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Abstract

An algorithm for speaker’s lip contour extraction is pre-
sented in this paper. A color video sequence of speaker’s
face is acquired, under natural lighting conditions and with-
out any particular make-up. First, a logarithmic color
transform is performed from RGB to HI (hue, intensity)
color space. A bayesian approach segments the mouth area
using Markov random field modelling. Motion is combined
with red hue lip information into a spatiotemporal neigh-
bourhood. Simultaneously, a Region Of Interest and rele-
vant boundaries points are automatically extracted. Next,
an active contour using spatially varying coefficients is ini-
tialised with the results of the preprocessing stage. Finally,
an accurate lip shape with inner and outer borders is ob-
tained with good quality results in this challenging situa-
tion.

1. Introduction

It is commonly observed that visual information provides
a precious help to the listener under degraded acoustical
conditions [1]. The motivation of the present work is to
extract visual information for automatic speech recognition
(ASR), videoconferencing and speaker’s face synthesis un-
der natural lighting conditions with few assumptions. Some
approaches proposed in this area are based on grey level
analysis (e.g. Luettin in [7]). Others use color analysis but
need to determine optimal values of some parameters (e.g.
Coianiz in [7]). A wide range of papers describe the ap-
plications of active contours for lip boundary detection but
often focus on inner (e.g. Petajan in [7]) or outer lip con-
tours only, rarely both.

Here, an algorithm is proposed for inner and outer lip
contour tracking under natural conditions, the requirement
being that a micro–camera is mounted on a light helmet
worn by the speaker so that it is fixed w.r.t. the head. The
RGB video sequence (8 bits/color/pixel) contains the re-
gion of the face spanning from chin to nostrils. The purpose

of the process is to obtain accurate inner and outer lip bor-
ders even if the mouth is closed. A Bayesian segmentation
[6] is used as an initialisation step for a snake convergence.

Figure 1: Context of lipreading: from sequence of speaker
images, lip tracking provide parameters for talking face syn-
thesis.

The cooperative scheme is divided into three stages:

� Preprocessing stage:
Logarithmic color-space transform,RGB to HI. Un-
supervised spatiotemporal segmentation of lip area
and mouth location estimation.

� Gateway: Mouth characteristics extraction:
Boundaries and semantic information from the seg-
mented lips. Mouth corners detection.

� Automatic Snake processing:
Snake initialization from preprocessing results. Con-
vergence of automatic snake (outer) and balloon
snake (inner).

This work is part of the Labiophone project (ELESA
Federation n. 8 (CNRS-INPG)), an advanced audio-visual



communication tool (Fig. 1). This project aims at providing
a very low bit rate coding communication system, integrat-
ing both audio and visual features.

2. Lip segmentation

2.1. Logarithmic color transform

Face features detection is often illuminance dependent. To
gain independence from lighting conditions, we compute
here a color transform for illuminant–invariant recognition.
Angular transforms give poor results in noisy conditions
(mono-CCD camera). Therefore, a logarithmic hue trans-
form is defined usingG andB channels from theRGB
color space.

We compute the hue in a mathematical framework based
on a logarithmic image processing model [4]. The inten-
sity I of an image is represented by its associated gray tone
functioni =M(1� I

I0
). This model satisfies the saturation

characteristics of the human visual system and is justified
from a physical point of view. Specific algebraic and func-
tional operations are redefined in a vectorial structure. The
difference between logarithmic tone of the channelsG and
R corresponds to the logarithmic hue toneh. With few as-
sumptions (I0 close to the maximum value of whiteM ),
the logarithmic difference becomes a ratio betweenG and
R components. Finally, from theRGB color space, aHI
logarithmic color space is defined (Eq. 1) (Fig. 2).

H = 256�
G

R
and I =

R+G+B

3
(1)

Figure 2: Top: 5 images of a typical luminance sequence;
Bottom: the corresponding hue sequence.

2.2. Lip Hue Segmentation

2.2.1. Observations

To detect lip regions, motion information is combined with
red hue. From theHI color space, two kinds of observa-
tionso are derived (Eq. 2):h(s) consists in filtering the hue
valueH(s) at pixels with a parabola centred on the mean
value of lip hueHlip with a standard deviation of the hue

value�H ; fd(s) is defined as the unsigned difference be-
tween the luminance of two consecutive images.I(s) rep-
resents the intensity (or luminance) at pixels.

h(s) =

"
256�

�
H(s)�Hlip

�H

�2
#
� 1 jH(s)�Hlipj

�H
�16

fd(s) = jIt(s)� It�1(s)j (2)

The notation1condition denotes a binary function which
takes the value1 if the condition is true,0 otherwise.

