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Abstract. Particles and collisions are convenient construction tools to
compute inside tilings and enforce complex sets of tilings with simple tile-
sets. Locally enforceable particles being incompatible with expansivity in
the orthogonal direction, a compromise has to be found to combine both
notions in a same tileset. This paper introduces knight tiles: a frame-
work to construct 4-way deterministic tilings, that is tilings completely
determined by any infinite diagonal of tiles, for which local particles
and collisions with many slopes can still be constructed while being ex-
pansive in infinitely many directions. The framework is then illustrated
by an elegant yet simple construction to mark a diagonal with a 4-way
deterministic knight tileset.

Key words: Deterministic tiles; Domino Problem; Tiling Problem; Ex-
pansive Subdynamics; Particles; Wang tiles

A tiling is a coloring of the discrete plane Z2 assigning a tile from a finite
tileset to each position so that the local tiling rules associated to the tileset
are satisfied for every tile in its neighborhood. Wang tiles provide a convenient
and universal syntactic description of tiling rules: a Wang tile is a unit square
with colored edges and the tiling rule requires adjacent squares to share a same
color along their common edge – tiling constraints are readable directly on the
tiling. Starting with the study of the Domino Problem [1,2], computations have
been successfully embedded into tilings to enforce computational phenomena
and prove undecidability and complexity results. Following what is done in the
case of cellular automata, particles and collisions have been successfully used as
a tool to transmit information quanta through tilings and mark positions.

A tiling is 4-way deterministic if any infinite diagonal strip of tiles uniquely
determines the whole tiling. A syntactic way to enforce such a property on a
tileset is to require any consecutive pair of colors along its edges to uniquely
determine a tile. Kari and Papasoglu [3] were able to prove that it is still pos-
sible to construct aperiodic tilesets under such constraint as are every family
of tilings generated by substitution systems [4]. Ten years later, Lukkarila [5]
showed that Turing machines can still be simulated in this setting and proved
that the Domino Problem is still undecidable for 4-way deterministic tilesets.
The construction is subtle and quite involved, building on previous construction



2 B. Le Gloannec, N. Ollinger

by Kari and Papasoglu [3]. The construction has to be quite involved in particu-
lar because such a syntactic constraint enforces the expansivity [6] of the tilings
in every directions but two, prohibiting the use of locally defined particles that
are neither horizontal nor vertical. In this paper, inspired by the partitioned cel-
lular automata [7], we propose to replace Wang tiles with knight tiles, keeping
a syntactic condition to enforce 4-way determinism and gaining back particles
and collisions.

Similar to a Wang tile, a knight tile is a colored unit square sharing colors
not only with its 4 direct neighbors but also with the 8 neighbors located at a
chess knight move. Determinism along one diagonal is then simply expressed as
a syntactic condition on tuples of colors. While keeping expansive in infinitely
many directions, knight tiles can be combined to construct particles along slopes
that are not too steep. The interest of this family of tilesets is illustrated by con-
sidering two problems handled with complicated constructions in Lukkarila [5].

The first construction is the key ingredient to the proof of the undecidability
of the Domino Problem: solving the seeded Domino Problem by simulating a
Turing machine.

The second construction is a key ingredient for the previous construction in
the classical case: marking a diagonal — a slope that cannot be obtained di-
rectly by knight tiles using a particle. Indeed, Lukkarila [5] asks “Could there
be a significantly simpler tile set for drawing a single diagonal line 4-way deter-
ministically?” The construction provided here is significantly simpler, combining
time-symmetry and the infinite Firing Squad technique by Kari [8] with proper-
ties of the Thue-Morse substitution to enforce 4-way determinism.

1 Preliminary definitions

Wang tiles and deterministic tilesets Given a finite alphabet of colors C, a
Wang tile is an oriented unit square tile with one color on each side. Formally,
it is a quadruple t ∈ C4 whose four components are identified with the four
directions {w, s,e,n} and, for convenience, denoted as tw, ts, te and tn. A Wang
tileset τ is a finite set of Wang tiles. A tiling by τ is a map T : Z2 → τ associating
a tile of τ to each cell of the discrete plane Z2 such that two adjacent tiles (for
the 4-connectedness) share the same color on their common edge. More formally,
a tiling T satisfies the following constraints, for all (x, y) ∈ Z2: T (x, y)w = T (x−
1, y)e, T (x, y)s = T (x, y − 1)n, T (x, y)e = T (x+ 1, y)w, T (x, y)n = T (x, y + 1)s.
The set of all tilings by a tileset τ is denoted as Xτ .

