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Abstract

In bridge construction, the use of stiffened plates for box-girder or steel beams

is common day to day practice. The advantages of the stiffening from the

economical and mechanical points of view are unanimously recognized. For

curved steel panels, however, applications are more recent and the literature

on their mechanical behaviour including the influence of stiffeners is therefore

limited. Their design with actual finite element software is possible but signif-

icantly time-consuming and this reduces the number of parameters which can

be investigated to optimise each panel. The present paper is thus dedicated

to the development of a preliminary design formula for the determination of

the ultimate strength of stiffened cylindrical steel panels. This approximate

formula is developed with help of a design of experiment method which has

been adapted from the current statistical knowledge. This method is first

presented and its feasibility as well as its efficiency are illustrated through an
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application to the reference case of unstiffened curved panels. Then, the case

of stiffened curved panels is investigated and a preliminary design formula is

developed. The ease of use of this formula for preliminary design is finally

illustrated in a cost optimisation problem.

Keywords: Design of computer experiments, Response surface, Cylindrical

curved panels, Stiffeners, Stability, GMNIA.

1. Introduction1

The interest of stiffening steel plates or panels to increase their strength2

under compression has been known for almost a century [1]. In the field3

of structural engineering, the use of such panels is a common practice, for4

example in bottom flanges of box-girder bridges. Recent developments of5

the curving process allowed for the use of curved panels in civil engineering6

structures where they offer attractive aesthetic and aerodynamic possibilities.7

The verification of these panels is yet difficult due to a lack of specifications,8

especially in European Standards: EN 1993-1-5 [2] gives specifications for9

flat or slightly curved panels with the condition R ≥ Rlim = b2/tp (where10

R is the curvature radius of the panel, b its width and tp its thickness) and11

EN 1993-1-6 [3] deals only with revolution cylindrical shells. Nevertheless12

the curved panels in bridges have characteristics exactly between these two13

conditions, as illustrated in the case of the Confluences bridge in Angers,14

France 2011 (Fig. 1), whose radius R = 80 m is much smaller than the limit15

of EN 1993-1-5: Rlim = 1440 m (with b = 4.8 m and t = 16 mm) and for16

which EN 1993-1-6 is not applicable neither because these curved flanges are17

not full revolution cylinders.18
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Figure 1: Stiffened curved panel of the Confluences Bridge in Angers (France, 2011)

From an academic point of view, the articles related to the buckling theory19

of curved panels are not so numerous due to the complexity of the studied20

problem and also due to its late application in the bridge construction. First21

investigations were conducted in the forties by Batdorf & Schildcrout [4] and22

Schildcrout & Stein [5] who showed that the stiffeners and the curvature23

increase the critical buckling strength. A state of the art on curved stiffened24

panels was then proposed by Becker [6] in 1958 in its handbook on structural25

stability. Based on experimental results (provided by Gall [7], Lundquist26

[1] and Ramberge et al. [8]), he confirmed that, when a stiffened flat panel27

is bent to a circular curve, its buckling stress is slightly increased (around28

6% for the tested specimen which is relatively few compared to the effect of29

stiffening alone or curvature alone). More recent parametric studies based30

on numerical examples and the finite element modelling (e.g. Cho et al. [9],31

Khedmati & Edalat [10] or Park et al. [11]) investigated and quantified the32

influence of the main parameters on the ultimate strength of curved stiffened33

plates. They however did not lead to a practical criterion for the evaluation34

of the resistance of such panels which is therefore still an open question.35

In a former study, the authors [12] had investigated the case of unstiff-36

ened cylindrical curved panels under axial compression and established a set37
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of formulas for the evaluation of the ultimate strength (which were confirmed38

by [13]). These semi-analytic formulas had been fitted on a total of 524 com-39

binations of the main parameters. Each calculus involved Geometrical and40

Material Non-linearity with Imperfection Analysis (GMNIA) and required41

between 5 and 10 minutes depending on the refinement of the mesh. Consid-42

ering the fact that in the case of stiffened panels the number of parameters43

is considerably larger, re-employing the same methodology seemed unreal-44

istic. It appeared hence that there is a need for a robust strategy for the45

choice of the set of tested models and for the measure of the approximated46

model accuracy. Such a strategy exists for the design of physical experiments47

as well as for that of computer experiments, they are known as ”design of48

experiments methods”.49

In the following, the authors present thus first the characteristics of com-50

puter experiment strategies. Afterwards the feasibility and ease of use of the51

methodology as well as its efficiency are illustrated through an application52

to the reference case of unstiffened curved panels. Then, the case of stiffened53

curved panels is investigated and a preliminary design formula is developed.54

The interest of this formula for early stages of design is finally illustrated by55