2.2.2. Hue and motion estimation

Hue and motion parameters are estimated automatically. In
the previous work [6], these thresholds were determined be-
fore segmentation by hand. The hue observation needs three
parameters to be estimated:Hlip,�H , �h. For that purpose,
the hue histogram is a useful representation of the hue distri-
bution over the image. We can detect two main modes: the
first for the skin-lip face, the second for the background. In
natural conditions (no make-up), the lip mode and the skin
mode overlap (Fig. 3).

In order to estimateHlip accurately, the processing re-
spects the following steps:

� EstimateHskin from the hue distribution computed
over the whole image (Left of the Fig. 3), the only
assumption being that the main mode corresponds to
the hue skin.

� Cluster all pixels respecting the condition given in Eq.
2 withHskin instead ofHlip (Middle of the Fig. 3).

� EvaluateHlip from the hue distribution after discard-
ing all pixels belonging to skin mode. The remaining
are the lip mode (blackof the Fig. 3) and the back-
ground mode.

The threshold hue field is then defined byh > �h.

Figure 3: From left to right: histogram of hue image (In
black: overlap between lip and skin distribution); the corre-
sponding segmentation of skin hue (In black); histogram of
hue image when the skin mode is discarded (In black: the
lip mode).

The algorithm requires an appropriate threshold� fd to
suppress the camera noise without cutting significant tem-
poral changes. We compute here the entropyEfd(S) over



an image. The threshold motion field is then defined by
fd > �fd with �fd(S) = 2Efd(S).

The thresholded fields appear non homogeneous and
noisy. Therefore, we need a statistical relaxation to segment
more accurately the lips.

2.3. The Segmentation Algorithm

2.3.1. Observations and Labels in an MRF Framework

From these two thresholded observations, four initial la-
bels (a0,a1,b0,b1) are derived for coding four pixel classes:
pixels with (1) (resp. without (0)) motion, belonging (a)
(resp. not belonging (b)) to red hue areas. This label field is
supposed to follow the main MRF (Markov Random Field)
property related to aspatiotemporal neighborhoodstructure
(Fig. 4),i.e. the labells of the current pixells depends only
on the labels of its spatiotemporal neighborsn.
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Figure 4: Left: Spatiotemporal neighbourhood structure�
with binary cliquesc = (s; n). s is the current pixel (in
black), n is any spatiotemporal neighbour ofs (in gray);
Right: corresponding elementary cubeCxyt

Maximizing the A Posteriori probability (MAP crite-
rion) of the label field is equivalent to minimizing a global
energy function [3]:

W (S) =
X

o2ffd;hg

Uo(S) + �:Um(S) (3)

whereUo andUm represent respectively theattachment en-
ergies(expressing the link between labels and observations,
Eq. 4) and themodel energy(corresponding to spatial and
temporal a priori constraints) (Eq. 5) over the imageS, � is
a weighting coefficient between the two energies.

Uo(S) =
X
s2S

�
[os �  o(ls)]

2

2�2o

�
(4)

where o is an attachment function, mean value of the ob-
servationo over S and�2

o is the corresponding variance.
Both are estimated on line.

Thea priori model energy is defined as a sum of inter-
action potential functions over the neighborhood:

Um(S) =
X
s2S

h X
n2�(s)

Vst(ln; ls)
i

(5)

The spatiotemporal potential functionVst is defined as the
inverse of the Euclidian distance between two neighbors.
The distance integrates two elementary potentials�s and�t
as scale factors (Eq. 6).

Vst(ln; ls) =
�s(ln; ls)�t(ln; ls)q

�t(ln; ls)2
�
�2x + 4�2y

�
+ �s(ln; ls)2�

2
t

(6)

where
���!
(s; n) = (�x; �y; �t) and� 2 f�1; 0; 1g

The elementary potentials�s and�t are defined to con-
strain the model respectively to spatial homogeneity of la-
bels and temporal homogeneity of hue when no motion is
detected.

2.3.2. Results and ROI estimation

An iterative deterministic algorithm (ICM : Iterated Condi-
tional Modes) is implemented to compute the minimum en-
ergy at each site, starting from the initial label configuration
L0
t .

From lip red hue relevant labels, the ROI (Region Of
Interest) is evaluatedon lineby maximizing a cost function
�(S) on each image (details in [6]) after each step of the
relaxation. The ROI estimation reduces the relaxation time
by surrounding the mouth precisely. Moreover, it increases
the accuracy of parameter’s estimation.

After a few iterations (typ.10) on the label field, conver-
gence is achieved. One obtains homogeneous red hue and
motion lip fields.

