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ABSTRACT: New Caledonia is one of the main hot spots of biodiversity on the planet. 

Large amounts of contaminants are discharged into the lagoon as a result of increasing 

anthropogenic activities such as intense mining, urbanization and industrialization. 

Concentrations of 14 trace elements and 26 persistent organic pollutants (POPs: PCBs and 

pesticides) were measured in the muscles of two anguilliform fish species, over a coast to 

barrier reef gradient in two lagoon areas differently exposed to anthropic disturbances. This 

study emphasizes the high trace element contamination status of anguilliform fish and also 

highlights slight but perceptible organic pollution. The contamination extends throughout the 

lagoon, from coast to barrier reef, even in areas remote from emission points. High levels of 

trace elements, especially those linked to mining activities (i.e. Co, Cr, Fe, Mn and Ni), were 

detected in coastal sites. Furthermore the large dispersion of most POPs throughout the entire 

lagoon poses the question of their potential toxicity on marine organisms from numerous 

habitats. Our results underline the need for long term monitoring of various contaminants over 

large spatial and time scales. 

 

Keywords: trace elements; PCBs; pesticides; POPs; carnivorous fish; coral reefs; SW Pacific 

Ocean. 



1. Introduction  
 

Coral reefs are threatened by a wide range of natural and anthropic disturbances, 

including chemical pollution (Richmond, 1993). Three main contaminant classes are 

particularly involved: polychlorinated biphenyls (PCBs), pesticides (both classes are part of 

persistent organic pollutants or POPs), and metallic trace elements. These ubiquitous 

contaminants can be toxic, even at low concentrations; they are resistant to degradation, 

transported over long distances and can bioaccumulate in marine organisms (e.g. Phillips 

1995; Robertson and Hansen 2001). The half-life of contaminants in the marine environment 

is estimated to be at least a decade for the most persistent PCBs (Sinkkonen and Paasivirta 

2000; Robertson and Hansen 2001), several years to a decade for trace elements such as Hg 

(Lodenius 1991), and several months to years for pesticides (Hellawell 1988). After their 

release into the marine environment, some contaminants can be strongly accumulated by 

organisms of different trophic levels (Van Ael et al. 2012; Dummee et al. 2012). 

 

Southwest Pacific coral reefs are generally in good health. However, for a few 

decades, toxic wastes released by human activities threaten some of them (Richmond 1993). 

New Caledonia’s lagoon, the largest in the world, is no exception. This hot spot of 

biodiversity is subjected to increasing contamination pressure resulting from industrialisation 

and urbanisation. New Caledonia is the third producer of nickel ore in the world (Dalvi et al. 

2004). Since the end of the 19th century, many open-cast mines and three metallurgical 

factories have been opened. Mining activities and natural soil erosion due to rainfall 

(Ambatsian et al. 1997) generate massive sediment deposits and discharge of associated trace 

elements (Co, Cr, Fe, Mn and Ni,) into the lagoon. Furthermore, with the expansion of 

industrial factories and urban development, the lack of efficient treatment of wastewater and 

the use of pesticides for agriculture, the contamination by POPs is also an important issue. 

Nearly 250 pesticides are officially authorized in New Caledonia (DAVAR, 2001). Twenty-

six of these are banned but in Europe are still extensively used in NC. 

Several studies focused on trace metal contaminants in coastal waters, in particular 

around Nouméa (the main urban region) (Fernandez et al. 2006; Metian et al. 2008a, b; 

Hédouin et al. 2008, 2009, 2011). Bioaccumulation of mining (Co, Cr, Fe, Mn and Ni) and 

urban trace elements (Ag, As, Cd, Cu, Hg, Pb, Se, V and Zn) have been investigated in 

various taxa (crustaceans, molluscs, ascidians) (Bustamante et al. 2000; Hédouin et al. 2006, 

2007, 2009, 2010, 2011; Pernice et al. 2009; Metian et al. 2008a, 2010). One study recently 



revealed high contamination levels by trace elements in fish from the south-western lagoon, 

extending from the coast to the barrier reef (Bonnet et al. 2014). However, there is still little 

information available about trace element contamination of fish across the whole lagoon in 

New Caledonia (Chouvelon et al. 2009, Fernandez and Breau 2011; Metian et al. 2013). 

Furthermore, to our knowledge there is no information available to date on PCB and pesticide 

concentrations in marine organisms in New Caledonia. 

Analyses of spatial patterns of contamination allow the identification of their 

environmental sources. They also lead to a better understanding of the physical, chemical and 

biological processes involved in contaminant accumulation (Robertson and Hansen 2001; 

Johnson et al. 2005). However, with the exception of the coastal region (especially in 

Nouméa), contamination by trace elements is insufficiently documented and its impact on 

marine ecosystems remains unclear. Considering the immense surface of the south-western 

lagoon of New Caledonia, it is necessary to extend investigations to a large spatial scale and 

to other contaminants such as POPs. 

 

Marine top predators, mainly long-liv ing species, bioaccumulate high levels of 

metallic elements (e.g. Cd and Hg) or organochlorine pollutants in their tissues (e.g. Adams 

and McMichael 1999; Wafo et al. 2012). Fish are particularly useful to assess contamination 

status and distribution of pollutants; especially if they are site-attached or even territorial, 

living in benthic habitats and have a high trophic level (carnivorous) (e.g. Kojadinovic et al. 

2007; Dierking et al. 2009). The sedentary nature of fish is a crucial aspect in spatial 

variability studies of contamination. Anguilliform fish (morays, congers and snake eels), 

which are ubiquitous organisms highly represented in tropical marine waters, fulfil the 

conditions of good bioindicators in contamination monitoring (Bonnet et al. 2014). These 

sedentary benthic predators, which mainly live in coral reef matrices of shallow waters, are 

good candidates for studying the impact and spatial variability of contamination in marine 

environments. Surprisingly, to date they have received little interest, which could be due to 

their cryptic lifestyle and the difficulty to collect them (Ineich et al. 2007). 

 

In this general context, the main purposes of this study were 1) to determine the level 

of contamination of two anguilliform fish species by trace elements and POPs, 2) to study the 

spatial variability of these contaminants along two coast-barrier reef gradients which are 

differently exposed to human activities. As the influence of ecological and biological factors 

on the concentration of contaminants is important, three biological parameters (body size, 



trophic position, and lipid content in tissue) and their link to the bioaccumulation processes 

were also investigated. 

 
 
2. Materials and methods 

 

2.1 Fish sampling and study areas 

 

Two anguilliform species were studied, Gymnothorax chilospilus (Muraenidae) and 

Conger sp. (Congridae). Capture of specimens was carried out using sea kraits (Laticauda 

spp.) because the prey of these predators is almost exclusively anguilliform fish. This method 

has been successfully used in previous studies (e.g. Reed et al. 2002; Ineich et al. 2007; 

Brischoux et al. 2011). The prey items were obtained by a gentle massage of the sea krait 

abdomen. Because the eels consumed are non-spiny, the snake readily regurgitates their prey 

(Brischoux and Bonnet 2009) without any effect on their survival (Fauvel et al. 2012). The 

spatial accuracy of sea snake sampling and their use as sentinels was described in previous 

studies (Brischoux et al. 2007a, 2009; Brischoux and Bonnet 2008; Bonnet 2012). Sea kraits 

probe the surrounding seafloors within a radius of 10-15km and anguilliform fish are 

extremely sedentary. Considering the large spatial scale of the current study, this accuracy 

was sufficient to examine possible local influences along a coast-barrier reef gradient.   

 

The study was realized in the South Western lagoon of New Caledonia. Both fish 

species were caught in two main areas: Grand Nouméa (GN) and Grand Lagon Sud (GS) (Fig. 

1). Grand Nouméa, which is close to the main city of Nouméa, is subject to a variety of 

anthropic pollution such as industrial activities, farming industries and wastewater. In 

particular a nickel factory has functioned since 1880 (SLN, Société Le Nickel, Fig. 1). Grand 

Lagon Sud is less influenced by industrial and urban pollution. Nevertheless, since 1950 

mining activity has developed near the Bay of Prony (Goro-Nickel, Vale Inco, Fig. 1), 

increasing the erosion of lateritic soil in this region. For each area, three stations located on a 

coast-barrier reef gradient inside the lagoon were sampled: Kuendu beach (coast; CO1), 

Signal islet (intermediate-reef; IR1) and Amédée islet (barrier-reef; BR1) inside GN and Ouen 

island (coast; CO2), Mato islet (intermediate-reef; IR2) and N’da islet (barrier-reef; BR2) 

inside GS (Fig. 1). Sampling was carried out from January to April 2011 and from August to 



September 2011, corresponding respectively to the hot and wet versus cool and dry seasons in 

New Caledonia. 

 

Each fish was identified, measured and weighed prior to dissection (Table 1). As some 

fish collected were partially digested, their total length (TL) was estimated applying 

allometric equations using either the snout vent length, or the tail length (Brischoux et al. 

2007b). For each individual of both species, a piece of white muscle was sampled on the non-

digested part and immediately frozen at -30°C for subsequent analyses. Muscle tissues were 

freeze-dried and ground to powder with a porcelain mortar and pestle. 