The tileset τ is ne-deterministic if for all couples of tiles (w, s) ∈ τ2, there
exists at most one tile t ∈ τ simultaneously compatible to the west with w and
to the south with s: we = tw and sn = ts. In the case of Wang tiles, one can
equivalently say that any tile t ∈ τ is uniquely identified by its couple of colors
(tw, ts). {sw, se,nw}-determinism is defined symmetrically. A tileset is 4-way
deterministic if it is simultaneously sw, se, ne and nw-deterministic.
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Subshifts and expansiveness Given a finite alphabet Σ, a Σ-coloring (or
simply coloring in the absence of ambiguity) of the discrete plane is a map
c : Z2 → Σ. For all u ∈ Z2, we define the translation σu over colorings by
σu(c)(x) = c(x−u) for all c ∈ ΣZ2

and x ∈ Z2. A coloring c ∈ ΣZ2

is periodic of

period p ∈ Z2 if σp(c) = c. The set ΣZ2

of all Σ-colorings is endowed with the
product (over Z2) topology of the discrete topology (over Σ). A subshift X is a
(topologically) closed and translation-invariant (∀u ∈ Z2, σu(X ) = X ) subset of

ΣZ2

. In particular, the set of tilings by a tileset τ is a subshift of τZ
2

.
For all slope α ∈ R ∪ {∞}, let us denote as lα the real line of slope α going

through the origin. For all radius ρ > 0, let us define Lα(ρ) = (lα+[−ρ, ρ]u)∩Z2

for u ∈ R2 a unit vector orthogonal to lα. Lα(ρ) is the discrete thick line of slope
α and width 2ρ centered on the origin. A slope α is a direction of expansiveness
of a subshift X ⊆ ΣZ2

if there exists a radius ρ > 0 such that for all x, y ∈ X ,
x|Lα(ρ) = y|Lα(ρ) =⇒ x = y. In particular, if τ is a 4-way deterministic Wang
tileset, Xτ is expansive in (at least) all directions of R\{0}.

2 From Wang tiles to knight tiles

The notion of 4-way determinism introduces a very strong constraint on the
tileset. Indeed, it strongly limits its capacity to construct particles locally. To
mix particles and determinism, one might loosen the constraints by generalizing
the notion of local determinism to a broader radius r ≥ 1 of determinism.

Radius of determinism A tileset τ is ne deterministic with radius r if for all
valid (i.e. containing no tiling error along its inner edges) (2r + 1) × (2r + 1)
square pattern by τ , the center tile is perfectly determined by the 2r tiles at
positions (1, 2r), (2, 2r − 1), . . . , (2r − 1, 1). Determinism with radius r in the
three other diagonal directions (sw, se and nw) is defined symmetrically. The
tileset is 4-way deterministic with radius r if it is simultaneously deterministic
with radius r in the four diagonal directions.

The different radiuses can be compared through the expansiveness of their
tilings as pointed out by the following proposition.

Proposition 1. If τ is a 4-way deterministic tileset with radius r, then Xτ is

(at least) expansive in directions
]
− r
r−1 ,−

r−1
r

[
∪
]
r−1
r , r

r−1

[
.

The expansiveness directions are actually tightly related to the particles that
can be locally realized. Expansiveness is, up to a change in the radius ρ, inde-
pendent of the profile chosen for the slope. At a fixed radius of determinism, the
ability to mark a line however depends on its profile. Let us denote the horizontal
and vertical unit vectors of Z2 as e1 = (1, 0) and e2 = (0, 1). For any slope α ∈
Q∪{∞}, a (periodic) profile for α is a finite sequence (u0, . . . , uk−1) ∈ {e1, e2}k

such that α =
∑
i ui·e2∑
i ui·e1

. Given a profile P = (u0, . . . , uk−1) for α, we define the

associated subshift LP ⊆ {0, 1}Z
2

as the subshift generated by (i.e. the smallest
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subshift containing) the configuration cP containing a discrete 4-connected line
of slope α drawn following the profile P , i.e. formally defined by cP (x) = 1 if
x =

∑
0≤i≤n ui mod k or x = −

∑
−n≤i<0 ui mod k for some n ≥ 0, and cP (x) = 0

for all other x ∈ Z2. Note that LP exactly contains all translated versions of
cP , plus the blank coloring (all 0s) for compactness reasons. A coloring c ∈ ΣZ2

,
where Σ contains an identified blank color c0 ∈ Σ, is a particle of direction
α ∈ Q ∪ {∞} if it is periodic in direction α (i.e. c admits a periodicity vector
(px, py) ∈ Z2 such that α =

py
px

) and ultimately constant1 equal to c0 in any other
direction. This equivalently means that all non-blank cells of c are contained in
Lα(ρ) + ∆ for some ρ > 0 and ∆ ∈ Z2. We say that a slope α ∈ Q ∪ {∞} is
locally realized by a tileset τ if there exists a projection π : τ → {0, 1} (naturally

extended to colorings π : τZ
2 → {0, 1}Z2

) such that there exists a profile P for
the slope α such that π(Xτ ) = LP and every tiling of Xτ is a particle. The
previous definition introduces a reinforced notion of soficity for LP .

The following results conclude our remarks on radiuses of determinism.

Proposition 2. If a slope α is locally realizable by a tileset τ then α is not a
direction of expansiveness for Xτ .

Proposition 3. The slopes that are locally realizable by 4-way deterministic

tilesets at radius r are exactly Q ∩
([
−∞,− r

r−1

]
∪
[
− r−1r , r−1r

]
∪
[

r
r−1 ,+∞

])
.

Knight tiles Whereas classical 4-way determinism is a purely syntactic prop-
erty of the tileset, to check determinism at radius r one has to consider all tilings
of (2r+ 1× 2r+ 1) squares. We introduce deterministic knight tiles as a conve-
nient and purely syntactic notion of determinism at radius 2 that can be checked
directly on the tiles.