Figure 5: From top to bottom: sequence of luminance im-
ages; initial labels; label fields after relaxation:the 4 labels
are shown in gray levels (from white to black:b1, a1, b0,
a0); sequence of hue relevant label images (a0 anda1).

2.3.3. Lip red hue labels and ROI

From the final label fields, one can extract lip red hue rele-
vant label (a0 anda1) (Fig. 6). Those results are shown with
a ROI evaluated on line. Several typical sequences have
been tested, some with a soft natural red make-up, others



with very poor lighting conditions without any make-up. It
shows the robustness of the algorithm to the variability of
the lighting conditions.

Figure 6: Two sequences of final lip hue fields with ROI
superposed on the corresponding luminance.

2.3.4. Preprocessing lip contours extraction

As a preprocessing stage, the lip segmentation offers robust
information to lighting conditions:

� automatic mouth location (ROI) (Fig. 6)

� unsupervised segmentation of the mouth shape

� semantic information: open/close detection

But, the borders seem to appear irregular when tongue
or gum are segmented, the segmentation is elusive when
close to the mouth corners, the inner contour is not seg-
mented when the mouth is closed. We need then a higher
level mouth detection algorithm: active contours. A gate-
way has been defined to initialise the next stage with rele-
vant data from the preprocessing.

3. Intermediate processing: a gateway to-
wards active contours

3.1. Mouth corners detection

ROI information is used to locate mouth corners and vertical
limits of the lips. Areas of darkness occur at the inner bor-
der of lips on horizontal mouth transitions (e.g.: upper lips
and tooth, tooth and mouth interior, tooth and lower lips).
Indeed, the vertical minima of image locates lip frontiers
and corners with accuracy.

The mouth corners are estimated with the following
steps:

� Find the grey level minima pixel over image columns;
compute the distribution (with� as core (Eq. 7)).

�j = 4�
j � (Ncol � j)

(Ncol)2
(7)

whereNcol is the number of columns of the image,
j the current column, the weighting coefficient� j
varies from0 to 1, from the border to the center of
the image.

� Detect the highest peak and deduce the horizontal
symmetry axis of the mouth.

� Extract lip corners following the line of minima, from
the center of the image to the left (respectively to the
right).

� Estimate the width and orientation angle of the
mouth.

Finally, a good estimate of the width and the orientation
of the mouth can be used (Fig. 7).

Figure 7:From left to right: vertical minima (in white) on a
grey level image; the corresponding distribution (in white);
mouth corners position for an open mouth.

3.2. Lip shape extraction

Starting from the ROI coordinates, a reduced number of
edges (e.g. 30) are detected within the inner and the outer
borders of the lip shape. These edges are linked together
with the mouth corners we found previously to provide an
excellent snake initialization (Fig 8).

Figure 8: Inner and outer borders detection from the seg-
mented lips and the corresponding mouth corner positions.

4. Active contours

Three major problems are classically encountered while us-
ing snakes: initialization, parameter estimation and conver-
gence of the algorithm. Initialization is commonly done
by hand, close to the object to provide good convergence.



Snake evolution is sensitive to parameter values which are
usually evaluated manually after several tests. Snake con-
vergence needs a good fitting between its energy and the
desired image features.

Xu [8] solves most of the initialization and convergence
problems for concave areas by creating a new external force
called gradient vector flow. But the diffusion process re-
quired too much time and therefore has no quasi real time
applications. L.D Cohen [2] introduced balloon forces to
provide inflation of snakes or push them far away from their
initial guess. This approach helps to ensure the snake con-
vergence or gives snake dilatation properties.

The lip tracking algorithm uses non-convex energy min-
imization to succeed in detecting mouth boundaries. The
first energy minimum reached is likely to be a local one.
Therefore, a good mouth parameter estimation is an essen-
tial step for good results.

4.1. Energy minimizing curves

Introduced by Kass and al [5] active contours were designed
for interactive interpretation in which the user guides (by
external forces modification) the snake near the desired so-
lution. A snake is a parameterised curvev defined (Eq. 8)
by its Cartesian coordinatesx andy along the curvilinear
abscissas which evolves through the minimization of its
functional� (Eq. 9).

v(s) = [x(s); y(s)] ; s�[0; 1] (8)

� : v(s) �!

Z 1

0

(Eint(s) +Eext(s)) ds (9)

The internal energy (Eq. 10) is a second order regu-
larization term derived from Tikhonov ill–posed problems
theory. It controls the curve smoothness via weighting pa-
rameters� and�. � controls the snake tension and� its
curvature. External energy (Eq. 11) represents the fitting of
image data to current vector. We focus on lip boundaries.
We then decided to use the image gradient to extract edge
points. To do so we use a classical gradient filter (such as
Sobel or Canny-Deriche).