 

2.2 Trace element analyses 

 

The total Hg concentration in the powder obtained from the tissues was determined by 

analysing the Hg, with an Advanced Mercury Analyzer (ALTEC AMA 254), directly on 

aliquots ranging from 5 to 50 mg of dry sample weighed to the nearest 0.01 mg (Bustamante 

et al. 2006). From 150 to 300 mg of each sample were digested using a 3:1 v:v nitric-

hydrochloric acid mixture with 65% ultrapure HNO3 and ultrapure 37% HCl. The acidic 

digestion was performed overnight under ambient temperature and then heated in a 

microwave for 30 min, increasing the temperature up to 105 °C, and 15 min at 105 °C (1200 

W). After the mineralization process, each sample was diluted to 30 or 50 ml with milli-Q 

quality water, according to the volume of acid added to the mineralization (3 and 4.5 ml, 

respectively). 

The analysis of Ag, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, V and Zn required an 

extra step in the preparation protocol. These elements were analysed by Inductively Coupled 

Plasma Atomic Emission Spectrometry (Varian Vista-Pro ICP-OES) and Mass Spectrometry 

(ICP-MS II Series Thermo Fisher Scientific). Reference tissues - dogfish liver DOLT-4 

(NRCC), lobster hepatopancreas TORT-2 (NRCC) - were treated and analysed in the same 

way as the samples. Results were in line with the certified values, and the standard deviations 

were low, proving good repeatability of the method. The results for standard reference 

materials displayed recovery of the elements ranging from 73% to 116%. For each set of 

analyses, blanks were included in each analytical batch. The detection limits (µg.g-1 dw) were 

0.005 (Hg), 0.015 (Cd), 0.017 (Ag), 0.02 (Cr, Co, Pb), 0.03 (Ni), 0.08 (Mn), 0.1 (Cu, Se), 0.2 

(As), 0.3 (V) and 3.3 (Fe and Zn). All trace element concentrations are given on a dry weight 

basis (µg.g-1 dw). 



2.3. POP analyses 

 

2.3.1 Choice of PCB congeners and pesticides 

The concentrations of 15 individual congeners (IUPAC Nos. 18, 20, 28, 31, 44, 52, 

101, 105, 118, 138, 149, 153, 170, 180, 194; Ballschmiter and Zell 1980) were determined in 

each sample. This list contains the seven target congeners (PCBs 28, 52, 101, 118, 138, 153, 

180) proposed by the International Council for the Exploration of the Sea (ICES) as indicators 

of PCB contamination (Valoppi et al. 2000).  

The samples and blank were analyzed for the following pesticides: Aldrin, Diazinon,  

Dieldrin, Endosulfan I, Endosulfan II, Endrin, Heptachlor, Heptachlor-epoxide A, Heptachlor-

epoxide B, Lindane and, pp’-DDD, pp’-DDE, pp’-DDT.  

 

2.3.2 Sample extraction and quantification  

Compounds were extracted and quantified following the procedures described by 

Dierking et al. (2009). About 1g of lyophilized sample was extracted and concentrated to 2 

ml. About 100 µL of this extract was reserved to determine the content of lipid (Lp, %) of 

each sample (see next paragraph). The remaining fraction was purified with concentrated 

sulphuric acid, followed by additional purification by liquid chromatography on a silica-

alumina column (Murphy 1972; Wells et al. 1985). Four fractions were eluted: fraction Ia 

(Aldrin, pp’-DDT, Heptachlor (50%)), fraction Ib (Heptachlor (50%), pp’-DDT), fraction II  

(Endosulfan I, Endosulfan II , Lindane, pp’-DDD) and fraction III  (Dieldrin, Endrin, 

Heptachlor-epox A and B). 

 

PCBs and pesticides were analysed by gas chromatography (GC) coupled to mass 

spectrometry (MS). Calibration was done using fifteen individual standard solutions for PCBs 

and a standard mixture containing all pesticides was used for pesticides. All organic pollutant 

concentrations are given on a dry weight basis (ng.g-1 dw). Detection limits were 0.01 ng.g-1 

for PBC congeners, 0.1 ng.g-1 for DDT and its metabolites, 0.01 ng.g-1 for Heptachlor-epoxide 

A and B, 0.1 ng.g-1 for Lindane, Diazinon, Heptachlor, Aldrin, Endosulfan II , Endrin and 0.2 

ng.g-1 for Endosulfan I and Dieldrin.  

 

 

 

 



2.4 15N and lipid quantification 

 

The nitrogen stable-isotope ratio (15N) was used to give an approximate trophic 

position. Analyses were carried out on dorsal white muscle, as this tissue gives the most 

reliable values (Pinnegar and Polunin 1999). Then 1 ± 0.1 mg of powdered freeze-dried 

samples was weighed out and sealed in tin capsules for analyses. 15N/14N ratios were 

determined by continuous-flow isotope-ratio mass spectrometry with a Thermo Scientific 

Delta V Advantage mass spectrometer coupled to a Thermo Scientific Flash EA1112 

elemental analyser (Chouvelon et al. 2011). Results are expressed as isotope ratios δ15N (‰) 

relative to international standard (atmospheric N2 for nitrogen), according to the formula: 

 

δ15N = [( Rsample / Rstandard ) – 1] * 103 

 

where R = 15N/14N (Peterson and Fry 1987). Replicate measurements of internal laboratory 

standards (acetanilide) indicated a precision of approximately 0.2‰ for δ15N values.  

 

To evaluate the lipid content (Lp, %) in each fish, 100 µL of the evaporated extraction 

residue was introduced in an initially tarred (tablet) container; then the whole was deposited 

into a desiccator. After drying to constant mass, the lipid content is determined by gravimetry. 

 

2.5 Statistical analysis 

 

 Several indices were used to characterize the POP contamination. Our PCB profiles 

revealed that PCBs detected in the environment mainly came from capacitors (pyralene: DP3, 

DP4 or Arochlor1230, 1242). Consequently it was decided to express the global footprint of 

PCB contamination (PCBTot) using the estimation proposed by Annema et al. (1995): 

PCBTot =  (28 + 52 + 101 + 138 + 153 + 180)*5. ICES (sum of concentrations of the 7 

ICES congeners), and the proportional contribution of each PCB class (tri- to octa-

chlorinated) was also calculated using all of the PCBs analysed. The total DDT concentration, 

DDT, was calculated as the sum of pp’-DDD, pp’-DDE and pp’-DDT. An indication of the 

timing of PCB inputs was estimated through the ratio of the two congeners CB153/CB138 

(Monod et al. 1995; Wafo et al. 2005: a high ratio (> 1) indicates continuous inputs or 

persistence of PCBs in the environment, whereas a low ratio (< 1) reflects a decrease or 



sporadicity of PCB inputs or non-persistence. Finally, the ratio of the total concentration of 

pesticides to total concentration of PCBs analysed (Pest/PCB) was used as an approximate 

indication of the relative importance of agricultural versus industrial sources of organic 

pollutants in the environment (de Mora et al. 2004); a ratio higher than 1 indicates prevalence 

of agricultural sources, whereas a ratio less than 1 indicates prevalence of industrial sources. 

 

Data were log transformed to satisfy conditions of normality (Shapiro-Wilk test) and 

homogeneity of variance (Bartlett test). However for some compounds (Aldrin, Diazinon, 

Dieldrin, Endrin, pp’-DDD and pp’-DDT), transformation was not sufficient. When 

conditions were satisfied, parametric tests were used. In  other cases non-parametric 

analogues were applied. 

Principal component analysis (PCA) was used to obtain an overview of the 

contribution of each contaminant according to sites. Trace elements and POP concentrations 

were analysed in separate PCAs and as no clear patterns were revealed from POP analysis, 

only trace element results were presented. Spatial variability of contaminant concentrations in 

each species was also tested using 2-way ANOVA and Tukey’s post hoc multiple 

comparisons. For all contaminants, Pearson or Spearman correlations were used to explore the 

relationship between both contaminant concentration and fish size (TL) and contaminant 

concentration and trophic level (15N). For organic pollutants the relationship between 

contaminant concentration and the percentage of lipids in muscle (Lp) was also examined. 

When a correlation existed, ANCOVA, instead of ANOVA was applied, using TL, 15N or Lp 

as a covariate. R project (R version 2.13.2) was the statistical program used for all analyses. 

The levels of significance for statistical analyses was always set at α = 0.05. 

 

3. Results 

 
3.1 Accumulation levels in anguilliform fish  

 

All trace elements measured were detected in anguilliform fish, except Ag and V 

which were below the detection limit . Mean concentrations and ranges of detected values of 

contaminants (trace elements and POPs) in anguilliform fish muscle are presented in Table 2. 

Several elements showed a high inter-individual variability (i.e. Cd, Cr, Ni, Pb; coefficient of 

variation CV > 100%). However it was most often the same individuals that accumulated high 



concentrations of several trace elements linked to their origin (e.g. a G. chilospilus specimen 

from the coastal site of Grand Nouméa; 35.7 µg.g-1 dw of Cr and 17.4 µg.g-1 dw of Ni). 