Given a finite alphabet C of colors, a knight tile is formally a 12-tuple of
C12 and a knight tileset is a finite set of knight tiles. For convenience, each of
the twelve components of a knight tile will be identified by a direction among
{w, s,e,n,ws, sw, se,es,en,ne,nw,wn} and for a knight tile T ∈ C12, we will
for instance denote by Tw ∈ C the corresponding w color. A tiling of the discrete
plane by a knight tileset τ is a map t : Z2 → τ satisfying the following constraints,
for all (x, y) ∈ Z2: t(x, y)w = t(x − 1, y)e, t(x, y)s = t(x, y − 1)n, t(x, y)e =
t(x + 1, y)w, t(x, y)n = t(x, y + 1)s, t(x, y)ws = t(x − 2, y − 1)en, t(x, y)sw =
t(x − 1, y − 2)ne, t(x, y)se = t(x + 1, y − 2)nw, t(x, y)es = t(x + 2, y − 1)wn,
t(x, y)en = t(x+2, y+1)ws, t(x, y)ne = t(x+1, y+2)sw, t(x, y)nw = t(x−1, y+2)se,
and t(x, y)wn = t(x − 2, y + 1)es. This means that each tile of a tiling shares
each of its different color components with one of the twelve neighboring tiles
represented on the figure 1(a).

A knight tileset τ is ne-deterministic if any tile t ∈ τ is uniquely identified by
its quadruple of colors (twn, tw, ts, tse), i.e. there is at most one tile in the set that
is compatible with the four colors pointed out on the figure 1(b). Determinism

1 Note that all our results would remain true replacing “ultimately constant” by “ul-
timately periodic” in the definition of a particle.
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(a) Neighborhood of a knight tile (b) ne determinism

Fig. 1. Knight tiles and determinism

in the three other diagonal directions (sw, se and nw) is defined symmetrically.
A knight tileset is 4-way deterministic if it is simultaneously deterministic in the
four diagonal directions sw, se, ne and nw.

The rest of the paper is dedicated to advocate for the use of this notion of
radius-2 determinism by showing that constructions that are painful to handle
in the classical 4-way deterministic setting can be treated with particles and
collisions in the 4-way deterministic knight setting.

3 The seeded Knight Domino Problem is undecidable

Simulating a Turing machine with classical 4-way tiles requires a complicated
machinery [5] involving particular aperiodic tilesets. Knight colors provide enough
flexibility to handle it directly and prove the undecidability of the Domino Prob-
lem with a seed tile in a classical way.

Problem 1 (Domino Problem with a seed tile). Given a tileset τ and a specified
seed tile t0 ∈ τ , does there exist a tiling of Z2 by τ using (at least once) the
tile t0?

The reader is assumed familiar with Turing machines. As every Turing com-
putation can be made reversible [9,10], we directly work with reversible Tur-
ing machines. A reversible Turing machine (RTM) is a 5-tuple (Σ,Q,←→qi , F, δ)
where Σ is the tape (finite) alphabet, Q the finite set of states. Before defining
the remaining elements of the tuple, let us state that the head always moves at
each transition and we denote its two possible moves by {←,→}. Let us also

define
←→
Q = Q × {←,→} whose elements will be written −→q (resp. ←−q ) to de-

note (q,→) (resp. (q,←)). Then we define the partial injective transition map

δ :
←→
Q ×Σ →

←→
Q ×Σ. Finally←→qi ∈

←→
Q is the initial (oriented) state and F ⊂

←→
Q

is the set of final (oriented) states (and we will assume that δ is not defined on
states of F ). This is an acceptable model for reversible Turing machines that
will be furthermore well-fitted to our purpose.

The tileset described on figure 2, where colors are conveniently represented by
arrows that must be go uninterrupted across tile edges, is a 4-way deterministic
knight tileset that simulates a given RTM (Σ,Q,←→qi , F, δ). Firstly note that
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the only knight color components used in this simulation are {sw, se,ne,nw}
hence there is no ambiguity on the knight colors represented on the figure 2.
To be able to use efficiently these knight colors for determinism, one must slow
down the simulation. To that purpose, each transition of the Turing machine is
decomposed into three steps in this fixed order: 1. a state transition step where
the transition is done but the head does not yet move, though its move is already

contained in the state of
←→
Q (the corresponding tiles are represented on the third

line of the figure); 2. a waiting step where nothing happens (second line of the
figure); 3. a move step where the head finally moves (first line of the figure).
The Wang constraints to enforce this order for the steps of the computation
process are not explicitely represented on the tiles of figure 2, but it is a simple
counting modulo 3 in the vertical colors. Assuming that a Turing computation
is correctly initialized in a tiling, then each line of the space-time diagram of the
Turing machine can be read once every three lines of the tiling.