Eint(s) = �jv0(s)j2 + �jv00(s)j2 (10)

Eext(s) = � jr (G� 
 I) (v(s))j
2 (11)

r represents the gradient operator,G� the 2D Gaussian
kernel and I the current image. This leads us to the classical
dynamic scheme (Eq. 12) whereId is the identity matrix,A
the Toeplitz snake matrix,V the snake control points vector
and 1


the time step coefficient.

V (t) = (A+ Id)
�1

(V (t� 1)� F (V (t� 1))) (12)

F represents forces derived from external energy.
Higher level information forces such as Distance map or
Balloon forces [2] are added there.

4.2. Adapted snakes

Our automatic snakes integrate� and� as non spatially con-
stants values. The Toeplitz matrix obtained is not detailed
here. Forces calculation is done by bilinear interpolation
to reduce numerical instabilities which occur through snake
energy minimization. Sampling the snake curve by spline
functions during the process enforces a constant distance
between snake points. Moreover, it helps moving points
trapped by spurious edges. Finally we impose all parame-
ters constant through different images for a given number of
snake points.

As mouth corners are finely detected, the snake gets its
extremities fixed. That kind of active contours is less un-
stable than the traditional ones. Convergence is tested af-
ter each resampling (classically every 10 iterations). This
solves the final oscillation convergence problema of snakes.
We authorize a maximum quadratic error (Eq. 13) calcu-
lated between two successive sampled snakes.

� =
X

i2[0::N�1]

jVi(t+ ts)� Vi(t)j (13)

wherets represents the sampling time step chosen andN

the size of the snake control points vector.

4.3. Shape constraint

Our aim is to maintain a mouth shaped snake even with-
out external constraints. Thus, we test non spatially con-
stant snake parameters derived from physical considerations
based on mouth geometry. For example, the lower lip con-
tour usually has a curvature that is minimal at the middle
and maximal at the corners. We choose a higher� coef-
ficient at the middle and a lower one around corners. The
same kind of adjustment is applied to the upper lip.

4.4. Results

Using the gateway lip shape information to initialize snakes
gives us the opportunity to be closer to the desired ob-
ject. Inner positioning is done in the mouth. Therefore, we
should inflate the inner snake to reach inner lips boundaries.
Cohen Balloon forces reduce the natural ability of snakes
to shrink even without external forces. When the mouth is
closed, we simply sample the inner snake along the straight
line between lip corners.

We hold all the coefficients constant throughout our tests
for both inner and outer snakes. Images from our image
database including open and closed mouths from different



faces are tested. Outer and inner snakes always reach good
boundaries after few iterations, usually less than 100.

The top of Fig. 9 shows five successive frames of a clos-
ing mouth. Outer and inner lips are perfectly tracked with
a few number of iterations (about 60). The inner snake is
capable of detecting small and asymmetric mouth apertures
(frames 2 to 4).

The bottom of Fig. 9 points out specific problems of lip
tracking. Lips vary in shape from one speaker to another.
Benny has thin upper lips. His mouth is longer than the
previous speaker. His upper lip is very elusive but our al-
gorithm succeeds in detecting both inner and outer lip fron-
tiers.

Figure 9: Convergence snakes results on two sequences
(Top: Nico; Bottom: Benny).

5. Conclusion

An automatic lip contours extraction has been successfully
applied to several sequences in natural conditions (natural
images of speaker’s face without any particular make-up or
lighting).

First, the logarithmic transform and the following spa-
tiotemporal Bayesian segmentation dealing with hue and
motion information locate and segment the mouth with very
few error rate. Then, a preprocessing gateway, combining
low level information and mouth corners location, initial-
izes inner and outer active contours. Thanks to the mouth
corners location algorithm, the two snakes get their extrem-
ities fixed. Whereas snakes were described by their inven-
tors as asemi-automaticprocess, these preprocessing steps
prove that automatic snakes are viable. Finally, with no as-
sumption about the lighting conditions, the lip contours (in-
ner and outer) are extracted with accuracy, even when the
mouth is closed or asymmetric.

Some problems still occur for a fine detection when
tongue or gum are detected. We need also to deal with more
difficult cases like colored people or faces with beard (Fig.
10). The proposed algorithm requires less than3 to 4 sec-
onds per image on a standard150MHz workstation. There-
fore, hardware implementation for both stages, spatiotem-
poral segmentation and active contours, are currently under
study.

Figure 10: First results on beard faces sequences: the outer
contour.
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