a short example of cost optimisation.56

2. Design of computer experiments57

2.1. Background of the design of experiments method58

Design of experiment (DOE) methods exist since the beginning of sci-59

entific experiment. The first formal theory for the design of experiments60

in a “modern sense” was published by Fisher [14] in the 1920s and 1930s,61
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while working on improving agricultural yield. Since the 1940s, various re-62

searchers have promoted and developed the use of experiments strategies in63

many other areas [15]. In the late 1970s, the theory of Taguchi [16] on qual-64

ity improvement made the design of experiment widely used in the industrial65

environment. In the past 20 years, advances in computational power have led66

to the study of physical process through computer simulated experiments,67

which tends to replace physical experiments in cases where the number of68

variables is too large to consider performing a physical experiment or where it69

is simply economically prohibitive to run an experiment on the scale required70

to gather sufficient information.71

Computer experiments differ from traditional physical experiment in their72

deterministic character, meaning that the computer produces identical an-73

swers for the same set of experimental parameters. The error in computer74

experiments is no longer due to random effects which derive from the vari-75

ability in experimental units, the order of experiments or the locations of76

the tests. However, it was shown that in many cases, the systematic error77

between a deterministic model and its approximation has a normal distribu-78

tion, so that standard statistical techniques can still be applied [17]. Several79

authors [17, 18, 19] also insisted on the fact that the selection of parameter’s80

values for computer runs is still an experimental design problem of primary81

importance, especially considering the quantification of uncertainty of the82

model on a statistical point of view. Indeed, as not every combination of83

parameters can be tested, uncertainty and hazard enter the deterministic84

process through the choice of tested combinations. The design of a computer85

experiment is hence at the border of a physical and a statistical problem86
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which specificities are emphasized in the following section.87

2.2. General progress of the design of computer experiment method88

Schematically, a numerical model can be considered as a process: the user89

specifies the combinations of (input) variables to the computer simulator from90

which the responses (output) are generated. Fig. 2 illustrates this process in91

the simple case where there are only two input values (X1 and X2) and one92

response Y . Each variable can take a value from “low” to “high”. The set93

of all domains of variation forms the “region of interest”. In correspondence94

with each input variable (X i
1, X

i
2), the computer program will provide one95

result Y i. A set of n responses will then generate by extrapolation a response96

surface. In practice, the explicit formula for this surface is not known. The97

aim of DOE method is to provide approximated models (response surfaces)98

that are sufficiently accurate to replace the true response and can be used to99

facilitate design space exploration, optimisation or reliability analyses.100

The general steps of computer experiments are generally similar to those101

encountered in classical experiments [20] and can be summarized as follow:102

• Step 1: Statement of the problem.103

• Step 2: Choice of the model for the response surface.104

• Step 3: Selection of the input data points.105

• Step 4: Evaluation of the approximated model.106

• Step 5: Validation of the accuracy of the response model.107

• Step 6: Selection of most significant terms and conclusion.108
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Figure 2: Principle of the computer experiment process and response surface.

This process is not necessarily linear and could be applied iteratively if the109

predicted model does not meet the desired accuracy. In the above process, the110

selection of the input variables (step 3) and the technique for approximating111

the response (step 4) are the two main issues that differ between physical112

and numerical experiments due to the deterministic property of computer113

experiments. These two issues will be developed in the following paragraphs.114

2.3. Selecting sampling points115

A good experimental design should minimize the number of runs needed116

to acquire information with a given level of accuracy. The experimental117

design techniques were initially developed for physical experiments. Due to118

the discrepancy associated with physical experimentation, classical DOEs119

will focus on parameter settings near the perimeter of the region of interest120

and take multiple data points (replicates) as shown in Fig. 3(Left). Computer121

experiments are determinists and are not subjected to this necessity. The122

objective of computer experiments is hence mainly to uniformly distribute123

the sampling points in the region of interest (such a design is called “space124

filling”) as seen in Fig. 3(Right).125
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Within the available methods of sampling [21], the following three are126

the most common and efficient: the Monte Carlo method (MC), the Latin127

Hypercube Sampling method (LHS) and the Quasi-Monte Carlo methods128

(QMC) which can be viewed as deterministic versions of MC methods be-129

cause they use deterministic points rather than random samples. Blatman130

et al. [22] showed that QMC overperforms MC and LHS, when used with131

polynomial response surfaces with a mean computational gain factor of 10 in132

order to reach a given accuracy. The QMC methods are also termed as low133

discrepancy procedures: sampling points are selected in such a way that the134

error bound is as small as possible.135

Figure 3: (Left)“Classical” and (Right)“Space Filling” designs.

