Fuzzy Modeling Of Knowledge For MRI Brain Structure Segmentation

Abstract : In this paper, we propose a novel automatic method based on fuzzy modeling of knowledge to segment brain structures in MRI (Magnetic Resonance Imaging) images. The segmentation is achieved by the region-wise classification using GAs (Genetic Algorithms), followed by the voxelwise refinement using parallel region growing. To improve the accuracy of the labeling, we introduce a fuzzy model of ROI (Regions Of Interest) by analogy with the electrostatic potential distribution, to represent more appropriately knowledge of shape, distance and reaction between structures, and to estimate more reliably the statistical moments. This modeling is also used in the design of the fitness function of GAs, and the criteria of the region growing. The performance of our proposed method has been quantitatively validated by 4 indexes with respect to manually segmented images.
Type de document :
Communication dans un congrès
International Conference on Image Processing ICIP, 2000, Vancouver, Canada. 1, pp.617-620, 2000
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00960267
Contributeur : Image Greyc <>
Soumis le : lundi 17 mars 2014 - 19:03:58
Dernière modification le : mardi 5 juin 2018 - 10:14:42
Document(s) archivé(s) le : mardi 17 juin 2014 - 13:59:10

Fichier

ICIP-2000-Xue.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00960267, version 1

Citation

Jing-Hao Xue, Su Ruan, Bruno Moretti, Marinette Revenu, Daniel Bloyet, et al.. Fuzzy Modeling Of Knowledge For MRI Brain Structure Segmentation. International Conference on Image Processing ICIP, 2000, Vancouver, Canada. 1, pp.617-620, 2000. 〈hal-00960267〉

Partager

Métriques

Consultations de la notice

158

Téléchargements de fichiers

122