For all a, b ∈ Σ, ←→q ∈
←→
Q :

a

a

←−q

−→q b

b

←−q

a

←−q a
←−q

←−q

a

−→q a
−→q

−→q

−→q

←−q b

b

−→q

a

a

←→q a

←→q a

←−p

δ−1(←→q , a) = (−→p , b)

←→q a

←→q a

−→p

δ−1(←→q , a) = (←−p , b)

a

a

←→q a

←−r b

←−r

δ(←→q , a) = (←−r , b)

←→q a

−→r b

−→r

δ(←→q , a) = (−→r , b)

Fig. 2. Deterministic knight tiles simulating a RTM

One can enforce the initialization of the Turing computation using a seed tile
and the tiles of the figure 3(a) that force a blank tape containing a unique Turing
machine head to appear in the tilings. The labels “≤ −2”, “−1”, “0”, “1” and
“≥ 2” appearing on the tiles denote some specifications for the horizontal colors:
the tile with index 0 is only compatible to the left (resp. right) with the tile with
index −1 (resp. 1) and, to the left (resp. right) of the −1 (resp. 1) tile, only the
“≤ −2” (resp. “≥ 2”) tile can appear. However, these tiles cannot directly be
added to the previous simulation tile set without losing the 4-way determinism.
Indeed, it not difficult to see that, as is, predicting the tiles with index −1 or 1 is
not possible in every direction. To solve that problem, one can add a very simple
layer of information represented by the Wang tiles of the figure 3(b): a blank
tile g0 and a tile g1 carrying a vertical “ghost” signal (that must be vertically
preserved along columns of the tilings). Denoting as τT the Turing simulation
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tiles of the figure 2, τ1i the three initialization tiles with indices {−1, 0, 1} of
the figure 3(a), τ2i the two initialization tiles with labels “≤ −2” and “≥ 2” of
the figure 3(a) and b the blank tile of the figure 3(a), we define the two-layered
knight tileset τ = ((τT ∪ {b})× {g0, g1}) ∪ (τ1i × {g1}) ∪ (τ2i × {g0}), which can
be interpreted as a standard knight tileset on couples of colors of each layer.
In a tiling, the three consecutive columns containing the initialization tiles with
indices {−1, 0, 1} are the only one carrying a ghost signal (tile g1) on the second
layer. This allows to predict these tiles in every direction, hence the knight tileset
τ is 4-way deterministic. As the transition tiles are not defined on final states, τ
tiles the plane if and only if the simulated Turing machine does not halt on the
blank tape. It is then straightforward to derive the following result.

Theorem 1. The Domino Problem with a seed tile is undecidable for 4-way
deterministic knight tilesets.

B

≤ −2

B

−1

−→qi

if ←→qi =←−qi
or

B

−1

if ←→qi = −→qi

←→qi B

0

seed

B

1

if ←→qi =←−qi

B

1

←−qi
or

if ←→qi = −→qi

B

≥ 2

blank

(a) Initialization tiles

g0

g1

(b) Ghost signals

Fig. 3. Additional knight tiles to initialize the Turing computation

4 Marking a diagonal

Considering deterministic knight tiles allows to easily build particules that are
not realizable in the usual deterministic Wang framework (where the only re-
alizable slopes are 0 and ∞ by proposition 3) as illustrated by the following
result.

Proposition 4. The slopes that are locally realizable using 4-way deterministic
knight tiles are exactly Q ∩

(
[−∞,−2] ∪

[
− 1

2 ,
1
2

]
∪ [2,+∞]

)
.

Our main construction will rely on these realizable slopes to mark a diagonal
in a lighter way than the construction of [5] in the Wang case. The general
idea is to use a fundamentaly one-dimensional hierarchical structure of signals
similar to an infinite version of Minsky’s classical solution to the Firing Squad
synchronization problem on cellular automata, as what is done for instance in [8].
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This structure has moreover to be reversible so that the tileset can be made
deterministic in two opposite directions, say ne and sw. The structure also
has to be compatible with determinism for knight tiles in the two orthogonal
directions nw and se. The reader might keep in mind that only knight colors
{ws, sw,en,ne} will be used. Thus the tileset will be deterministic at radius 1
(classical Wang tiles determinism) in directions ne and sw, while it will be
deterministic at radius 2 (using knights) in directions nw and se.

The general structure is described on figure 4 where the red dots represent
the diagonal to be marked, referred to as the fire line. For convenience, the four
kinds of signals are named H, H ′, V and V ′ according to the figure. Their re-
spective slopes are 0, 1

3 , 2
3 and∞. A binary hierarchical structure is used to mark

some points along successive front lines until the granularity of space allows all
the marked points of a front to be sufficiently close to decide by a local rule to
fire at that point (and consequently mark the diagonal). Let us enumerate the
front lines by their rank starting at 0 for the fire line. The points of the front of
rank k are regularly arranged and two consecutive points are separated by 2k−1
non-marked positions. The marked points of the front of rank k will be referred
to as pillars, which correspond to the points that are marked on the front of
rank k + 1 (i.e. points that were already marked seen things as a firing squad
with time running towards ne), and middles, which exactly correspond to the
middle positions between pillars. Referring to the figure 4 for the orientation,
building a local rule for the construction to be deterministic in the ne direction is
not particularly difficult and goes straightforward using the represented signals.
By contrast, making this construction deterministic in the sw direction is more
challenging as one has to be able to locally and deterministically distinguish be-
tween pillars and middles. For this, one need an infinite source of well-structured
alternating bits sequences. A way to get such information properly is to resort
to a sequence that is a fixed-point of a well-chosen substitution.