There are many ways to construct a QMC sequence but the Sobol’ se-136

quences are the most widely used because they are quick to construct and fast137

to converge [23]. They also have the advantage of preserving the uniformity138

of the distribution when the dimension increases: a Sobol’ sequence can be139

constructed from a shorter one by adding points to the shorter sequence, on140

the contrary to LHS, where the entire sampling process must be run again.141
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2.4. Response model regression142

After selecting the appropriate experimental points and performing the143

necessary computer runs, the next step is to choose an approximated model144

and a fitting method. The approximated model must be simple and represent145

adequately the response of the studied problem. In recent years, a lot of work146

has been done on approximated models: polynomial response surfaces, neural147

networks, kriging or multivariate adaptive regression splines [24]. Despite148

the variety of approximations that is available, comparative studies of these149

approaches are limited [25]. Depending on the complexity of the problem, one150

of the aforementioned method might be suitable. However, the polynomial151

response surface model is by far the simplest; it has been used efficiently in152

a wide variety of applications and has provided good approximated solutions153

to even very complex problems [26]. Beside, the use of polynomial response154

surface for furthers studies such as reliability [27] and optimisation [28] is155

relatively easy.156

2.5. Statistic tools for adequacy checking157

As mentioned in the section 2, model adequacy checking is an important158

part of the data analysis procedure. Indeed it is necessary to ensure that159

the fitted model provides an adequate approximation of the true system and160

to verify that none of the model assumptions is violated. In most cases, the161

regression model is a linear function of some unknown coefficients which are162

identified thanks to the least square method which will be used here for its163

simplicity and reliability.164
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3. Application to cylindrical curved panels under uniform axial165

compression166

In a former study, the authors [12] investigated the case of unstiffened167

cylindrical curved panels under axial compression (see Fig. 4) and proposed168

a set of formulas for the evaluation of the ultimate strength. These formulas169

were established following the general European Standards procedure for all170

kind of stability verification and will be used as a reference case to validate171

the accuracy and relevance of the methodology proposed in previous section.172

The strength of the panel χ was hence given as a function of the relative173

slenderness λ and three parameters λ0, β, αZ depending on the relative174

curvature:175

χ =
2β

β + λ+

√(
β + λ

)2
− 4β

(
λ− αZ(λ− λ0)

) (1)

176

These simulations, as well as those which will be conducted here, involved177

non-linear material and second-order analyses with imperfection (GMNIA).178

They were conducted with the software Ansys version 13 and the standard179

quadrilateral 4-nodes element [29]. Panels were made of elasto-plastic steel180

with linear hardening as indicated in EN 1993-1.5 C.6.c) (S355, E = 210GPa,181

ν = 0.3 and a slope of E/100 ). The cylindrical panels were assumed simply182

supported on all edges and loaded by a uniform longitudinal compression183

along the curved edges. An initial imperfection with the shape of the first184

buckling mode and with a maximum amplitude of 1/200th of the smallest185

edge was also added. The study was limited to square panels, so that only186

the thickness, the width and curvature of the panels were varied.187
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3.1. Step 1: Statement of the problem188

The aim of this step is to identify in an exhaustive manner the parameters189

of the problem and to select among them the ones which will have an influence190

on the response and which are liable of variations in practical applications.191

Here the quantity of interest in the panel response (the output) is the ultimate192

strength of the panel. Basic structural engineering tells us that it is influenced193

by the geometry of the panels (including their imperfections), their material194

properties, their boundary conditions and the nature of the loading. All195

these parameters could be included in the experimental program, but in this196

first example, the objective is to validate the method and to illustrate its197

pertinence, so that the same restrictions as in [12] will be observed:198

• the imperfections are chosen following EN 1993-1-5 [2] (i.e. their shape199

is that of the first buckling mode and their amplitude is 1/200th of the200

width of the panel)201

• the steel grade is S355 as generally used in modern bridges;202

• the panels are simply supported on all edges;203

• the longitudinal compression is uniform along the curved edges.204

The only varying input factors are thus the dimensions of the panels:205

their length a, width b, thickness tp and radius of curvature R (see Fig. 4).206

Applying the Buckingham-Vaschy’s theorem, it can be demonstrated that207

the ratio of the ultimate strength of the panel and the yield stress (σult/fy)208

depends on three independent dimensionless parameters:209

σult

fy
= f

(
a

b
;
tp
b
;
b

R

)
(2)
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210

Figure 4: Cylindrical curved panel under uniform axial compression (after [12]).

