the corresponding
2-D gaussian distribution in the formant space.

We ran a simulation with the following parametdkg=4, B=Hybrid, SM=VLAM, Dy=[-
3,3F ([-3,3] for each parameter, according to the VLAddnvention, see Boé & Maeda,
1997¥, Ds=[2,7]x[6,14] (corresponding to the maximal vocalemant space for the given
motor parameters, in Barks), F=0.0%320000, N=100.

2 Actually, there are some configurations of theanspace which correspond to closed configuratiomigh
are not vowels and for which formants cannot bemdaed in VLAM. Therefore we added a boolean variable
and a P(V|M) term in the joint probability distriilan in order to represent the fact that a motarfiguration
must correspond to a vowel.
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The noise added to each sensory dimension is ditmwna 2D Gaussian distribution with a

standard deviation set to 0.4 for F1 and 1,4 fo(de®ariances are set to zero). This roughly
corresponds to a 0.3 ratio between F1 and F2 nwisieh is conform to the estimated weight
ratio provided by Schwartz & al. 1997.

We then observe the distribution P(S|@or each agent, that is the distribution of sepso
percepts produced by the agent for each objectrepiesent it by a set of dispersion ellipses
(one for each object) with 1.5 standard deviation.

For an environment with three object £B), we observe that the agents select sensory
percepts at the vertex of the vocalic triangle, cluhcorresponds to the three mostly used
vowels in the world languages /a, i, u/ (Figure 12)
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Figure 12: Resultsin therealistic VLAM sensory-motor system with 4 agents and 3 objects.

For an environment with five objects ¢&b), we observe that the agents select sensory
percepts which correspond to the most used vosgditem in world language /i, e, a, o, u/
(Figure 13).
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Figure 13: Resultsin therealistic VLAM sensory-motor system with 4 agents and 5 objects.
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6 Conclusions and perspectives

In this paper, we show how principles of Morphogaselheories such as the dispersion
between selected sensory percepts, the quantattasipspeech, and the role of both motor
and sensory knowledge in speech production cangarissm the modelling of prelinguistic
functions provided by Origins Theory such as deikisr this aim, we define and implement
an integrating computational framework based ontiragient simulations in order to link
various works concerning the origins and the usiaisrof human language.

The next step in this work will consist in goingifin static vocalic configurations of the vocal
tract to more complex sequences. This will be adden connection with the Frame-then-
Content Theory developed by MacNeilage and Davi®@2 MacNeilage, 1998), providing
another ingredient inside Origins theories: the mfl jaw cycles that would be inherited from
mastication, and involved as a bootstrap for cdliigp modulations of vocalisations for
orofacial communication. For implementing the Fraimen-Content Theory in our
computational framework, we shall use the Jaw mpavameter of VLAM in order to induce
a mandibular cycle in the agents vocalisations. Mipe to show that acoustic/auditory
nonlinearities shape the simple jaw rhythmic agtivin a quantal pattern, achieving the
generation of alternations of vowels and consonants simple way both developmentally
plausible and functionally efficient. Then we prdhat bilabials, dentals and velars (e.g. [b
d g]) provide an optimal system in terms of auditalispersion, provided that they are
embedded in this developmental framework, pharylsgehough auditorily salient, being
eliminated by their high jaw configuration incomipé with the Frame-Content scenario
(Abry, 2003; Schwartz & Boé&, 2007).

In a broader perspective it must be acknowledged the deictic function cannot be
considered as more thanbaotstrapfor the emergence of a communicative system. Other
ingredients could be incorporated in a further séeg. pantomime or other kinds of referent
orofacial or bracchiomanual gestures (Arbib, 20pd3sibly extending deixis towards what
could be conceived as a “super-deictic” abilityetmke objects, agents and actions through
gestures in various modalities.
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