Let us define the Thue-Morse substitution (see [11]) s : {0, 1} → {0, 1}∗ by
s(0) = 01 and (1) = 10. We naturally extend the definition of s to finite words
of {0, 1}∗ (resp. infinite words of {0, 1}N) defining, for all u ∈ {0, 1}∗ (resp.
u ∈ {0, 1}N), s(u)2i+k = s(ui)k for all i ∈ {0, . . . , |u| − 1} (resp. i ∈ N) and
k ∈ {0, 1}. The Thue-Morse word T ∈ {0, 1}N is the unique fixed-point of s
starting with the letter 0: T = limn→+∞ sn(0) that exists as s(0)1 = 0 and is
infinite as |s(0)| > 1. As the Thue-Morse word is a fixed-point for s, it can be
unsubstituted into itself by s placing bars every two letters starting with a bar
at position 0. A given factor v of the Thue-Morse word is said even if there
exists a position p ∈ N even such that Tp · · · T|v| = v, which means that there is
a bar just before its first letter v0 (i.e. between Tp−1 and Tp in the Thue-Morse
word) in one of the possible decompositions of v. Complementarily, a factor
is said odd if it appears at an odd position p in the Thus-Morse word, which
means that the bar is between v1 and v2 in a decomposition of v. A factor can
simultaneously be even and odd if it appears in the Thue-Morse word at both
even and odd positions: for instance 011 appears at positions 1 and 7. However,
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H

V

V ′

H ′

fire
line

front
0

front
1

front
2

Fig. 4. General scheme of the structure

the following lemma points out the fact that a sufficiently large factor cannot be
simultaneously even and odd.

Lemma 1. Any factor of T of length at least four is either even or odd, which
means that it admits a unique decomposition.

Hence it is sufficient to look at factors of size four to be able to determine
unambiguously their alignment. Observe that moving letter by letter a window of
size four over the Thue-Morse word, one sees an alternating sequence of even/odd
factors. This will constitute the alternating bits sequence we require.

Now that all the required objects are defined, each signal of the construction
will henceforth carry a factor of size four of the Thue-Morse sequence. The signals
H and V only carry the even words while H ′ and V ′ only carry odd words. When
two signals meet on a marked point, we require them to carry the same factor
u (|u| = 4) and we substitute it by s (|s(u)| = 8) to derive the four factors
carried by the four “outgoing” (seeing time going ne) signals: the produced
type V signal must carry s(u)1 · · · s(u)4, the type V ′ must carry s(u)2 · · · s(u)5,
the type H ′ must carry s(u)4 · · · s(u)7 and the type H must carry s(u)5 · · · s(u)8.
Firstly remark that knowing s(u), one uniquely deduces u. Although there is no
“middle signal” to carry s(u)3 · · · s(u)6, it can easily be deduced from the four
other derived words we dispose of.

This defines a coherent structure. Indeed, let us consider any bi-infinite word
of {0, 1}Z such that every factor appears in the Thue-Morse sequence2, “writ-
ten” along a front line of rank k > 1 in the following sense: two consecutive

2 For topological reasons, such a word exists. The set of all these words is actually
a non-empty subshift of {0, 1}Z. All of them are fixed-point for the Thue-Morse
substitution.
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00101

10011

11001

10100

10010

01100

10011

10110

11001

11001

01011

01100

00101

10110

11010

01100

10010

01011

00101

01001

00101

00110

10100

10010

10010

11010

01001

01101

10011

01101

10100

11001

10110

11010

01001

01011

01101

01100

00101

10110

10100

10010

01011

00110

11001

00101

11010

01100

10010

10011

10100

00110

11001

01101

10011

01100

01001

01001

00110

10100

10011

10100

11010

11010

01001

01101

10100

11010

11010

01101

01101

01101

Fig. 5. Marking a diagonal

marked points hold two consecutive factors of size 4 with a one-letter shift. The
previously described local mecanisms of substitution/unsubstitution on marked
points enforce the same word (as it is a fixed-point) to appear on all the other
front lines and to be used as a ressource to properly alternate between middles
and pillars on a front line, coherently with other lines so that a proper global
binary hierarchical structure is enforced.

A realization of this structure using knight tiles is given on the figure 5 where
the colors are represented using some convenient signal notations. The knight
colors are not represented on this figure but are all illustrated on the figure 6. H
and V signals, of respective slopes 0 and∞, carry even words and meet on pillars
(solid black squares on the figures). The pilar tiles force their two incoming H
and V signals to carry the same factor u. As the four outcoming factors are
derived from this common word, a pillar tile is perfectly determined by u, which
is explicitely written next to each pillar on the figure 5. Similarly, H ′ and V ′

signals, of respective slopes 1
3 and 2

3 realized using particular profiles for reasons
that will be exposed later and two different types of knight colors to distinguish
the two different types of angles that appear in that profile as illustrated by
figures 6(a) and 6(b), carry odd factors. These signals meet on middles, that
are represented by gray squares on the figures. The middle tiles force their two
incoming H ′ and V ′ signals to carry the same factor u. As the four outcoming
factors are derived from this common word, a middle tile is perfectly determined
by u, which is explicitely written next to each middle on the figure 5.