Now that the parameters have been defined, it is essential to define the211

range in which these parameters will vary. Every feasible configuration has212

to be included but the range of variation has to be kept as small as possible:213

it is directly linked with the precision of the approximated expression found214

at the end of the process. Here the ranges given in table 1 seem reasonable215

to cover most applications of such panels in bridge engineering.216

Table 1: Design variables for unstiffened curved panels

Variable Description Variation range Design variable

a/b Aspect ratio 0.6 ≤ a/b ≤ 1.6 X1 = 2 a/b− 2.2

tp/b Slenderness 0.01 ≤ tp/b ≤ 0.04 X2 = 66.7 tp/b− 1.67

b/R Curvature (Angle) 0 ≤ b/R ≤ 1 X3 = 2 b/R− 1

As the order of magnitude of the variations of these three parameters is217

different, it is preferable to transform the physical parameters into centred218

variablesXi, ranging from -1 (low value) to 1 (high value). Their comparative219

influence on the response will hence be easier to catch. The three adimen-220

sional parameters X1, X2 and X3 used in the coming paragraphs are thus221

given in the last column of table 1.222
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3.2. Step 2: Choice of the response surface223

The choice of the response surface is based on two issues: the knowledge224

of the physics of the problem and the desired accuracy of the approximation.225

Here the target response is the ultimate strength of the plate, namely the226

maximum load that the plate can bear when accounting for the elasto-plastic227

behaviour of the material. From existing standards (EC3), it is known that228

the strength of a flat plate is related to the slenderness by a second order229

polynomial which was first proposed by Winter [30]:230

σult

fy
=

1

λ
−

0.22

λ
2 (3)

In (3), the slenderness λ is directly related to a/b and t/b (which means231

to X1 and X2) by:232

λ =

√
fy

12 (1− ν2)

π2E
·

√
1

ka/b
·
b

tp
(4)

where ka/b is a function of a/b233

ka/b =





(
a
b
+ b

a

)2
if a

b
≤ 1

4 if a
b
≥ 1

(5)

It can thus be concluded that a second order polynomial should provide234

a good approximation of the strength of a curved plate and that it will be235

meaningful from a physical point of view. The response surface will thus be236

investigated in the following form:237

Ŷ

(
=

σult

fy

)
= β0 +

3∑

i=1

βiXi +

3∑

j=1

j∑

i=1

βijXiXj (6)

where Ŷ is the approximated response, Xi are the three input variables and238

β(.) are the ten unknown parameters.239
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3.3. Step 3: Selection of the input data or sampling points240

The selection of the input data points covers the choice of the number241

of points and of their distribution in the investigated domain which is here242

a hypercube in the three dimensional space. The generation of a set of243

sampling points using a QMC method in this cube can be made easily using244

a common statistical tool providing a function generating a Sobol’ sequence245

(Matlab here). Noting that with the Sobol’ sequence, the extreme values246

of the parameters can only be reached for an infinite number of variables,247

some additional points located at the corners of the cube can be added to248

the sequence to give more weight to the boundary of the domain.249

The key issue is thus the definition of the minimal number of experiments250

to be conducted to get a response with the desired accuracy. The number of251

simulations n depends on the complexity of the studied phenomenon as well252

as of the complexity of the approximated model. Yet there is not a unani-253

mously agreed method relating the number of observations versus the number254

of independent variables in the model. Some authors suggest 3m+ 1 points255

[31] for a second-order polynomial approximation where m = (p+1)(p+2)
2

is the256

number of unknown coefficients and p is the number of input variables. Fol-257

lowing this suggestion for the present example which has 3 input parameters,258

a second order polynomial approximation will have 10 unknown parameters259

which could be evaluated with a good accuracy with 31 experiments. Adding260

the corner points (in total 7 additional points as the point (−1;−1;−1) is261

by construction always part of the sequence) of the investigated domain, the262

total number of sampling points is set to 38. An illustration of such a set is263

shown in Fig. 5.264
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Figure 5: Sampling points generated by the Sobol’ sequence (circles) and additional corner

points (triangles).

3.4. Step 4: Parameters evaluation265

The approximated response surface is here looked for in the form of a266

second-order polynomial in the three variables Xi given by Eq. 6. The un-267

known parameters β(.) have to be identified from the numerical experiments268

(here n = 38) which is here done by the least square method. So, from the269

38 sampling points shown in Fig. 5, the ultimate strength of a curved plate270

can be approximated by the following expression:271

Ŷ = 0.879 + 0.002X1 + 0.212X2 + 0.052X3 − 0.001X1X2 − 0.063X2X3

−0.004X3X1 − 0.037X2
1 − 0.100X2

2 − 0.003X2
3 (7)