Overall, few differences in mean contaminant concentrations were found between 

species. However, significantly higher concentrations of As, Hg and Se were measured in 

Conger sp., whereas G. chilospilus exhibited higher concentrations of Cd and Zn (pANOVA < 

0.001). PCBs had been similarly accumulated by both species, albeit weak interspecific 

differences were detected for pesticides: Conger sp. presented significantly higher 

concentrations of Heptachlor, Heptachlor-epoxy B (pANOVA < 0.01), while slightly higher 

concentrations of Endosulfan I and Aldrin were measured in G. chilospilus (pANOVA < 0.05).      

 

3.2. Spatial patterns in contaminants  

 
3.2.1. Trace elements 

 
A significant spatial variability of several trace elements, in particular those linked 

with mining activity (Co, Cr, Fe, Mn and Ni), was detected along the coast-barrier reef 

gradient (Fig. 2 and Table 3). The PCAs in G. chilospilus indicated that the coastal sites were 

characterized by Co, Mn and Ni elements, in contrast to the barrier reef sites which were 

characterised by As and Cd concentrations (the plot of the first two PCA dimensions 

explained respectively 51.1% and 59.0% of data variability in G. chilospilus and Conger sp., 

Fig. 2). In Conger sp., the difference between sites was even stronger, with most trace 

elements (As, Co, Cr, Fe, Ni, Se, and Zn) characterising coastal sites. These general trends 

were confirmed by the significantly higher concentrations of mine elements at coastal sites for 

both species (pANOVA or pANCOVA < 0.05, Table 3).  

 

The same spatial pattern (coast vs. barrier reef) was revealed in the two studied areas 

(GN and GS, Table 3 and S1). The coastal site of Grand Nouméa showed significantly higher 

concentrations of Ni in G. chilospilus (pANOVA = 0.02) and Cr and Fe in Conger sp. (pANOVA < 

0.05, Table 3 and S1), with the same trends followed by several other trace elements (Cr, Fe 

in G. chilospilus, As, Co, Cu, Ni, Se, and Zn in Conger sp., results of PCA not shown). 

However in Grand Lagon Sud the spatial gradient was less pronounced. The coastal site was 

characterized by higher Co and Mn concentrations in both species (results of PCA not 

shown), but spatial analyses only suggested significantly lower concentrations of As and Cd 

in G. chilospilus (pANCOVA = 0.001, Tables 3 and S1). 



The coastal site of Grand Nouméa was characterized by significantly higher levels of 

several trace elements compared to Grand Lagon Sud (e.g. As, Cd and Ni in G. chilospilus, 

and Cr, Fe in Conger sp.; pANCOVA < 0.05, Tables 3 and S1). 

 

3.2.2 Organic pollutants  

 

The PCAs did not reveal any clear spatial pattern for POPs in either species (results 

not shown). Analyses suggested a low spatial variability along the coast-barrier reef gradient 

(Table 4). 

The PCB contamination in G. chilospilus did not vary significantly between sites (see 

PCBTot index; pANOVA > 0.05), in spite of a slight increase from the coast to the barrier reef. 

However in Conger sp. the intermediate sites were characterized by high concentrations 

(pANCOVA < 0.05, Table 4). The CB153/CB138 ratio, which was generally below 1, showed 

few spatial variations and only G. chilospilus from coastal sites showed a significantly higher 

ratio (pANCOVA < 0.05, Tables 4 and S2). The PCB chlorination classes differed slightly along 

the coast-barrier reef gradient and between studied areas, with a low variability detected in 

each case (< 10%, pANCOVA or pANOVA < 0.05, Table 4). However the results highlighted a 

remarkable increase in the proportion of the most toxic chlorinated classes in coastal sites (i.e. 

8Cl in GN for G. chilospilus and 7Cl in GS for Conger sp., pANOVA < 0.05). 

The results for pesticides indicated few spatial variations (Tables 4 and S2). The coastal sites 

highlighted significantly higher concentrations of some pesticides in G. chilospilus (Aldrin 

and Heptachlor, pANCOVA or pKW < 0.05), whereas the intermediate reef sites revealed 

significantly higher rates of several other pesticides in Conger sp. (e.g. Diazinon, Heptachlor 

epoxide A and pp’-DDT; pANCOVA or pKW < 0.05).  

 

Finally, spatial analyses of POP contamination according to sources of pollution 

(agriculture vs. industrial) reinforce previous results (see Pest/PCBs; Table 4). Along the 

gradient, G. chilospilus from the coastal sites were significantly different from other sites, 

with quite homogeneous sources of contamination (ratio ≥ 1). In comparison industrial 

sources dominated in other sites (ratio   0.50, pANOVA < 0.05, Table 4). A strong influence of 

industrial pollution in intermediate sites (ratio   0.50, pANCOVA < 0.05) was also highlighted 

in Conger sp.  

 

 



3.3 Influence of size, trophic position and lipid content on contamination level 

 

Several trace elements (Co, Cr, Ni, Pb, Se, and Zn in G. chilospilus, Cd and Mn in 

Conger sp.) were not correlated with either the size or the trophic position of fish (pPearson > 

0.05), but some trace elements were significantly correlated with fish size (Table 5). Only As 

and Hg highlighted a positive relationship with the trophic position of fish (15N) in Conger 

sp., whereas no correlation was found for G. chilospilus.  

Organic pollutant concentrations were linked to size, trophic position or lipid content, 

depending on the contaminant. Most of them were mainly significantly correlated with the 

lipid contents in fish (Table 5). For example, PCBs were only correlated with lipids in both 

species. Pesticides were also correlated with Lp, and to a lesser extent with 15N and TL 

(Table 5).  

 

4. Discussion 

 
This study confirms, reinforces and extends the high trace element contamination 

status of anguilliform fish in New Caledonia (Bonnet et al. 2014). It also constitutes the first 

substantial baseline on organic pollutant contamination of fish in New Caledonia. 

Importantly, our results show that large scale contamination reaches remote parts of the 

lagoon, more than 30km offshore (SW lagoon), and thus well beyond the urbanized Nouméa 

region. 

 
4.1. Contaminant levels and spatial variability  

 
4.1.1. Trace element patterns 

 

Anguilliform fish concentrate both significant levels of trace elements associated with 

mining exploitation (Cr, Fe, Mn, and Ni for both species), and also some elements linked to 

urban activities (e.g. Cd, Cu and Zn, especially in G. chilospilus) (Table 2). This elevated 

typical mining signature detected in sedentary benthic species contrasts with other studies 

which highlight low contaminant levels in some more mobile fish in both the lagoons of New 

Caledonia and other tropical regions (Eisler 2010; Bonnet et al. 2014; Table 6).  

 

Although coastal sites in New Caledonia are highly contaminated by trace elements, 

directly or indirectly linked to mining activity (Co, Cr, Fe, Mn and Ni), the contamination has 



spread throughout the entire lagoon as far as the remote barrier reef of the extremely vast 

South-Western lagoon. This is probably due to dispersal by local currents (Fichez et al. 2008). 

However, it should be noted that concentrations decrease significantly from the coast to the 

barrier reef.  

Unsurprisingly, fish from the coastal site in Grand Nouméa present important 

concentrations in trace elements, especially Cr, Fe and Ni (Table 3). This urbanized and 

industrialized region is subjected to clear impact from the metallurgic industry (Hédouin et al. 

2009, 2011; Metian et al. 2008, 2013). In contrast, the Grand Lagon Sud is less impacted by 

trace element inputs. Even if coastal sites in this area seem to be less threatened, trends still 

reveal important concentrations of Co, Mn and Ni (Table 3). This strong contamination level 

likely results from severe soil erosion, due to deforestation and mining exploitation in this 

region over several decades. Given the numerous mines in New Caledonia and the intensive 

development of mining activities, assessing to what extent other areas of the New Caledonian 

lagoon have been affected is timely. 

 

We expected a strong impact of urban pollution at least in Grand Nouméa sites, given 

the intense activity in the coastal industrial area of Ducos. However, while spatial patterns are 

obvious for trace elements associated with mining activities, those associated with urban 

pollution (As, Cd, Cu, Pb and Zn) are less clear. Whereas Se and Zn are mostly concentrated 

in coastal sites for Conger sp., Cu and Pb are homogeneously distributed along the coast-

barrier reef gradient. Furthermore, the cases of As and Cd are more complex with sometimes 

higher concentrations (e.g. As in Conger sp.) and sometimes lower concentrations in coastal 

sites (e.g. As and Cd in G. chilospilus). Finally elements issued from urban pollution concern 

the entire lagoon, maybe due to their wide dispersal by local currents (Fichez et al. 2008). 

Another possible explanation is that in the past some islets were used as rubbish tips for 

decades (e.g. Amédée islet in Nouméa region, Bonnet et al. 2014). Further information on 

these issues is thus needed. 

