GÉNÉRALISATIONS QUANTITATIVES DU CRITÈRE D'INDÉPENDANCE LINÉAIRE DE NESTERENKO

Abstract : In this paper we extend Fischler's quantitative generalization of Nesterenko's linear independence criterion, by weakening the hypotheses on the divisors of the coe cients of the linear forms and allowing (to some extent) the linear forms not to tend to 0. Another version of this result is proved, in the spirit of Siegel's criterion, with a recurrence relation veri ed by the linear forms. Finally, the results are restated in a more general setting in terms of convex bodies and lattices of $\mathbb{R}^n$.
Document type :
Reports
Liste complète des métadonnées

Cited literature [18 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00959764
Contributor : Simon Dauguet <>
Submitted on : Monday, March 17, 2014 - 5:21:19 PM
Last modification on : Thursday, January 11, 2018 - 6:12:18 AM
Document(s) archivé(s) le : Tuesday, June 17, 2014 - 10:56:36 AM

Files

Article_Theorie.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00959764, version 1
  • ARXIV : 1403.4205

Collections

Citation

Simon Dauguet. GÉNÉRALISATIONS QUANTITATIVES DU CRITÈRE D'INDÉPENDANCE LINÉAIRE DE NESTERENKO. 2014. ⟨hal-00959764⟩

Share

Metrics

Record views

147

Files downloads

147