3.5. Step 5: Evaluation of the accuracy of approximated model272

To evaluate the accuracy of the approximated model, conducting an273

analysis of variance (ANOVA) is very useful. The coefficient of determina-274

tion is first determined R2 = 0.977 and then the cross-validation coefficient275

Q2 = 0.969. The fact that R2 is very close to 1 indicates that the regression276
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model fits well the data. The small difference between R2 and Q2 indicates277

that most observations have an influence on the regression equation and that278

the approximation model predicts well the observations. Moreover, the same279

model has been identified on a sample without additional points in the cor-280

ners, leading to R2 = 0.971 and Q2 = 0.942, the small diminution of these281

coefficients is a direct consequence of the diminution of the number of sam-282

pling points (31 instead of 38), not to the fact that the discarded points were283

located in the corners of the domain. It is thus concluded that, the addi-284

tion of corner points is not necessary to get an accurate estimation of the285

regression coefficients.286

3.6. Step 6: Selection of most significant terms and conclusion.287

The second-order formula presented in Eq. 7 for the evaluation of the288

ultimate strength of curved steel panels under axial compression provides289

a good and best possible approximation of the real capacity of the panel.290

However, it is remarked that not every coefficient in Eq. 7 have the same291

order of magnitude. So, rather than trying to explain the model with all its292

terms, it can naturally be asked if some terms could be excluded from the293

initial model without altering significantly the accuracy of the whole model.294

A criterion of exclusion should hence be fixed. If normality assumptions295

are verified (as in the present case), the t-test provides a fully reliable criterion296

as it relates the value of each coefficient to its estimated standard error.297

More simple criteria, such as arbitrary thresholds of significance are also298

very effective. Indeed, as the parameters all vary between -1 and 1, the299

contributions of the various terms can directly be analysed by comparing the300

coefficients which might then be neglected if their value is bellow a certain301
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absolute value (for example 2% of the sum of the coefficients absolute values302

or 5% of the maximum value of the coefficients). Fixing here this threshold to303

2 % of the sum of the coefficients, the terms (β1, β12, β13 and β33) are found304

not significant (a criterion based on t-test and a 90% two sided interval would305

give the same results). The new model is thus given by Eq. 8; it preserves306

good precision with high value of R2 = 0.976 and Q2 = 0.9674.307

Ŷ = 0.879 + 0.212X2 + 0.052X3 − 0.063X2X3 − 0.037X2
1 − 0.100X2

2 (8)

Introducing the physical parameters of table 1 into Eq. 8, the ultimate308

strength of unstiffened cylindrical curved panels under axial compression is309

given by:310

σult

fy
=

(
−0.09 + 0.326 (a/b)− 0.148(a/b)2

)
+ (40.6 + 0.314Z) (tp/b)

− (444 + 8.40Z) (tp/b)
2 (9)

where Z is the curvature parameter defined by Z = b2/Rtp. Eq. 9 is very311

similar to the classical expression of the stability problem, where the ultimate312

strength is represented as a polynomial function of the slenderness t/b.313

Fig. 6 shows how well the expressions given by the DOE method (red314

squares) and by the semi-analytical method [12] (green triangles) are able to315

predict the numerical results (given by F.E. model). For most input values,316

the two models have less than 5 % of discrepancy (in absolute value) to317

the true numerical value. However a few observations (No. 19, No. 22 and318

No. 28) predicted by DOE method have higher discrepancy (from 8 % to319

10 %) on the contrary to the semi-analytical method whose error remain320

below 5.5 %. This might be explained by the fact that, although the semi-321

analytical model is not richer (the calibration of λ0, β, αZ involves only 7322
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parameters), its physical bases are finer which proves the crucial importance323

of the choice of the parameters and response surface.324
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Figure 6: Comparison of FEM results with DoE and semi-analytical method [12].

These values of error should be relativised by the fact that in many com-325

plex structures such as stiffened plates, the difference between Eurocode pre-326

dictions and the results of numerical simulations might reach until 20 %,327

sometimes in favor of safety, sometimes not [32, 33]. Moreover, as the so-328

called characteristic value of a member is obtained by dividing its design329

value (e.g. Eq. 9) by some safety factor (often taken as γM1 = 1.1) the330

present discrepancy is indeed acceptable.331
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4. Application to stiffened curved panels under uniform axial com-332

pression333

The behaviour of stiffened curved panels is a more complex problem,334

especially due to the interaction of different parameters (curvature, relative335

rigidity of stiffeners and plate, imperfection, etc.) for which no semi-analytic336

expression exists. So, as it has just been shown that the design of computer337

experiment method is well adapted for studying the stability of curved plates,338

it will be used for the development of a preliminary design formula (i.e suited339

for hand-calculation) for the ultimate resistance of stiffened curved panels.340

4.1. Finite element modelling341

The stiffened panels are modelled and analysed using the commercial342

finite element software Ansys [29]. The panels are supposed to be simply343

supported on all edges of the panel (ur = 0 in the cylinder coordinate system344

of Fig. 7) but not on the stiffeners (unfavourable condition).345

Figure 7: Boundary conditions of simply supported on all edges
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For loading conditions, the study is here limited to a uniform compression346

in the longitudinal direction as it is the dominant loading in bottom flange347

panels. It is applied not only to the main panel, but also to the stiffeners due348

to their participation in the overall behaviour of the structure (Fig. 8). In349

fact, in a bridge, the compressive forces acting on the flange come through350

the diaphragms and webs that connect the upper and lower panels of the351

box girder. By construction, the stiffeners, in most cases, are continuous and352

attached by welding to diaphragms: therefore they are also subjected to the353

compressive load.354

Figure 8: Loading condition and scheme of the connection stiffener/diagram by welding