 
4.1.2. Organic pollutant patterns 

 

Contamination by POPs detected in anguilliform fish was rather low. However, 

considering the high toxicity of some POPs, even at very low doses, this contamination 

should be considered as important. Levels of PCB concentrations recorded in New Caledonia 

are generally lower than in fish from other tropical or temperate regions (e.g. ICES index in 



New Caledonia: 14.0 ± 12.2 ng.g-1 dw (G. chilospilus) and 16.5 ± 14.3 ng.g-1 dw (Conger 

sp.); in Wallis Central Pacific: 31.3 ± 9.6 ng.g-1 dw (Cephalopholis argus) and 49.7 ± 45.3 

ng.g-1 dw (Epinephelus merra) (Letourneur et al., unpublished data); in the Mediterranean 

Sea: 100.6 ng.g-1 dw (Solea solea) (Dierking et al. 2009)). Exposure profiles of PCBs showed 

a contribution of chlorination classes in both species, with the prevalence of moderately 

chlorinated classes (5Cl and 6Cl) and the scarcity of highly chlorinated classes (7Cl and 8Cl). 

These results emphasize a recent or even current use of PCBs in New Caledonia, otherwise 

only the more persistent classes (highly chlorinated) should be detected. Further studies are 

needed to confirm this hypothesis.      

In New Caledonian fish, pesticide concentrations are equivalent or lower than in other 

regions (e.g. Lindane in New Caledonia: 1.3 ± 0.6 ng.g-1 dw (G. chilospilus) and 1.7 ± 1.6 

(Conger sp.); in Wallis Central Pacific: 3.5 ± 1.03 ng.g-1 dw (C. argus) and 3.6 ± 2.07 ng.g-1 

dw (E. merra) (Letourneur et al., unpublished data); in French Polynesia: 73.3 ± 34.5 ng.g-1 

dw (Epinephelus hexagonatus) (Salvat et al. 2012); in the Mediterranean Sea: 35.4 ng.g-1 dw 

(Solea solea) (Dierking et al. 2009)). Despite the quantities and diversity of pesticides 

imported into New Caledonia, these low levels detected reflect their relatively moderate use, 

which probably comes from local and non-professional activities rather than from the 

agricultural industry. In addition, Nouméa is located far from the most important agricultural 

areas. This type of non-professional use could also explain a non-negligible detection of 

pesticides such as DDT and its metabolites (i.e. ΣDDT: 1.55 ± 1.50 ng.g-1 dw in G. chilospilus 

and 1.57 ± 1.48 in Conger sp.), which are supposed to be prohibited by international 

regulations and not homologated in New Caledonia (DAVAR, 2001). 

 

Overall, POP concentrations are homogeneous throughout the lagoon, without any 

clear spatial pattern along the coast-barrier reef gradient, or between studied areas. 

Nevertheless, some high pesticide concentrations in G. chilospilus were observed in several 

coastal sites and in intermediate reefs, with high PCB and some high pesticide levels in 

Conger sp. (Tables 4 and S2). Storage organs (i.e. liver, kidney or digestive gland) usually 

accumulate higher concentrations than muscle (e.g. Bustamante et al. 2003; Chouvelon et al. 

2009; Metian et al. 2013; Eisler 2010). Further research is required to test this notion in 

Anguilliforms and thus to better assess spatial contamination gradients, especially for POPs. 

The results underlined the complexity in identifying the agricultural and/or industrial origin of 

organic contamination for each site (see Pest/PCBs ratio, Table 4). Trends seem to 

emphasize a slight prevalence of agricultural contamination sources at coastal sites, in 



comparison with other sites dominated by industrial pollution. Furthermore, the Nouméa area 

generally seems to be more exposed to industrial contamination, whereas Grand Lagon Sud 

has revealed strong local agricultural pollution (except at intermediate reefs, Table S2). In 

Grand Nouméa, anguilliform fish have not been exposed to PCB inputs in recent times in 

view of their low CB153/CB138 ratio (i.e. ratio < 0.8,  0.75 in G. chilospilus and  0.78 in 

Conger sp., Table S2). On the other hand, the PCB inputs in Grand Lagon Sud seem to be 

more recent mainly in coastal sites, as detected in both species (ratio > 1, 1.64 in G. 

chilospilus and 1.04 in Conger sp., Table S2). Industrial activities in this area, including the 

recent construction of a mining factory, could explain in part the continuing inputs of PCBs in 

this area. 

 
4.2. Influence of biological parameters on contamination level 

 

As mentioned in several studies, concentrations of contaminants can also vary 

according to ecological and biological factors such as fish size (or age), trophic position and 

feeding habits or lipid content (Monteiro et al. 1991; Geyer et al. 2000; Penedo de Pinho et al. 

2002). These complex relationships can induce interspecific differences in bioaccumulation 

processes and so emphasize the relevance in detecting the contamination rate at a specific 

level. 

Our results indicated the influence of the three factors tested (body size, trophic 

position and lipid content) on several contaminants in both species. The link between body 

size and bioaccumulation is complex, depending on both the contaminants and the fish 

species considered. In some cases, trace elements accumulated with increasing fish size (e.g. 

As, Cd and Hg in G. chilospilus, Table 5), which is consistent with continuous 

bioaccumulation in muscle during life span (Braune 1987; Burger and Gochfeld 2007; Bloom 

1992). In some other cases, trace element concentration is negatively correlated with size (e.g. 

Cu and Fe in both species, or Co, Cr, Ni, Pb, Se and Zn in Conger sp.). This trend could be 

explained by a decrease in assimilation or by more efficient elimination processes with 

increasing fish size (Braune 1987, Swaileh and Adelung 1995, Warnau et al. 1995). Such a 

relationship can also suggest that an ontogenetic diet shift might occur, implying a variation in 

the exposure to contaminants through the food pathway, as found in other species (Chouvelon 

et al. 2011, Chouvelon et al. 2014). However, with the exception of Hg, and to a lesser extent 

Se, biomagnification of trace elements in trophic webs is still unclear and difficult to identify 

(Wang 2002). For anguilliform fish from New Caledonia, the trophic position influenced As 



and Hg concentrations only in Conger sp. The POP results are in accordance with their 

hydrophobic nature, which allows their sequestration in fat tissues during the process of 

organochlorine accumulation (Robertson and Hansen 2001). Most of them were indeed 

positively linked to the lipid content of fish, in particular in Conger sp., where lipid variation 

ranged between 0.2 and 5.5% (Table 1). 

 

Measures of 15N in fish confirm the high trophic level of anguilliform fish (Brischoux 

et al. 2011). When this is associated with other life history traits (size, age, longevity, 

philopatry, etc.), the detection of high trace element levels appears consistent. These benthic 

predators are also probably good candidates for monitoring organic pollution because of the 

strong relationship of POPs with lipid content (even if the flesh of these fish is not very fatty). 

The specific biological characteristics of each species may well explain interspecific 

differences in bioaccumulation of contaminants. 

Moreover, contamination of anguilliform fish (high trophic level predators) suggests 

that trophic networks in general are contaminated (Monniot et al. 1994; Hédouin et al. 2006, 

2007; Metian et al. 2008b). As a consequence, it is important to carry out contaminant 

analysis in prey, top predators (e.g. sea snakes, Bonnet 2012) and in the global trophic web. 

This will provide a more complete assessment of contamination of the environment and lead 

to better understanding of the mechanisms and processes involved (e.g. bioaccumulation, 

biomagnification, Bryan 1984; Rainbow 1993). A good understanding of both the organisms 

(i.e. biology, ecology and metabolic capacities) and the trophic network structures, plus 

environmental conditions, is necessary to understand the dynamics of bioaccumulation and 

biomagnification throughout the trophic webs (Harmelin-Vivien et al. 2009). 

 

5. Conclusion 

 

This study strongly confirms a clear accumulation of trace metal contaminants in the 

muscles of anguilliform fish and the obvious coastal contamination by trace elements linked 

to mining activities. It is also shown that contamination by POPs occurs in the whole lagoon.  

These results raise an alert about complex contaminations throughout the lagoon on a large 

spatial scale. Various contaminants may show different behaviour in abiotic and biotic 

environments. Due to their lipophilic nature, POPs have different targets compared to trace 

elements. This characteristic can explain in part their divergences in mobility in comparison 

to trace elements. Thus, the more widespread repartition of POPs within the lagoon is 



probably due to their great capacity of dispersion, through atmospheric transport and current- 

driven dilution during tropical rain events. This highlights the importance of considering 

multiple sources of contamination. Moreover, the possibility of a cocktail effect of these 

various contaminants is not known and could increase the threat. Therefore, in the future, long 

term monitoring studies and experiments on toxicity are necessary. 
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Figure 1. Location of the sampled sites distributed on two coast-barrier reef gradients in New 
Caledonia: Kuendu (CO1), Signal (IR1) and Amédée (BR1) in Grand Nouméa (GN) and 
Ouen (CO2), Grand Mato (IR2) and N’Da (BR2) in Grand Lagon Sud. CO = coastal sites; IR 
= intermediate reef sites; BR = barrier reef sites. Stars indicate areas of human activities, 
which are the undustrial area of Ducos (1), the Nikel factory « SLN » (2) and the Nikel 
factory « Goro-Nikel » (3). The emerged land is indicated in black, grey areas represent coral 
reefs; the dark grey line represents the slope of the barrier reef.  



 
 
Figure 2. Plot of the principal component analysis (PCA) assessing spatial patterns of 
anguilliform fish contamination by trace elements on the coast-barrier reef gradient (left 
panel) and the contribution of the contaminants analyzed to site differentiation (right panel) in 
G. chilospilus (A) and Conger sp. (B). CO = coastal sites; IR = intermediate reef sites; BR = 
barrier reef sites. The most contributing variables in both species were Cr, Cu, Fe, Ni 
concentrations for the first axis and Cd and Mn concentrations for the second axis. The 
significant differences between sites are illustrated by confidence ellipses of centroids at 95%. 