Knight tiles 11

(a) H ′ signals (b) V ′ signals (c) Pillar

(d) Middle (e) Fire

Fig. 6. Knight colors of the tileset

We do not dispose of enough space to formally describe the whole tileset.
Although most of it is a rather straightforward translation of the previously ex-
posed scheme (figure 4 and its symmetric along the fire line) into a tileset, several
points certainly require explanations. This is what the remaining paragraphs are
dedicated to.

First, when a H signal meets a V , they do not simply cross each other, there
is actually a collision occuring (grey dot on the figures) and there are actually
two kinds of H/V signals. When two signals of the first kind meet, they cross
each other and by the way change into the second kind (darker color on the
figures). When two signals of the second kind meet, they produce a pillar that
will in turn produce two signals of the first kind. This collision has to be treated
particularly when it is the last collision before the fire line, which can be detected
as the collision tile also has to contain some H ′/V ′ signals when it is near the
fire line (see figure 6(e)). In that case, the first kind of H/V signals is changed
into a third kind that produces a fire tile (instead of a pillar) when meeting.

The case of H ′ and V ′ signals requires some careful attention as we need to
use knight colors for them to be deterministic in the nw and se directions. The
knight colors used basically contain the type of signal and the word it carries.
However a knight must absolutely not cross a front line as in this case the deter-
minism in one of the orthogonal ne or sw directions would fail. Without entering
into the details, our solution consists in using the (e1, e1, e2, e1, e1, e1, e1, e2)
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profile (alternating between 2 and 4 horizontal steps) such that one can make
sure that the tiles that appear at both end of a signal are tiles with blank knight
colors (hence no knight crosses the front line). We use the symmetrical profile
for V ′ signals. All situations are illustrated by figure 6.

The fire line must appear when marked points are sufficiently close (and as for
the front line, no knight should cross the fire line). We resort for that to several
ad-hoc tiles that appear only near the fire line, as this was already illustrated by
the third kind of H/V signals. This is illustrated by the figure 6(e).

On the other side of the fire line, say the ne side, the hierarchical structure is
symmetrically dismantled. This is done by duplicating all the colors used in the
sw part and defining a ne tile from each sw tile by applying a symmetry along
the nw–sw diagonal on the tile and replacing each sw color by its ne duplicate.
Only the fire tiles, that make the junction between boths sides, simultaneously
hold sw and ne colors. That way, the resulting tileset is time-symmetric: it is
its own “inverse” up to a swap in colors.

To conclude, let us denote as κ the previously described knight tileset. The
following theorem underlines the properties κ was builded for.

Theorem 2. κ is a 4-way deterministic knight tileset and its set of tilings
projects onto the diagonal subshift, i.e. {0, 1}-colorings containing at most one
diagonal of 1 and 0 everywhere else.
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Appendix: Proofs and complementary material

The complementary material for the reviewers follows the order of the article.

Proof of proposition 1 A perfectly formalized proof of this result would
require to define some formal tools to properly manipulate the objects we are
dealing with, like the coding relation of [6] (definition 3.1). For brevity and
simplicity, we will only give a slightly informal yet convincing presentation of
our arguments.

Proof sketch. First observe that, for α ∈ R∪{∞}, if there exist ρ, ε > 0 such that
Lα(ρ) ( Lα(ρ+ε) and for all x ∈ Xτ , x|Lα(ρ) perfectly determines x|Lα(ρ+ε), then
Xτ is expansive in direction α (as, “iterating” the argument, x|Lα(ρ) perfectly
determines x). One can refer to lemma 3.3 of [6] for more details.

For a tileset se and ne-deterministic at radius r, the two red cells of the
subfigures of the figure 7 are uniquely determined by the 2r white ones. For

any slope α ∈
]
r−1
r , r

r−1

[
, i.e. strictly between the two limit slopes in blue on

the figures, there exists an appropriate ρ0 > 0 such that, up to a translation,
the red cells (i.e. their centers) can be made outside the “expansiveness window”
Lα(ρ0) while the (centers of the) white ones all are inside. This argument applied
along any expansiveness window of radius ρ ≥ ρ0 ensures that it can be locally
extended on both sides using the local rule of determinism. Said otherwise, as
illustrated by the figure 8 where the rule of determinism is represented by the red
lozenge lying on the line of slope 1, there exists ε > 0 such that Lα(ρ) ( Lα(ρ+ε)
and for all x ∈ Xτ , x|Lα(ρ) perfectly determines x|Lα(ρ+ε) which implies the
expansiveness in direction α.