The curved panels are meshed with eight-nodes shell elements which use355

an advanced shell formulation that accurately incorporates initial curvature356

effects (this element is called SHELL-281 in [29]). They are well-suited for357

linear, large rotation and large strain non-linear applications and offers im-358

proved accuracy in curved shell structure simulations and faster convergence359

than plate elements as one can see in figure 9 which represents the conver-360

gence study from [34]. A fine mesh with more than 30 elements per panel361

edges is used to reduce the discretisation error.362
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Figure 9: Convergence study of SHELL-281 element: linear bifurcation analysis (left), non

linear buckling analysis (right)

The panels are all made of steel which is assumed to be elasto-plastic363

with linear strain hardening as indicated in EN 1993-1-5 C.6 for the material364

non-linear second-order analyses with initial imperfections (GMNIA). The365

Young modulus E and Poisson’s ratio are taken equal to 210 GPa and 0.3366

respectively. The steel grade is S355 with a yield steels equal to 355 MPa.367

4.2. Evaluation of the ultimate strength368

This study is limited to the case of stiffened curved panels under ax-369

ial compression with open section stiffeners (simple flat plates) because the370

curvature makes it difficult to realise a close form section of stiffener (boxed371

rib). Therefore, the number of input parameters is here restricted to seven as372

presented in table 2. The ranges of variation of these parameters are chosen373

in order to cover most panels used in bridge construction. As the orders of374

magnitude of the parameters variations are different, they are transformed375

the physical parameters into centred variables Xi, ranging from −1 to 1.376

377
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Table 2: Design variable (dimension in meter)

Variable Description Variation range Design variable

a Length of the panel 4 ≤ a ≤ 6 X1 = a− 5

b Width of the panel 4 ≤ b ≤ 6 X2 = b− 5

tp Thickness of panel 0.01 ≤ tp ≤ 0.02 X3 = 200 · tp − 3

1/R Curvature of panel 0 ≤ 1/R ≤ 0.1 X4 = 20/R− 1

d Distance between stiffeners 0.3 ≤ d ≤ 0.8 X5 = 4 · d− 2.2

hs Height of stiffener 0.1 ≤ hs ≤ 0.2 X6 = 20 · hs − 3

ts Thickness of stiffener 0.01 ≤ ts ≤ 0.02 X7 = 200 · ts − 3

The approximated model is searched in the form of a second order poly-378

nomial. The total number of experiments, as suggested in section 3.3, is379

n = 3 · m + 1 = 109 where m = 36 is the number of unknown coefficients380

(1 constant, 7 linear and 28 quadratic terms). Their distribution in the re-381

gion of interest is generated by a Sobol’ sequences and the coefficients are382

obtained by the least square method, supposing that errors are independent383

and normally distributed. Like previously, the selection of significant coeffi-384

cients is made based on the t-test (the limit value being given for 109 tests385

and the bilateral 5%-95% fractile). Then all remaining coefficients (here 18386

coefficients) are re-evaluated using the least square method a second time.387

The resulting approximated model (in MN) is thus the following:388

Ŷ = +17.09 (10)

−0.47X1 + 3.58X2 + 4.24X3 + 7.32X4 − 3.87X5 + 4.83X6 + 2.33X7

+1.65X2X4 − 1.72X2X5 + 1.71X2X6 + 0.89X2X7 + 1.33X3X4

−0.76X3X5 − 1.73X4X5 + 0.81X4X6 − 1.18X5X6 + 0.94X6X7
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The coefficient of determination R2 = 0.986 (close to 1) indicates that389

the value predicted by the model fits very well the data (see Fig. 10). Also,390

the small difference between the values of Q2 = 0.978 and R2 shows that391

there are few undue influence on the regression equation. The accuracy of392

the response is also checked by the relative mean absolute error (RMAE):393

4.2 % (which indicated that a mean error of 4 % is expected), the relative394

minimum and maximum error: −14.0 % and +13.5 % respectively. The395

above equation is thus fairly acceptable in bridge constructions and residual396

errors can be easily covered by using a safety factor.397

Figure 10: Comparison of the ultimate strength of the FEM and DOE

Considering now every coefficients independently, it is found that the 5 %398

two-sided confidence interval of the regression coefficients is ±0.20 MN for399

the constant term, ±0.36 MN for the linear terms and ±0.62 MN for the400

quadratic terms. As generally observed, the uncertainty on linear terms is401

almost twice smaller than that on quadratic terms: the direct influences of402

the parameters are better known than those of their interactions.403
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These statistical remarks being made, it is remarkable that all parameters404