A) 
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Table 1. Number (N) of fish analyzed from the coastal (CO), intermediate (IR) and barrier reef (BR) sites in 
Grand Nouméa (GN) and Grand Lagon Sud (GS). Mean (± SD) fish total length (TL, cm), trophic position 
(express with 15N, ‰) and lipid content (Lp, %) are given, with minimal and maximal values (min-max) 
indicated in brackets. No variation of TL, 15N and Lp between sites was observed (pANOVA > 0.05). 
 
                

Species Site N N (GN) N (GS) TL (cm) (min-max) δ15N (‰) (min-max) Lp (%) (min-max) 

Gymnothorax  CO 8 3 5 21.2 ± 4.3 (14.7-28.4) 8.0 ± 0.8 (7.1-9.3) 1.2 ± 1.3 (0.2-3.6) 
chilospilus IR 20 10 10 25.3 ± 4.8 (14.0-37.2) 7.9 ± 0.7 (6.7-9.5) 0.8 ± 0.8 (0.2-3.3) 

 
BR 20 10 10 25.1 ± 2.3 (21.4-30.8) 7.8 ± 0.5 (7.1-8.8) 0.7 ± 0.6 (0.2-1.8) 

 
Total 48 23 25 24.5 ± 4.1 (21.7-31.2) 7.9 ± 0.6 (6.7-9.5) 0.8 ± 0.8 (0.2-3.6) 

        Conger sp.  CO 14 9 5 29.0 ± 4.6 (23.2-38.3) 8.6 ± 1.4 (6.6-10.5) 1.0 ± 0.7 (0.2-1.9) 

 
IR 10 0 10 34.4 ± 8.9 (20.3-48.7) 8.5 ± 0.8 (7.7-9.9) 1.5 ± 1.6 (0.3-5.5) 

 
BR 13 8 5 35.7 ± 6.3 (27.7-51.7) 8.5 ± 0.9 (7.1-10.3) 1.0 ± 1.2 (0.3-3.6) 

 
Total 37 17 20 32.7 ± 7.1 (20.3-51.7) 8.6 ± 1.0 (6.6-10.5) 1.2 ± 1.2 (0.2-5.5) 
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Table 2. Trace element and organic pollutant concentrations (mean ± SD and range of values; µg.g-1 dw) 
measured in muscle of G. chilospilus and Conger sp., all sites confounded. 
 

 

      

 

  G. chilospilus Conger sp.  

T
ra

ce
 e

le
m

en
t 

As 11 ± 7.4 (0.9-31.9) 25.7 ± 25.6 (3.0-117.9) 
Cd 0.41 ± 0.47 (0.01-2.91) 0.04 ± 0.04 (0.01-0.16) 
Co 0.11 ± 0.08 (0.02-0.45) 0.13 ± 0.15 (0.02-0.68) 
Cr 4.53 ± 7.15 (0.86-35.71) 4.03 ± 5.36 (0.45-23.60) 
Cu 1.6 ± 0.7 (0.7-3.4) 1.9 ± 0.9 (0.7-4.5) 
Fe 40.2 ± 36.9 (12.2-196.8) 34.3 ± 31.1 (7.9-134.4) 
Hg 0.049 ± 0.028 (0.02-0.13) 0.117 ± 0.112 (0.03-0.6) 
Mn 2.3 ± 1.4 (0.6-7.2) 2.7 ± 2.3 (0.4-10.1) 
Ni 1.95 ± 3.19 (0.30-17.38) 1.44 ± 1.77 (0.10-7.74) 
Pb 0.05 ± 0.04 (0.01-0.2) 0.04 ± 0.09 (12.2-196.8) 
Se 1.2 ± 0.4 (0.7-2.6) 1.8 ± 0.8 (0.9-4.6) 
Zn 56.5 ± 16.4 (26.5-112.3) 45.4 ± 23.8 (21.6-112.1) 

    

O
rg

an
ic

 p
ol

lu
ta

nt
 

PCBTot 59.1 ± 52.7 (9.3 - 271.5) 63.2 ± 54.8 (9.1 - 211.4) 

ICES 14.0 ± 12.2 (2.0 - 64.3)  16.5 ± 14.3 (2.1 - 60.9)  
Aldrin 0.1 ± 0.06 (0.08 - 0.3)  0.1 ± 0.05 (0.04 - 0.2)  

Diazinon 1.8 ± 1.9 (<0.1 - 10.2) 2.4 ± 3.3 (<0.1 - 15.3)  
Dieldrin 0.4 ± 0.3 (<0.2 - 1.8) 0.5 ± 0.4 (<0.2 - 2.2)  

Endosulfan I 1.3 ± 1.3 (<0.2 - 6.1) 1.0 ± 1.7 (0.09 - 9.7)  
Endosulfan II 2.1 ± 1.7 (<0.1 - 7.3)  2.9 ± 2.3 (<0.1 - 8.9)  

Endrin 0.3 ± 0.8 (<0.1 - 4.5)  0.8 ± 2.0 (0.07 - 9.9)  
Heptachlor 0.4 ± 0.4 (<0.1 - 1.9)  0.5 ± 0.4 (<0.1 - 1.9) 

Heptachlor-epox.A 1.5 ± 1.2 (0.03 - 5.6)  1.8 ± 1.9 (0.1 - 9.1)  
Heptachlor-epox.B 0.3 ± 0.5 (<0.01 - 2.6)  0.5 ± 0.6 (<0.01 - 2.7)  

Lindane 1.3 ± 0.6 (0.3 - 3.1)  1.7 ± 1.2 (0.2 - 5.1)  

DDT 1.6 ± 1.5 (0.3 - 6.9)  1.6 ± 1.5 (0.3 - 7.2)  
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Table 3. Trace element concentrations (mean (SD); µg.g-1 dw) in G. chilospilus and Conger sp. along the coastal-barrier reef gradient. ANOVA 
(ANV) or ANCOVA (ACV) with Tukey's pairwise comparisons were used to analyze spatial patterns. 
 
  Gradient    Spatial patterns 

   CO IR BR  Stat test p  Gradient GN GS GN vs. GS 

G
. c

hi
lo

sp
ilu

s 

As 6.77 (10.27) 7.84 (5.75) 14.33 (5.85)  ACV (15N) *** BR > CO/IR BR1 > IR1 IR2/BR2 > CO2 CO1 > CO2 
Cd 0.16 (0.23) 0.44 (0.63) 0.43 (0.31)  ACV (TL) *** IR/BR > CO  IR2/BR2 > CO2 CO1 > CO2 
Co 0.19 (0.12) 0.10 (0.05) 0.07 (0.05)  ANV *** CO > IR > BR    
Cr 6.59 (11.93) 3.57 (5.98) 3.97 (5.81)  ANV NS     
Cu 1.62 (0.76) 1.66 (0.78) 1.37 (0.40)  ACV (TL) NS     
Fe 46.5 (50.5) 38.2 (39.9) 33.8 (27.4)  ACV (TL) NS     
Hg 0.05 (0.02) 0.05 (0.03) 0.04 (0.03)  ACV (TL) NS     
Mn 3.77 (2.18) 1.84 (0.91) 1.76 (0.76)  ACV (TL) *** CO > IR/BR    
Ni 3.72 (5.65) 1.51 (2.33) 1.34 (2.32)  ANV * CO > BR CO1 > IR1/BR1  CO1 > CO2 
Pb 0.06 (0.05) 0.04 (0.03) 0.04 (0.03)  ANV NS     
Se 0.98 (0.27) 1.20 (0.38) 1.07 (0.42)  ANV NS     
Zn 42.9 (9.9) 55.8 (17.3) 55.1 (17.1)  ANV NS     

            
            
  Gradient    Spatial patterns 

   CO IR BR  Stat test p  Gradient GN GS GN vs. GS 

C
on

ge
r 

sp
. 