The other interval of directions of expansiveness is obtained symmetrically
considering the two other directions of determinism. �

Proof of proposition 2

Proof. For any ρ > 0, Consider the tiling that is projected to the blank coloring
(all 0s) and a tiling that projects onto a line of slope α sufficiently far from the
origin so that only blank tiles are visible in the “expansiveness window” Lα(ρ).
Both tilings coincide on Lα(ρ) but are distinct, hence Xτ cannot be expansive
in direction α. �

Proof of proposition 3

Proof. The realizability part is proved in details for radius 2 in the more con-
straining case of knight tiles (keep the same profile, simply remove the additional
knight colors that are not required anymore as the local rule of determinism can
already “see” the cells “emitting” these colors) in the proof of proposition 4. This
generalizes straightforwardly to the case of deterministic Wang tiles of arbitrary
radius.

The “exactly” part is a consequence of propositions 1 and 2. �
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(a) Limit slope r−1
r

(b) Limit slope r
r−1

Fig. 7. Limit expansive directions for determinism radius r

2ρ
ε

Fig. 8. Expansiveness in a direction 1 < α < r
r−1
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Fig. 9. Example of tiling simulating a Turing computation



16 B. Le Gloannec, N. Ollinger

Proof of proposition 4

Proof. Firstly recall that the “exactly” part is due to propositions 1 and 2. Also
remark that the cases of slopes 0 and∞ are trivial, the case of the interval

[
− 1

2 , 0
]

is equivalent to the case of the interval
]
0, 12
]

up to a horizontal symmetry on tiles
and the case of the interval [2,+∞[ (resp. ]−∞, 2]) is equivalent to the case of the
interval

]
0, 12
]

(resp.
[
− 1

2 , 0
[
) up to a symmetry along the sw–ne (resp. nw–se)

diagonal on tiles. Hence it is enough to consider the case of a slope α ∈ Q∩
]
0, 12
]
.

For such a slope, the determinism in directions ne and sw can be obtained
without effort (as one directly sees the tiles of the slope in these directions), hence
only knight colors of types {ws, sw,en,ne} could be useful here, and we will
actually only use {ws,en}. The difficulty is to be able to predict the appearance
of the angles of the slope in the nw and se directions. All we need is to provide a
profile (considered cyclically) for α whose angles (i.e. transitions e1/e2) can be
predicted at radius 2 using knight colors. It it not difficult to see that as long as
no sub-sequence of the form (e1, e2, e1, e2, e1, e2) (resp. (e2, e1, e2, e1, e2, e1))
appears in the profile, it is always possible to “see” the line with knight colors of
types {sw,en} (resp. {ws,ne}) when going towards nw (resp. se). If we limit
ourselves to the single knight color en (resp. ws), we have the more restrictive
(e1, e2, e1, e2) (resp. (e2, e1, e2, e1)) forbidden pattern. Let us write α = p

q with

q ≥ 2p > 0 and consider the profile P = (e1, e1, e2, . . . , e1, e1, e2︸ ︷︷ ︸
p times

, e1, . . . , e1︸ ︷︷ ︸
q−2p times

).

It satisfies the required property and using a special knight color to mark each
of the angles of the line, one straightforwardly builds 4-way deterministic knight
tiles to locally realize the line. �

Parabola We give here without entering into the details an example of a non-
trivial system of particles and collisions: the parabola of the figure 10. Such a
system would be technically very complex to realize using 4-way deterministic
Wang tiles. It is however rather simple to achieve in the 4-way deterministic
knight setting. Only the knight colors {sw, se,ne,nw} are used. The tiles can
directly be read on the figure.

Proof of lemma 1

Proof. Let us first state one classical fact about the Thue-Morse word: T does
not contain any triple factor www where w ∈ {0, 1}∗. A proof (and more about
the Thue-Morse substitution) can for instance be found in [11] (chapter 5). Also
observe that if 00 or 11 appears, then the bar is necessarily in the middle (0|0
or 1|1) as they do not belong to s({0, 1}) = {01, 10} (and this observation is not
ambiguous as the triple factors 000 and 111 do not appear). Among all 16 words
of {0, 1}4, only 10 do not contain a triple factor (and they all actually appear
in the Thue-Morse word). All of them contain 00 or 11 (thus are unambiguous)
except 0101 and 1010. As they are symmetric, we only consider 0101. If it were
odd, i.e. 0|10|1, then we would necessarily have 10|10|10 considering the previ-
ous and the next letter of the factor in T , which is contradictory as this gives
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Fig. 10. Deterministic marking of a parabola
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birth to a 10 triple factor. Hence it is even. For the sake of completeness, the
following 4 factors are even {0101, 1001, 1010, 0110}, while the other 6 are odd
{1011, 0010, 1100, 0011, 0100, 1101}. The result holds for factors of size greater
than 4 as they contain a factor of size 4. �

More detailed explanations for H ′ and V ′ signals The case of H ′ and V ′

signals requires some careful attention. Indeed we need to use knight colors for
them to be deterministic in the nw and se directions. The knight colors used
basically contain the type of signal and the word it carries. However there is a
constraint on the possible positions for a knight color: a knight must absolutely
not cross a front line as in this case the determinism in one of the orthogonal
ne or sw directions would fail. Indeed, seeing time going ne, this could happen
in the two following situations:

1. The knight links a tile from an incoming H ′ or V ′ signal to a tile that is on
the ne side of the front line. Then the factor carried by this knight would
not be predictable in the sw direction as the four derived factor would not
all be “readable” by the deterministic rule.