are found significant in Eq. 10. In decreasing order, the most significant405

parameters are the curvature (X4), the height of the stiffeners (X6), the406

thickness of the panel (X3), the distance between stiffeners (X5), the width407

of the panel (X2), the thickness of the stiffeners (X7) and finally the length408

of the panel (X1) whose influence is very limited (no more than ±3 % of the409

total strength). Quite obviously, increasing the curvature, the thickness of410

the plate or the height and thickness of the stiffeners increases the strength411

of the panel, while increasing the length of the panel or the distance between412

stiffeners decreases it. Then the fact that the strength grows with the width413

is not so immediate but can be easily understood considering that when the414

width of the panel increases, the distance between the centre of gravity of415

the panel and the curved plate increases due to curvature and by there the416

global inertia of the curved panel increases.417

There are then multiple interactions which combine effects are more dif-418

ficult to analyse. Indeed increasing the curvature, the height and thickness419

of the stiffeners or the thickness of the panel has always a positive effect420

on the strength because, for these parameters, the linear term dominates421

clearly the quadratic terms. Then concerning the distance between the stiff-422

eners, in most cases diminishing it leads to an increase of the strength but423

not mandatory as for slender panels with small curvature and small stiff-424

eners it might lead to a smaller strength (indeed the coefficient of X5 is425

−3.87− 1.72X2 − 0.76X3 − 1.73X4 − 1.18X6 and varies between −9.26 MN426

and 1.52 MN). In the same way, in most cases increasing the width of the427

panel leads to an increased strength but not for slender panels when the spac-428
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ing between stiffeners is too large (the coefficient of X2 being 3.58+1.65X4−429

1.72X5+1.71X6+0.89X7, it varies between −2.39 MN and 9.55 MN). Very430

likely in the last two cases, these changes of the coefficient sign correspond to431

a change in the buckling mode from column to plate or from global to local.432

Anyway, it must be recalled that even in these extreme cases, the error in433

the prediction of the strength is not larger than in other cases (cf. Fig. 10) and434

that according to all statistical criteria mentioned above, the approximated435

model given by expression (10)) is able to predict correctly the ultimate436

strength of stiffened curved panels in the interested domain. It can thus be437

easily inserted in an optimisation pattern as illustrated in the coming section.438

4.3. Cost optimisation of curved stiffened panels439

The cost optimisation scheme proposed here is based on a cost objective440

function similar to the ones used by [35]. It assumes that the manufacturing441

cost of a stiffened curved panel K defined by the parameters Xi is the sum of442

the material costs Km (the steel cost) and of the fabrication costs Kf which443

can be defined as follow:444

K(Xi) = Km +Kf = kmρV + kf
∑

Ti (11)

where ρ is the steel density, V is the total volume of the curved panel, km and445

kf are characteristic coefficients of material and fabrication costs. Ti denotes446

manufacturing times:447

• T1: time for preparing, cutting and assembling the pieces:448

T1 = Θd

√
κρV (12)

with Θd a factor characterising the impediment for welding and κ the449

number of elementary pieces to be welded;450
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• T2: time for welding and T3: additional time for maintenance of the451

machine which might be considered as 0.3T2, so that:452

T2 + T3 = 1.3
∑

Cia
2
wiLwi (13)

where Lwi is the length of the ith weld, awi = max(0.4ts, 4mm) its width453

and Ci a coefficient depending on the welding technique which is here454

taken equal to 0.2349 for Shielded Metal Arc Welding.455

The constraint equation is then given by the stability requirement of the456

panel:457

g(Xi) =
Napp

Nult/γM1

− 1 6 0 (14)

where Napp is the applied load, Nult the capacity of the panel estimated by458

Eq. (10) and γM1 is a safety factor.459

The panel which is proposed here for optimisation has fixed overall di-460

mensions: its length a is 6 m, its width b is 4 m and its curvature radius461

R is 20 m). It is subjected to a uniform axial compression Napp = 12 MN .462

The objective is thus to determine the parameters (thickness of the panel tp,463

thickness ts and height hs of the stiffeners and distance between stiffeners d)464

which will minimize the cost of the panel (11) and verify the constraint equa-465

tion (14). To make the problem more realistic, it is also considered that the466

variables are not continuous but discrete (which poses no problem to Matlab467

optimisation algorithm), so that the solution is looked for in the following468

domain:469

• tp ∈ [0.01; 0.02] by steps of 1 mm;470

• d ∈ [0.3; 0.8] by steps of 5 cm;471
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• hs ∈ [0.1; 0.2] by steps of 1 cm;472