As 37.96 (31.44) 20.57 (21.08) 16.45 (16.60)  ACV (15N) * CO > BR    
Cd 0.04 (0.04) 0.03 (0.04) 0.06 (0.05)  ANV ns     
Co 0.23 (0.19) 0.10 (0.06) 0.05 (0.03)  ACV (TL) *** CO/IR > BR    
Cr 7.88 (7.09) 0.95 (0.31) 2.26 (1.68)  ACV (TL) **  CO/IR > BR CO1 > BR1  CO1 > CO2  
Cu 2.37 (1.05) 1.32 (0.43) 1.88 (0.79)  ACV (TL) ns     
Fe 57.4 (40.2) 15.3 (4.0) 24.2 (9.7)  ACV (TL) **  CO > IR/BR CO1 > BR1  CO1 > CO2 

Hg 0.11 (0.07) 0.07 (0.03) 0.15 (0.17)  ACV (15N) **  CO/BR > IR    
Mn 3.7 (2.30) 1.76 (0.95) 2.28 (2.66)  ANV ns     
Ni 2.78 (2.25) 0.35 (0.14) 0.83 (0.67)  ACV (TL) *** CO > IR /BR    
Pb 0.07 (0.05) 0.03 (0.01) 0.09 (0.14)  ACV (TL) ns     
Se 2.31 (1.06) 1.37 (0.21) 1.51 (0.43)  ACV (TL) **  CO > BR    
Zn 59.5 (26.2) 33.8 (6.3) 39.0 (23.10)  ACV (TL) * CO > IR/BR    

 
Note: GN: Grand Nouméa; GS: Grand Lagon Sud; CO: coastal sites; IR:  intermediate reef sites; BR: barrier reef sites 
ns = not significant (p > 0.05);  * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table 4. PCBs and pesticide concentrations (mean (SD); ng.g-1 dw, except % of classes) in G. chilospilus (A) and Conger sp. (B) along the coast-
barrier reef gradient. ANOVA or ANCOVA with Tukey's pairwise comparisons were used to analyze spatial patterns 
 A)  Gradient    Spatial patterns 
    CO IR BR  Stat test p  Gradient GN GS GN vs. GS 

G
. c

hi
lo

sp
ilu

s 

            
 PCBs index (ng.g-1 dw)          

 PCBTot 26.96 (9.21) 68.64 (67.30) 60.62 (43.55)  ANV ns     

 ICES  6.02 (2.16) 17.00 (16.02) 13.74 (9.04)  ANV ns     

 153/138 1.17 (0.52) 0.76 (0.13) 0.80 (0.10)  ACV (Lp) *** CO > IR/BR  CO2 > IR2/BR2 CO2 > CO1 

            

 PCB chlorination classes (% of CTotal PCBs)         

 3 Cl 20.39 (7.67) 16.64 (5.30) 14.12 (3.22)  ANV * CO > BR  CO2/IR2 > BR2 CO2 > CO1 

 4 Cl 20.09 (9.93) 14.84 (7.94) 18.12 (5.31)  ACV (Lp) ns     

 5 Cl 25.65 (4.87) 34.32 (6.53) 30.48 (5.85)  ANV * IR > CO    

 6 Cl 28.07 (6.89) 29.56 (8.73) 32.46 (7.44)  ANV ns     

 7 Cl 3.55 (1.15) 3.82 (1.99) 4.33 (2.72)  ACV (Lp) ns     

 8 Cl 2.25 (3.12) 0.82 (1.17) 0.50 (0.75)  ANV **   CO1 > BR1  GN > GS 

            

 Pesticides (ng.g-1 dw)          

 Ald. 0.16 (0.11) 0.11 (0.03) 0.06 (0.04)  KW **  CO > BR    

 Dia. 3.91 (3.41) 1.47 (1.68) 1.35 (0.92)  KW ns     

 Diel. 0.41 (0.26) 0.36 (0.24) 0.37 (0.39)  KW ns     

 Endo.I 1.09 (1.06) 1.27 (1.04) 1.36 (1.66)  ACV (15N) ns     

 Endo.II 1.53 (0.86) 2.38 (2.16) 2.00 (1.54)  ANV ns     

 Endr. 0.16 (0.09) 0.28 (0.62) 0.34 (0.97)  KW ns     

 Hept. 0.83 (0.51) 0.43 (0.48) 0.20 (0.17)  ACV (Lp) *** CO > IR/BR    

 Hept.A 0.66 (0.22) 1.69 (1.49) 1.58 (1.09)  ANV ns     

 Hept.B 0.30 (0.23) 0.23 (0.33) 0.27 (0.60)  ANV *   CO2 > IR2/BR2 IR1 > IR2 

 Lind. 1.32 (0.47) 1.50 (0.85) 1.22 (0.46)  ANV ns     

 DDE 0.23 (0.23) 0.34 (0.36) 0.50 (0.77)  ANV ns     

 DDD 0.29 (0.17) 0.24 (0.21) 0.41 (0.52)  KW ns     

 DDT 1.88 (1.58) 0.86 (1.19) 0.47 (0.63)  KW ns     

 ΣDDT 2.40 (1.70) 1.44 (1.58) 1.38 (1.36)  ANV ns     

            

 Pest/ PCB 1.13 (0.30) 0.5 (0.12) 0.51 (0.12)  ANV *** CO > IR/BR    
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  B) Gradient    Spatial patterns 
    CO IR BR  Stat test p  Gradient GN GS GN vs. GS 

C
on

ge
r 

sp
.  

            
 PCBs (ng.g-1 dw)          

 PCBTot 67.66 (54.60) 99.47 (67.68) 31.91 (16.39)  ACV (Lp) **  IR > BR    

 ICES  17.17 (12.78) 26.32 (18.94) 8.58 (4.55)  ACV (Lp) **  IR > BR    

 153/138 0.82 (0.19) 0.88 (0.36) 1.0 (0.47)  ACV (Lp) ns     

            

 PCB chlorination classes (% of CTotal PCBs)         

 3 Cl 15.75 (7.20) 19.94 (6.08) 16.09 (7.62)  ACV (Lp) ns     

 4 Cl 17.71 (6.99) 11.07 (4.59) 21.74 (8.23)  ACV (Lp) * IR < BR    

 5 Cl 32.02 (8.23) 32.74 (7.86) 34.84 (5.25)  ACV (Lp) ns     

 6 Cl 26.5 (5.15) 32.37 (7.73) 22.28 (4.51)  ACV (Lp) *** IR > CO > BR    

 7 Cl 6.50 (5.97) 3.62 (1.38) 3.70 (2.12)  ANV *   CO2 > BR2  

 8 Cl 1.53 (1.38) 0.26 (0.24) 1.36 (1.03)  ACV (Lp) ns     

              

 Pesticides (ng.g-1 dw)          

 Ald. 0.13 (0.06) 0.12 (0.04) 0.10 (0.03)  KW ns     

 Dia. 2.02 (4.74) 3.99 (2.31) 1.54 (1.74)  KW *** IR > CO   CO2 > CO1 

 Diel. 0.77 (0.64) 0.25 (0.09) 0.36 (0.17)  KW * CO > IR     

 Endo.I 1.06 (0.89) 0.61 (0.73) 1.30 (2.69)  ACV (Lp) ns     

 Endo.II 3.78 (2.46) 2.61 (2.60) 2.26 (1.83)  ACV (Lp) ns     

 Endr. 0.24 (0.31) 1.69 (3.19) 0.56 (1.55)  KW ns     

 Hept. 0.59 (0.40) 0.51 (0.55) 0.52 (0.31)  ACV (TL) ns     

 Hept.A 2.37 (2.58) 2.47 (1.77) 0.88 (0.56)  ACV (Lp) * IR > BR    

 Hept.B 0.79 (0.80) 0.30 (0.48) 0.33 (0.19)  ACV (Lp) ns     

 Lind. 2.56 (1.51) 1.25 (0.93) 1.23 (0.62)  ACV (Lp) ns     

 DDE 0.44 (0.61) 0.37 (0.21) 0.36 (0.29)  ANV ns     

 DDD 0.29 (0.30) 0.65 (0.22) 0.15 (0.09)  KW *** IR > CO/BR  IR2 > BR2  

 DDT 0.82 (1.07) 0.40 (0.61) 1.19 (1.90)  KW ns     

 ΣDDT 1.56 (1.19) 1.42 (0.71) 1.70 (2.12)  ANV ns     

            

 Pest/ PCB 0.92 (1.29) 0.51 (0.21) 0.94 (1.02)  ACV (Lp) **  CO/BR > IR     
 
Note: GN: Grand Nouméa; GS: Grand Lagon Sud; CO: coastal sites; IR:  intermediate reef sites; BR: barrier reef sites 
ns = not significant (p > 0.05);  * p < 0.05, ** p < 0.01, *** p < 0.001 / (+) positive and (-) negative correlation. a only one value. 
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Table 5. Summary of correlations performed on trace elements and organic pollutants (PCBs 
and pesticides) concentrations versus total length (TL), trophic position (δ15N) and lipid 
content (Lp) in G. chilospilus and Conger sp. 
 

 G. chilospilus 

  Trace elements PCBs Pesticides 

TL 
As*, Cd**, Cu*, Fe*, 
Hg*, Mn*   

Ald.**, Dia.** 

15N 
    Endo.* 

Lp 
  

CB153/138**, 4 Cl**, 8 Cl* Hept.** 

 
 

 Conger sp. 

  Trace elements PCBs Pesticides 

TL 
Co**, Cr*, Cu**, Fe*, 
Ni*, Pb*, Se*, Zn*   

Hept.** 

15N As***, Hg***   Ald.* 

Lp 

  

CTotal PCBs**,  SICES *, 
CB153/138*, 3 Cl*, 4 Cl***, 
5 Cl**, 6 Cl*, 8 Cl** 

Dia.*, Diel.*, Endo.I**, 
Endo.II**, Endr.**, 
Hept.A*, Hep.B*, 
Lind.**, DDT** 

 
 
 
Note: 3 Cl to 8 Cl : classes of chlorination; Lind.: Lindane; Dia.: Diazinon; Hept.: Heptachlor; Ald.: 
Aldrin; Hept.B: Heptachlor-epox.B;  Hept.A: Heptachlor-epox.A; Endo.I: Endosulfan I; Diel: 
Dieldrin; Endr.; Endrin; DDT : pp’-DDT.   
Significativity: * p < 0.05, ** p < 0.01, *** p < 0.001.  
Positive correlations are underlined.  
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Table 6. Comparison of several trace element concentrations (mean ± SD and range of 
values; µg.g-1 dw) measured in muscle of G. chilospilus, Conger sp. and other lagoon fish 
species in New Caledonia. 
 