2. The knight links an outcoming H ′ or V ′ tile to a tile that is on the sw side
of the front line. Then this tile would not be predictable in the ne direction.

Using the quite natural (e1, e1, e1, e2) profile (3 horizontal steps for each vertical
one) for the slope 1

3 of H ′ signals would make us fall into one of these situations.
The adopted solution consists in using the (e1, e1, e2, e1, e1, e1, e1, e2) profile
(alternating between 2 and 4 horizontal steps). That way, there are exactly three
tiles in the signal that do not hold a knight color: the tile that is in the middle of
the 3 tiles corresponding to the 2 horizontal steps and the two tiles surrounding
the middle of the 5 tiles corresponding to the 4 horizontal steps. We use the
symmetrical profile for V ′ signals. Boths cases are illustrated on the figures 6(a)
and 6(b). Moreover, by choosing the right starting tile for the emission of a
signal on a pillar/middle, one can make sure that when two H ′ and V ′ signals
meet to produce a middle, they had always just used that knight-less tile, i.e.
the western and southern neighbors of a middle are always the two knight-less
tiles of the H ′ and V ′ signal respectively. Said otherwise, for H ′ signals (the
V ′ case is symmetric), the marked points always appear at the position of the
middle tile in the 5 tiles corresponding to the 4 horizontal steps, hence they are
directly surrounded in the signal by tiles that hold no knight color. We prevent
that way the first failure as illustrated by the figure 6(d): the knights from the
incoming signals do not cross the front line. The choice done also prevents the
second failure as illustrated by the figures 6(c) and 6(d): the knight from the
outcoming signals do not cross the front line.

Complete description of the tileset The tileset κ contains 1151 tiles that can
be classified into the 41 categories of figure 11. The colors are denoted by lines
drawn on the tiles that must continue uninterrupted across tile edges, except for
the H ′ and V ′ signals where, due to their particular profiles, some discontinuities
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appear along edges marked by the special colors #1 and #2. The H and V signals
can carry any of the 4 even subwords {0101, 1001, 1010, 0110}. The H ′ and V ′

signals can carry any of the 6 odd subwords {1011, 0010, 1100, 0011, 0100, 1101}.
The knight colors only appear on tiles containing a H ′ or V ′ signal and carry the
same odd subword as the associated H ′ or V ′ signal. On tiles containing several
H ′ and V ′ signals, the direction of each knight color easily permits to identify
unambiguously the associated H ′ or V ′ signal. Pillar and middle tiles were al-
ready comprehensively described in the article (the two incoming signals carry
the same subword, the four outcoming words are derived from the substitution
of this subword).

Only the tiles of the sw half plane delimited by the fire line are represented on
the figure 11. The ne tiles appearing on the other side of the fire line are obtained
from the sw tiles by applying the transformation represented on the figure 12
(color swap and symmetry along the nw–sw diagonal of the tiles), where, for
each sw color c, we denote by c′ its duplicate for the ne tileset. The same
notation is used on figure 11 for the fire line tiles, which must themselves respect
this symmetry as they make the junction between both symmetric tilesets. The
transformation is applied to all the tiles to obtain their symmetrical counterpart,
except for the fire line tiles (that are fixed points for this transformation).

A large version of the figure 5 is provided on figure 13.

Proof of theorem 2

Proof sketch. The first assertion is a straightforward syntactic verification on
tiles. Note that κ is even deterministic at radius 1 (standard Wang tiles deter-
minism) in directions ne and sw(as the knight colors for these directions are not
used here).

On the other hand clear, κ tiles the plane (blank tiling) and there exists

π : κ → {0, 1} (naturally extended to colorings π : κZ
2 → {0, 1}Z2

) such that
π(Xκ) = L−1, where L−1 denote the subshift generated by the {0, 1}-coloring c
such that, for all (x, y) ∈ Z2, c(x, y) = 1 if x+ y = 0 and c(x, y) = 0 otherwise.
Indeed, picking an arbitrarily long factor of the Thue-Morse sequence and writing
it with fire tiles on the diagonal of an empty square, as on the figure 5, one easily
sees that the local ne and sw determinisms can be applied to turn the whole
square into a valid square pattern. Hence there exist arbitrarily large valid square
patterns marking their finite diagonal. For compactness reasons, there must exist
a tiling of the whole plane containing a marked bi-infinite diagonal. This implies
in turn the left-right inclusion by translation invariance. To prove the converse,
observe that a tiling containing a fire tile must contain a full fire line and the
whole associated structure, hence all “degenerated” tilings are projected to the
blank coloring. �

Finally, observe that the set of tilings by κ is at least expansive in directions
]−∞, 0[ ∪

]
1
2 , 2
[
.
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Blank tile:

H and V signals and collision:

H ′ signal:

#1

#1#2

#2

V ′ signal:

#1 #1#2 #2

V/H ′ and H/V ′ crossings:

Pillar, signal emission tiles and middle:

Particular collisions and crossings near the fire line:

Fire:

a

a′

b

b′ c

c′

d

d′

Fig. 11. 41 types of tiles in κ
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Fig. 12. Symmetric transformation on tiles
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