• ts ∈ [0.01; 0.02] by steps of 1 mm;473

Concerning then the definition of cost coefficients, as no precise data were474

available for kf and km, it was decided to present the results in an adimen-475

sional form considering different values of the ratio kf/km. For kf/km = 0,476

only material cost is taken into account, while for large values of kf/km, man-477

ufacturing cost prevail (reasonable values in northern countries lie between478

1 and 2). The results of the optimisation procedure are shown in table 4.3479

(where n is the total number of stiffeners).480

Table 3: Results of the optimisation procedure for Napp = 12 MN

kf/km tp d n hs ts K

0.0 0.014 0.55 7 0.16 0.015 3450

0.5 0.015 0.75 5 0.18 0.016 4250

1.0 0.016 0.90 4 0.19 0.017 5000

2.0 0.018 0.90 4 0.17 0.015 6200

About the method first, it must be noticed here that the set of optimised481

parameters corresponding to each ratio kf/km was obtained almost imme-482

diately thanks to the preliminary design formula developed in section 4.2483

whereas it would have taken hours or even days using directly finite element484

simulations. Concerning the results then, following remarks can be drawn:485

• The number of stiffeners is higher when only material costs are con-486

sidered. It is however not maximal (nmax = 12) which shows that487
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increasing reasonably the thickness of the plate is very efficient from a488

weight point of view.489

• For higher values of kf/km, stiffeners becomes logically stiffer to reduce490

their number and the number of welds.491

• It is often more economical to increase the panel thickness than to492

increase the number of stiffeners which confirms the conclusion of [33].493

5. Conclusion494

Stiffened curved panels in civil engineering structures have high sensitivity495

to instability phenomenon. Analytical or semi-analytical studies are often496

not feasible as the problem depends on many parameters such as the panel’s497

curvature or the panel configuration with its stiffener and semi-rigid supports.498

There is hence a need for a robust strategy when attempting to develop499

approximated models for such problems. The proposition of such a strategy500

was the aim of the first part of the present paper and this, through a turnkey501

methodology based on the theory of the design of experiment method. The502

efficiency of the method was first reviewed. Some particular points which503

differentiate the ordinary physical experiments from computer experiments504

were discussed. Afterwards this methodology was applied to the case of505

unstiffened curved panels for which solutions were already available in order506

to evaluate the accuracy of the method and its relevance. A huge gain of time507

was noticed when using the DOE method: only 38 simulations were needed508

in the first application against 524 observations in [12] for determining the509

capacity of a curved panel. Also the general accuracy of the model in the510
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form of a second-order polynomial was comparable to that obtained with511

more standard heuristic methods. Moreover, as the experiment designer had512

existing knowledge of the problem, the input values were adequately chosen513

and the physical interpretation of the results was easy and satisfying, despite514

the simplicity of the model. The strategy proposed here provides thus a515

reliable alternative method for the prediction of the ultimate strength of516

curved panels.517

Confident in the methodology, the authors then developed a fully reliable518

formula for preliminary design of stiffened curved panels. The accuracy of519

the formula was demonstrated and the influence of various design parameters520

was discussed. A simple cost optimisation problem was finally presented to521

illustrate the potential of the formula.522
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Nomenclature527

αZ Parameter characterising the imperfections sensitivity528

β Parameter characterising the asymptotic behaviour of the panel529

β0 Constant term and average value of the approximated response530

βi Coefficient characterising the effect of the variable Xi531

βij Coefficient characterising the interaction of the variables Xi and Xj532

χ Reduction factor for the panel buckling according to EC3533

λ Relative slenderness of the panel according to EC3534

λ0 Slenderness separating plastic buckling from elasto-plastic buckling535

ρ Steel density536

σult Ultimate strength of the panel537

a Length of the panel538

b Width of the panel539

d Distance between stiffeners540

fy Yield stress of the panel541

hs Height of stiffeners542

Kf Fabrication costs543

kf Fabrication cost per volume unit544
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Km Material costs (steel cost)545

km Material cost per volume unit546

ka/b Parameter characterising the influence of the aspect ratio547

m Number of unknown coefficients in the approximated model548

n Number of simulations or numerical experiments549

Napp Normal force applied to the panel550

Nult Capacity of the panel551

p Number of input variables552

R Curvature radius of the panel553

Ti Manufaturing time of the ith operation554

tp Thickness of the panel555

ts thickness of stiffeners556

V Total volume of the curved panel557

Xi Generic name of the ith input variable558

Xj
i jth value of the ith input variable559

Y , Ŷ Response and approximated response560

Y j jth value of the response561

Z Curvature parameter defined by Z = b2/Rtp562
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