Trace element Concentration (µg.g-1dw) species reference 

As 11.0 ± 7.4 (0.9-31.9) G. chilospilus This study 
As 25.7 ± 25.6 (3.0-117.9) Conger sp.  This study 
As 13.7 ± 7.57 (<7.87-19.1) Lethrinus laticaudis Metian et al. (2013) 
As 9.47 ± 1.47 (<7.85-10.7) Priacanthus hamrur Metian et al. (2013) 
As < 6.01-7.77 Cymbacephalus beauforti Metian et al. (2013) 
As 1.2 - 52.5 mix Fernandez and Breau (2011) 

Cd 0.41 ± 0.47 (0.01-2.91) G. chilospilus This study 
Cd 0.04 ± 0.04 (0.01-0.16) Conger sp.  This study 
Cd <0.06 mix Fernandez and Breau (2011) 

Co 0.11 ± 0.08 (0.02-0.45) G. chilospilus This study 
Co 0.13 ± 0.15 (0.02-0.68) Conger sp.  This study 
Co < 0.03 Lethrinus laticaudis Metian et al. (2013) 
Co < 0.03 Priacanthus hamrur Metian et al. (2013) 
Co < 0.02 Cymbacephalus beauforti Metian et al. (2013) 
Co <0.1 - 1.1 mix Fernandez and Breau (2011) 

Cr 4.53 ± 7.15 (0.86-35.71) G. chilospilus This study 
Cr 4.03 ± 5.36 (0.45-23.60) Conger sp.  This study 
Cr < 0.79 Lethrinus laticaudis Metian et al. (2013) 
Cr 1.39 (<0.70-1.39) Priacanthus hamrur Metian et al. (2013) 
Cr < 0.60 Cymbacephalus beauforti Metian et al. (2013) 
Cr <0.1 - 5.7 mix Fernandez and Breau (2011) 

Cu 1.6 ± 0.7 (0.7-3.4) G. chilospilus This study 
Cu 1.9 ± 0.9 (0.7-4.5) Conger sp.  This study 
Cu < 0.79 Lethrinus laticaudis Metian et al. (in press) 
Cu < 0.83 Priacanthus hamrur Metian et al. (in press) 
Cu < 0.53-0.64 Cymbacephalus beauforti Metian et al. (in press) 
Cu 0.25 - 3.0 mix Fernandez and Breau (2011) 

Fe 40.2 ± 36.9 (12.2-196.8) G. chilospilus This study 
Fe 34.3 ± 31.1 (7.9-134.4) Conger sp.  This study 
Fe 9.19 ± 1.42 (7.56-10.1) Lethrinus laticaudis Metian et al. (2013) 
Fe 10.4 ± 3.56 (7.82-16.9) Priacanthus hamrur Metian et al. (2013) 
Fe 7.01-7.60 Cymbacephalus beauforti Metian et al. (2013) 
Fe 4.0 - 211 mix Fernandez and Breau (2011) 

Mn 2.3 ± 1.4 (0.6-7.2) G. chilospilus This study 
Mn 2.7 ± 2.3 (0.4-10.1) Conger sp.  This study 
Mn < 0.79 Lethrinus laticaudis Metian et al. (2013) 
Mn < 0.83 Priacanthus hamrur Metian et al. (2013) 
Mn < 0.60 Cymbacephalus beauforti Metian et al. (2013) 
Mn <0.03 - 3.3 mix Fernandez and Breau (2011) 

Ni 1.95 ± 3.19 (0.30-17.38) G. chilospilus This study 
Ni 1.44 ± 1.77 (0.10-7.74) Conger sp.  This study 
Ni <0.06 - 1.35 mix Fernandez and Breau (2011) 

 
Note: mix = 144 fish from 27 species and 10 families (Acanthuridae, Carangidae, Haemulidae, 
Labridae, Lethrinidae, Lutjanidae, Mugilidae, Scaridae, Serranidae and Siganidae).  
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Table S1. Trace element concentrations (mean (SD); µg.g-1 dw) in G. chilospilus and Conger 

sp. along the gradient in Grand Nouméa and Grand Lagon Sud.  

 

   
Grand Nouméa (GN) 

 
Grand Lagon Sud (GS) 

 
  

 
CO1 IR1 BR1 

 
CO2 IR2 BR2 

G
. c

hi
lo

sp
ilu

s 

As 
 

16.27 (13.65) 8.57 (7.52) 16.75 (4.87) 
 

2.42 (1.26) 7.90 (3.62) 13.34 (6.49) 
Cd 

 
0.36 (0.31) 0.36 (0.30) 0.36 (0.18) 

 
0.06 (0.07) 0.56 (0.85) 0.54 (0.34) 

Co 
 

0.21 (0.10) 0.10 (0.05) 0.09 (0.06) 
 

0.22 (0.14) 0.11 (0.06) 0.05 (0.03) 
Cr 

 
16.83 (16.87) 3.21 (2.04) 4.28 (3.30) 

 
1.76 (0.74) 4.28 (8.41) 4.05 (7.77) 

Cu 
 

2.35 (0.85) 1.75 (0.89) 1.38 (0.30) 
 

1.51 (0.57) 1.74 (0.69) 1.49 (0.50) 
Fe 

 
95.2 (64.4) 33.8 (19.0) 35.4 (15.7) 

 
26.5 (13.0) 46.4 (54.0) 35.5 (36.6) 

Hg 
 

0.07 (0.03) 0.05 (0.02) 0.04 (0.02) 
 

0.05 (0.04) 0.07 (0.04) 0.04 (0.02) 
Mn 

 
2.92 (0.89) 2.13 (1.18) 1.70 (0.43) 

 
5.04 (2.41) 1.72 (0.51) 2.00 (0.98) 

Ni 
 

9.21 (7.09) 1.33 (0.79) 1.09 (0.81) 
 

1.17 (0.76) 1.84 (3.27) 1.73 (3.23) 
Pb 

 
0.07 (0.03) 0.06 (0.07) 0.05 (0.04) 

 
0.06 (0.03) 0.03 (0.03) 0.04 (0.03) 

Se 
 

1.17 (0.28) 1.21 (0.47) 1.00 (0.19) 
 

1.07 (0.28) 1.31 (0.28) 1.25 (0.54) 
Zn 

 
50.2 (6.5) 59.9 (23.3) 52.7 (11.4) 

 
47.0 (12.1) 57.3 (9.3) 63.0 (20.7) 

          
          
   

Grand Nouméa (GN) 
 

Grand Lagon Sud (GS) 

 
  

 
CO1   BR1 

 
CO2 IR2 BR2 

C
on

ge
r 

sp
. 

As 
 

42.51 (33.77) 20.68 (18.76) 29.77 (28.29) 20.57 (21.08) 9.67 (10.84) 
Cd 

 
0.05 (0.04) 

 
0.04 (0.04) 

 
0.02 (0.01) 0.03 (0.04) 0.08 (0.07) 

Co 
 

0.23 (0.20) 
 

0.07 (0.04) 
 

0.23 (0.21) 0.10 (0.06) 0.03 (0.01) 
Cr 

 
11.69 (6.00) 

 
3.13 (1.61) 

 
1.02 (0.45) 0.95 (0.31) 0.86 (0.14) 

Cu 
 

2.59 (1.21) 
 

2.20 (0.81) 
 

1.98 (0.61) 1.32 (0.43) 1.42 (0.55) 
Fe 

 
78.7 (34.2) 

 
25.7 (8.2) 

 
19.1 (7.60) 15.3 (4.0) 21.6 (12.3) 

Hg 
 

0.08 (0.04) 
 

0.07 (0.03) 
 

0.18 (0.09) 0.07 (0.03) 0.28 (0.22) 
Mn 

 
3.06 (1.73) 

 
2.61 (3.34) 

 
4.86 (2.93) 1.76 (0.95) 1.74 (1.06) 

Ni 
 

3.90 (2.05) 
 

1.15 (0.67) 
 

0.77 (0.25) 0.35 (0.14) 0.32 (0.20) 
Pb 

 
0.08 (0.06) 

 
0.12 (0.17) 

 
0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 

Se 
 

2.77 (1.06) 
 

1.65 (0.43) 
 

1.50 (0.28) 1.37 (0.21) 1.28 (0.34) 
Zn 

 
58.7 (27.6) 

 
40.8 (29.6) 

 
60.9 (26.5) 33.8 (6.3) 36.2 (6.9) 

 

Note: CO: coastal sites; IR:  intermediate reef sites; BR: barrier reef sites.  
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Table S2. Trace element concentrations (mean (SD); µg.g-1 dw) in G. chilospilus (A) and 

Conger sp. (B) along the gradient in Grand Nouméa and Grand Lagon Sud.  

 

  
A) 

 
Grand Nouméa (GN) 

 
Grand Lagon Sud (GS) 

  
  

 
CO1 IR1 BR1 

 
CO2 IR2 BR2 

G
. c

hi
lo

sp
ilu

s 

 

          PCBs index (ng.g-1 dw) 
       PCBTot 

 
25.79 (8.98) 70.14 (78.71) 59.07 (56.06) 

 
28.13 (11.28) 66.95 (57.15) 62.18 (29.27) 

 ICES  
 

5.80 (1.67) 17.59 (18.5) 13.65 (11.80) 
 

6.25 (2.90) 16.33 (13.90) 13.83 (5.80) 

 153/138 
 

0.71 (0.10) 0.75 (0.15) 0.78 (0.08) 
 

1.62 (0.20) 0.77 (0.13) 0.82 (0.11) 

 

          PCB chlorination classes (% of CTotal PCBs)  
     3 Cl 

 
14.34 (4.50) 14.09 (4.40) 14.51 (4.11) 

 
26.44 (4.10) 19.51 (4.90) 13.74 (2.16) 

 4 Cl 
 

24.48 (12.55) 16.06 (10.80) 18.52 (7.00) 
 

15.71 (5.60) 13.47 (2.70) 17.71 (3.19) 

 5 Cl 
 

24.42 (5.30) 33.18 (7.50) 30.82 (4.90) 
 

26.87 (5.20) 35.60 (5.40) 30.14 (6.92) 

 6 Cl 
 

28.72 (10.30) 30.73 (11.20) 30.32 (7.60) 
 

27.42 (3.40) 28.24 (5.20) 34.59 (7.04) 

 7 Cl 
 

3.64 (1.58) 4.67 (2.30) 5.02 (3.50) 
 

3.46 (0.89) 2.87 (0.88) 3.64 (1.44) 

 8 Cl 
 

4.40 (3.25) 1.27 (1.50) 0.81 (0.98) 
 

0.11 (0.05) 0.31 (0.36) 0.18 (0.14) 

 

          Pesticides (ng.g-1 dw) 
       Ald. 

 
0.11 (0.03) 0.11 (0.03) 0.07 (0.04) 

 
0.21 (0.15) 0.12 (0.04) 0.06 (0.04) 

 Dia. 
 

5.18 (4.63) 1.72 (2.30) 1.08 (1.00) 
 

2.64 (1.70) 1.20 (0.67) 1.63 (0.78) 

 Diel. 
 

0.30 (0.17) 0.43 (0.28) 0.44 (0.50) 
 

0.51 (0.33) 0.28 (0.16) 0.29 (0.23) 

 Endo.I 
 

0.83 (0.58) 0.95 (0.87) 1.17 (1.80) 
 

1.35 (1.50) 1.64 (1.10) 1.56 (1.60) 

 Endo.II 
 

1.30 (0.09) 2.73 (2.10) 1.87 (1.60) 
 

1.77 (1.30) 1.99 (2.30) 2.12 (1.60) 

 Endr. 
 

0.18 (0.13) 0.43 (0.85) 0.13 (0.06) 
 

0.13 (0.05) 0.10 (0.01) 0.55 (1.40) 

 Hept. 
 

0.47 (0.17) 0.59 (0.57) 0.23 (0.17) 
 

1.18 (0.49) 0.25 (0.28) 0.18 (0.18) 

 Hept.A 
 

0.59 (0.15) 1.66 (1.40) 1.46 (1.20) 
 

0.73 (0.29) 1.73 (1.70) 1.71 (1.00) 

 Hept.B 
 

0.20 (0.16) 0.40 (0.39) 0.41 (0.78) 
 

0.40 (0.27) 0.04 (0.03) 0.13 (0.32) 

 Lind. 
 

1.49 (0.51) 1.72 (0.91) 1.28 (0.58) 
 

1.15 (0.46) 1.26 (0.77) 1.16 (0.32) 

 DDE 
 

0.35 (0.29) 0.45 (0.45) 0.68 (1.00) 
 

0.11 (0.01) 0.22 (0.20) 0.33 (0.35) 

 DDD 
 

0.29 (0.18) 0.28 (0.29) 0.50 (0.72) 
 

0.29 (0.21) 0.19 (0.05) 0.31 (0.19) 

 DDT 
 

3.10 (1.21) 0.94 (1.50) 0.52 (0.74) 
 

0.65 (0.50) 0.77 (0.73) 0.42 (0.54) 

 ΣDDT 
 

3.74 (1.31) 1.67 (2.00) 1.71 (1.80) 
 

1.05 (0.31) 1.18 (0.90) 1.06 (0.55) 

 

         

 

Pest/ PCB 
 

1.27 (0.28) 0.53 (0.12) 0.52 (0.14) 
 

0.99 (0.31) 0.47 (0.11) 0.51 (0.10) 
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B) 

 
Grand Nouméa (GN) 

 
Grand Lagon Sud (GS) 

  
  

 
CO1 IR1 BR1 

 
CO2 IR2 BR2 

C
on

ge
r 

sp
.  

 

          PCBs (ng.g-1 dw) 
       PCBTot 

 
75.59 (56.91) 

 
40.16 (13.36) 

 
31.95 (27.93) 99.47 (67.68) 15.43 (4.98) 

 SICES  
 

19.12 (13.14) 
 

10.93 (3.53) 
 

8.38 (7.86) 26.32 (18.94) 3.89 (1.70) 

 153/138 
 

0.77 (0.44) 
 

0.78 (0.15) 
 

1.04 (0.47) 0.88 (0.36) 1.43 (0.61) 

 

          PCB chlorination classes (% of CTotal PCBs)  
     3 Cl 

 
15.28 (7.70) 

 
11.24 (2.15) 

 
17.86 (5.84) 19.94 (6.08) 25.78 (3.73) 

 4 Cl 
 

17.37 (3.83) 
 

22.43 (4.85) 
 

19.26 (19.14) 11.07 (4.59) 20.35 (13.76) 

 5 Cl 
 

33.38 (7.02) 
 

36.39 (4.06) 
 

25.86 (13.80) 32.74 (7.86) 31.72 (6.57) 

 6 Cl 
 

27.21 (2.42) 
 

24.05 (2.66) 
 

23.33 (13.93) 32.37 (7.73) 18.73 (5.74) 

 7 Cl 
 

5.04 (2.92) 
 

4.24 (2.29) 
 

13.04 (13.56) 3.62 (1.38) 2.63 (1.42) 

 8 Cl 
 

1.72 (1.43) 
 

1.66 (1.07) 
 

0.66 (0.87) 0.26 (0.24) 0.78 (0.74) 

 

          Pesticides (ng.g-1 dw) 
       Ald. 

 
0.13 (0.07) 

 
0.09 (0.02) 

 
0.10a 0.12 (0.04) 0.12 (0.04) 

 Dia. 
 

0.10 (0,01) 
 

0.69 (1.15) 
 

10.64 (6.58) 3.99 (2.31) 3.26 (1.45) 

 Diel. 
 

0.88 (0.66) 
 

0.41 (0.18) 
 

0.29 (0.13) 0.25 (0.09) 0.24 (0.04) 

 Endo.I 
 

1.20 (0.93) 
 

0.57 (0.59) 
 

0.44 (0.33) 0.61 (0.73) 2.77 (4.64) 

 Endo.II 
 

4.24 (2.49) 
 

2.18 (0.80) 
 

1.71 (0.48) 2.61 (2.60) 2.44 (3.26) 

 Endr. 
 

0.10 (0.003) 
 

0.10 (0.01) 
 

0.86 (0.16) 1.69 (3.19) 1.47 (2.67) 

 Hept. 
 

0.59 (0.41) 
 

0.47 (0.23) 
 

0.55 (0.49) 0.51 (0.55) 0.60 (0.46) 

 Hept.A 
 

2.74 (2.72) 
 

1.14 (0.49) 
 

0.69 (0.66) 2.47 (1.77) 0.35 (0.21) 

 Hept.B 
 

0.89 (0.84) 
 

0.43 (0.14) 
 

0.30 (0.41) 0.30 (0.48) 0.12 (0.06) 

 Lind. 
 

2.82 (1.44) 
 

1.53 (0.50) 
 

1.37 (1.61) 1.25 (0.93) 0.62 (0.27) 

 DDE 
 

0.52 (0.65) 
 

0.43 (0.31) 
 

0.12 (0.02) 0.37 (0.21) 0.23 (0.24) 

 DDD 
 

0.33 (0.32) 
 

0.17 (0.11) 
 

0.10 0.65 (0.22) 0.10 

 DDT 
 

0.62 (0.71) 
 

1.58 (2.27) 
 

1.73 (2.30) 0.40 (0.61) 0.41 (0.27) 

 ΣDDT 
 

1.47 (1.03) 
 

2.18 (2.49) 
 

1.94 (2.32) 1.42 (0.71) 0.74 (0.39) 

 

          SPest/ 
SPCB 

 
0.50 (0.09) 

 
0.52 (0.17) 

 
2.82 (2.79) 0.51 (0.21) 1.78 (1.54) 

 
Note: CO: coastal sites; IR:  intermediate reef sites; BR: barrier reef sites. a only one value. 


